1
|
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, Sverrild A. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J 2024; 63:2301397. [PMID: 38453256 PMCID: PMC10991852 DOI: 10.1183/13993003.01397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.
Collapse
Affiliation(s)
- Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
2
|
Glucocorticoid Insensitivity in Asthma: The Unique Role for Airway Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23168966. [PMID: 36012240 PMCID: PMC9408965 DOI: 10.3390/ijms23168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Although most patients with asthma symptoms are well controlled by inhaled glucocorticoids (GCs), a subgroup of patients suffering from severe asthma respond poorly to GC therapy. Such GC insensitivity (GCI) represents a profound challenge in managing patients with asthma. Even though GCI in patients with severe asthma has been investigated by several groups using immune cells (peripheral blood mononuclear cells and alveolar macrophages), uncertainty exists regarding the underlying molecular mechanisms in non-immune cells, such as airway smooth cells (ASM) cells. In asthma, ASM cells are among the targets of GC therapy and have emerged as key contributors not only to bronchoconstriction but also to airway inflammation and remodeling, as implied by experimental and clinical evidence. We here summarize the current understanding of the actions/signaling of GCs in asthma, and specifically, GC receptor (GR) “site-specific phosphorylation” and its role in regulating GC actions. We also review some common pitfalls associated with studies investigating GCI and the inflammatory mediators linked to asthma severity. Finally, we discuss and contrast potential molecular mechanisms underlying the impairment of GC actions in immune cells versus non-immune cells such as ASM cells.
Collapse
|
3
|
Caramori G, Nucera F, Mumby S, Lo Bello F, Adcock IM. Corticosteroid resistance in asthma: Cellular and molecular mechanisms. Mol Aspects Med 2022; 85:100969. [PMID: 34090658 DOI: 10.1016/j.mam.2021.100969] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Inhaled glucocorticoids (GCs) are drugs widely used as treatment for asthma patients. They prevent the recruitment and activation of lung immune and inflammatory cells and, moreover, have profound effects on airway structural cells to reverse the effects of disease on airway inflammation. GCs bind to a specific receptor, the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily and modulates pro- and anti-inflammatory gene transcription through a number of distinct and complementary mechanisms. Targets genes include many pro-inflammatory mediators such as chemokines, cytokines, growth factors and their receptors. Inhaled GCs are very effective for most asthma patients with little, if any, systemic side effects depending upon the dose. However, some patients show poor asthma control even after the administration of high doses of topical or even systemic GCs. Several mechanisms relating to inflammation have been considered to be responsible for the onset of the relative GC resistance observed in these patients. In these patients, the side-effect profile of GCs prevent continued use of high doses and new drugs are needed. Targeting the defective pathways associated with GC function in these patients may also reactivate GC responsiveness.
Collapse
Affiliation(s)
- Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy.
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK.
| |
Collapse
|
4
|
Cusack RP, Whetstone CE, Xie Y, Ranjbar M, Gauvreau GM. Regulation of Eosinophilia in Asthma-New Therapeutic Approaches for Asthma Treatment. Cells 2021; 10:cells10040817. [PMID: 33917396 PMCID: PMC8067385 DOI: 10.3390/cells10040817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Asthma is a complex and chronic inflammatory disease of the airways, characterized by variable and recurring symptoms, reversible airflow obstruction, bronchospasm, and airway eosinophilia. As the pathophysiology of asthma is becoming clearer, the identification of new valuable drug targets is emerging. IL-5 is one of these such targets because it is the major cytokine supporting eosinophilia and is responsible for terminal differentiation of human eosinophils, regulating eosinophil proliferation, differentiation, maturation, migration, and prevention of cellular apoptosis. Blockade of the IL-5 pathway has been shown to be efficacious for the treatment of eosinophilic asthma. However, several other inflammatory pathways have been shown to support eosinophilia, including IL-13, the alarmin cytokines TSLP and IL-33, and the IL-3/5/GM-CSF axis. These and other alternate pathways leading to airway eosinophilia will be described, and the efficacy of therapeutics that have been developed to block these pathways will be evaluated.
Collapse
|
5
|
Loading of Beclomethasone in Liposomes and Hyalurosomes Improved with Mucin as Effective Approach to Counteract the Oxidative Stress Generated by Cigarette Smoke Extract. NANOMATERIALS 2021; 11:nano11040850. [PMID: 33810420 PMCID: PMC8065961 DOI: 10.3390/nano11040850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023]
Abstract
In this work beclomethasone dipropionate was loaded into liposomes and hyalurosomes modified with mucin to improve the ability of the payload to counteract the oxidative stress and involved damages caused by cigarette smoke in the airway. The vesicles were prepared by dispersing all components in the appropriate vehicle and sonicating them, thus avoiding the use of organic solvents. Unilamellar and bilamellar vesicles small in size (~117 nm), homogeneously dispersed (polydispersity index lower than 0.22) and negatively charged (~−11 mV), were obtained. Moreover, these vesicle dispersions were stable for five months at room temperature (~25 °C). In vitro studies performed using the Next Generation Impactor confirmed the suitability of the formulations to be nebulized as they were capable of reaching the last stages of the impactor that mimic the deeper airways, thus improving the deposition of beclomethasone in the target site. Further, biocompatibility studies performed by using 16HBE bronchial epithelial cells confirmed the high biocompatibility and safety of all the vesicles. Among the tested formulations, only mucin-hyalurosomes were capable of effectively counteracting the production of reactive oxygen species (ROS) induced by cigarette smoke extract, suggesting that this formulation may represent a promising tool to reduce the damaging effects of cigarette smoke in the lung tissues, thus reducing the pathogenesis of cigarette smoke-associated diseases such as chronic obstructive pulmonary disease, emphysema, and cancer.
Collapse
|
6
|
Abstract
The recent coronavirus infectious disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is placing health systems in serious challenges worldwide. Shocking statistics each day has prompted the World Health Organization to officially declare the COVID-19 outbreak as a pandemic in March 2020. Preliminary studies have shown increased mortality in patients with solid cancers and infection by SARS-CoV-2. Until now, the evidence on the behavior of COVID-19 in patients with a history of thyroid cancer remains scarce, and most of the recommendations given are based on common sense. Therefore, in this viewpoint, we present a brief review of several challenges we are frequently facing during this pandemic and a series of recommendations based on what we have implemented in our clinical practice at a university hospital currently mostly dedicated to COVID-19.
Collapse
Affiliation(s)
- Anabella Smulever
- Division of Endocrinology, Hospital de Clínicas, University of Buenos Aires, Buenos Aires, Argentina
| | - Erika Abelleira
- Division of Endocrinology, Hospital de Clínicas, University of Buenos Aires, Buenos Aires, Argentina
| | - Fernanda Bueno
- Division of Endocrinology, Hospital de Clínicas, University of Buenos Aires, Buenos Aires, Argentina
| | - Fabián Pitoia
- Division of Endocrinology, Hospital de Clínicas, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Koleva L, Bovt E, Ataullakhanov F, Sinauridze E. Erythrocytes as Carriers: From Drug Delivery to Biosensors. Pharmaceutics 2020; 12:E276. [PMID: 32197542 PMCID: PMC7151026 DOI: 10.3390/pharmaceutics12030276] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly developing field. Such erythrocytes can act as carriers that prolong the drug's action due to its gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes (e.g. magnetic resonance imaging). The review focuses only on drugs loaded inside erythrocytes, defines the main lines of research for erythrocytes with bioactive substances, as well as the advantages and limitations of their application. Particular attention is paid to in vivo studies, opening-up the potential for the clinical use of drugs encapsulated into erythrocytes.
Collapse
Affiliation(s)
- Larisa Koleva
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Elizaveta Bovt
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Fazoil Ataullakhanov
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Elena Sinauridze
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| |
Collapse
|
8
|
Shen X, Chang H, Sun Y, Wan Y. Determination and occurrence of natural and synthetic glucocorticoids in surface waters. ENVIRONMENT INTERNATIONAL 2020; 134:105278. [PMID: 33387883 DOI: 10.1016/j.envint.2019.105278] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/07/2023]
Abstract
Glucocorticoids (GCs) have been increasingly reported to have adverse effects on aquatic organisms, but the lack of comprehensive analytical methods for a broad number of GCs has limited the effective management of pollution by these molecules in surface and coastal waters. In this study, we developed an original analytical method for simultaneously monitoring 25 natural GCs, and 43 synthetic GCs (4 hydrocortisone types, 6 acetonide types, 8 betamethasone types, 14 halogenated esters, and 11 labile prodrug esters) in water samples. Of the river samples investigated, 15 natural and 25 synthetic compounds were detected with the concentrations ranging from 0.13 ng/L (11-epitetrahydrocortisol) to 433 ng/L (cortisone) and from 0.05 (clobetasol) to 94 ng/L (prednisolone), respectively. Thirteen natural metabolites of cortisol (CRL) were first detected, and their concentrations were up to 36 times higher than that of CRL. Hydrocortisone-type GCs were the dominant synthetic compounds (≤154 ng/L), followed by halogenated esters (≤81 ng/L), acetonide type GCs (≤57 ng/L), betamethasone type GCs (≤32 ng/L), and labile prodrug esters (≤22 ng/L). Considering the relative potencies for detected GCs compared to dexamethasone, halogenated esters predominantly contributed to the GC activities in the samples. Notably, this is the first report of the halogenated esters 11-oxo fluticasone propionate (OFP) and cloticasone propionate (CTP) in environmental waters. Untreated wastewater is the main source of GCs in the studied waters, and the concentration ratios between natural and synthetic GCs can be used as potential indicators of sewage input. Because of the high detected concentrations and bioactivity potency of halogenated GCs, they are the main contributors to GC activities in the studied waters, and deserved more study in the future.
Collapse
Affiliation(s)
- Xiaoyan Shen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yu Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Zappia CD, Monczor F. Therapeutic utility of glucocorticoids and antihistamines cotreatment. Rationale and perspectives. Pharmacol Res Perspect 2019; 7:e00530. [PMID: 31859461 PMCID: PMC6923805 DOI: 10.1002/prp2.530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Antihistamines and glucocorticoids (GCs) are often used together in the clinic, in several inflammatory-related situations. Even though there is no clear rationale for this drug association, the clinical practice is based on the assumption that due to their concomitant antiinflammatory effects, there should be an intrinsic benefit in their coadministration. Our group has studied the molecular interaction between the histamine H1 receptor and the glucocorticoid receptor (GR) signaling pathways, showing an enhancing effect on GC-induced GR transcriptional activity induced by antihistamines. We hypothesize that the existence of this synergistic effect could contribute in reducing the GCs clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage as the GC-desired effects may be reinforced by the addition of an antihistamine and, as a consequence of the dose reduction, GC-related adverse effects could be reduced or at least mitigated. Here we discuss the potential therapeutic applications of this cotreatment seeking to evaluate its usefulness, especially in inflammatory-related conditions.
Collapse
Affiliation(s)
- Carlos D. Zappia
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
10
|
Scherholz ML, Schlesinger N, Androulakis IP. Chronopharmacology of glucocorticoids. Adv Drug Deliv Rev 2019; 151-152:245-261. [PMID: 30797955 DOI: 10.1016/j.addr.2019.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/24/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
Glucocorticoids influence a wide array of metabolic, anti-inflammatory, immunosuppressive, and cognitive signaling processes, playing an important role in homeostasis and preservation of normal organ function. Synthesis is regulated by the hypothalamic-pituitary-adrenal (HPA) axis of which cortisol is the primary glucocorticoid in humans. Synthetic glucocorticoids are important pharmacological agents that augment the anti-inflammatory and immunosuppressive properties of endogenous cortisol and are widely used for the treatment of asthma, Crohn's disease, and rheumatoid arthritis, amongst other chronic conditions. The homeostatic activity of cortisol is disrupted by the administration of synthetic glucocorticoids and so there is interest in developing treatment options that minimize HPA axis disturbance while maintaining the pharmacological effects. Studies suggest that optimizing drug administration time can achieve this goal. The present review provides an overview of endogenous glucocorticoid activity and recent advances in treatment options that have further improved patient safety and efficacy with an emphasis on chronopharmacology.
Collapse
|
11
|
Zhang X, Qiu M, Guo P, Lian Y, Xu E, Su J. Autologous Red Blood Cell Delivery of Betamethasone Phosphate Sodium for Long Anti-Inflammation. Pharmaceutics 2018; 10:pharmaceutics10040286. [PMID: 30567356 PMCID: PMC6320894 DOI: 10.3390/pharmaceutics10040286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 12/30/2022] Open
Abstract
Although glucocorticoids are highly effective in treating various types of inflammation such as skin disease, rheumatic disease, and allergic disease, their application have been seriously limited for their high incidence of side effects, particularly in long term treatment. To improve efficacy and reduce side effects, we encapsulated betamethasone phosphate (BSP) into biocompatible red blood cells (RBCs) and explored its long acting-effect. BSP was loaded into rat autologous erythrocytes by hypotonic preswelling method, and the loading amount was about 2.5 mg/mL cells. In vitro, BSP loaded RBCs (BSP-RBCs) presented similar morphology, osmotic fragility to native RBCs (NRBCs). After the loading process, the loaded cells can maintain around 70% of Na+/K+-ATPase activity of natural cells. In vivo, a series of tests including survival, pharmacokinetics, and anti-inflammatory effect were carried out to examine the long-acting effect of BSP-RBCs. The results shown that the loaded cells could circulate in plasma for over nine days, the release of BSP can last for over seven days and the anti-inflammatory effect can still be observed on day 5 after injection. Totally, BSP-loaded autologous erythrocytes seem to be a promising sustained releasing delivery system with long anti-inflammatory effect.
Collapse
Affiliation(s)
- Xiumei Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pengcheng Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yumei Lian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Enge Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Godar M, Blanchetot C, de Haard H, Lambrecht BN, Brusselle G. Personalized medicine with biologics for severe type 2 asthma: current status and future prospects. MAbs 2017; 10:34-45. [PMID: 29035619 PMCID: PMC5800381 DOI: 10.1080/19420862.2017.1392425] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Asthma affects more than 300 million people worldwide and poses a large socioeconomic burden, particularly in the 5% to 10% of severe asthmatics. So far, each entry of new biologics in clinical trials has led to high expectations for treating all severe asthma forms, but the outcome has only been successful if the biologic, as add-on treatment, targeted specific patient subgroups. Indeed, we now realize that asthma is a heterogeneous disease with multiple phenotypes, based on distinct pathophysiological mechanisms, called endotypes. Thus, asthma therapy is gradually moving to a personalized medicine approach, tailored to individual's asthma endotypes identified through biomarkers. Here, we review the clinical efficacy of antibody-related therapeutics undergoing clinical trials, or those already approved, for the treatment of severe type 2 asthma. Biologics targeting type 2 cytokines have shown consistent efficacy, especially in patients with evidence of type 2 inflammation, suggesting that the future of asthma biologics is promising.
Collapse
Affiliation(s)
- Marie Godar
- a argenx BVBA , Zwijnaarde , Belgium.,b VIB-UGent Center for Inflammation Research , Ghent , Belgium.,c Department of Internal Medicine , Ghent University , Ghent , Belgium
| | | | | | - Bart N Lambrecht
- b VIB-UGent Center for Inflammation Research , Ghent , Belgium.,c Department of Internal Medicine , Ghent University , Ghent , Belgium.,d Department of Pulmonary Medicine , ErasmusMC , Rotterdam , The Netherlands.,f Department of Epidemiology and Respiratory Medicine , ErasmusMC , Rotterdam , The Netherlands
| | - Guy Brusselle
- e Department of Respiratory Medicine , Ghent University Hospital , Ghent , Belgium.,f Department of Epidemiology and Respiratory Medicine , ErasmusMC , Rotterdam , The Netherlands
| |
Collapse
|
13
|
Abstract
The most effective anti-inflammatory drugs used to treat patients with airways disease are topical glucocorticosteroids (GCs). These act on virtually all cells within the airway to suppress airway inflammation or prevent the recruitment of inflammatory cells into the airway. They also have profound effects on airway structural cells to reverse the effects of disease on their function. Glucorticosteroids act via specific receptors-the glucocorticosteroid receptor (GR)-which are a member of the nuclear receptor family. As such, many of the important actions of GCs are to modulate gene transcription through a number of distinct and complementary mechanisms. Targets genes include most inflammatory mediators such as chemokines, cytokines, growth factors and their receptors. GCs delivered by the inhaled route are very effective for most patients and have few systemic side effects. However, in some patients, even high doses of topical or even systemic GCs fail to control their disease. A number of mechanisms relating to inflammation have been reported to be responsible for the failure of these patients to respond correctly to GCs and these provide insight into GC actions within the airways. In these patients, the side-effect profile of GCs prevent continued use of high doses and new drugs are needed for these patients. Targeting the defective pathways associated with GC function in these patients may also reactivate GC responsiveness.
Collapse
Affiliation(s)
- Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| |
Collapse
|
14
|
Belanger KK, Ameredes BT, Boldogh I, Aguilera-Aguirre L. The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma. Mediators Inflamm 2016; 2016:3762561. [PMID: 27524866 PMCID: PMC4976190 DOI: 10.1155/2016/3762561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms.
Collapse
Affiliation(s)
- KarryAnne K. Belanger
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bill T. Ameredes
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Molecular Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Environmental Health and Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Sealy Center for Molecular Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Environmental Health and Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
15
|
Nader MA, Gameil N, Abdelaziz RR, Zalata KR, Osman A, Zedan MM, Abo-Elkheir N, Elsiddig AA, Zedan M. Effect of tranilast in comparison with beclomethasone in chronic murine model of asthma. Exp Lung Res 2016; 42:296-306. [PMID: 27450020 DOI: 10.1080/01902148.2016.1207727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM OF THE STUDY The current investigation was taken to scrutinize the action of tranilast on the airway remodeling in chronic asthma in mice. MATERIALS AND METHODS Intraperitoneal injection of ovalbumin was applied to mice for sensitization and subsequent inhalation of 1% ovalbumin three times week for 10 weeks for challenge. Beclomethasone or tranilast were given daily for the 10 week challenge period. At the end of the study, lung weight index, total collagen content, bronchoalveolar lavage level of total and differential cell counts, interleukin-13, in addition to lung tissue nitrate/nitrite and transforming growth beta-1 were measured. Also, histological analysis was done. RESULTS Asthmatic mice demonstrated apparent fibrotic changes. Significant airway fibrosis was demonstrated by hyperplasia of goblet cells and thickening of airway epithelium, increased content of lung collagen, lung and bronchoalveolar lavage of transforming growth factor beta-1 and interleukin-13 mutually accompanied by reduction in nitrate/nitrite generation. CONCLUSIONS Beclomethasone influence on airway remodeling was mediated mainly via suppression of eosinophilic recruitment into the airways and reduction of interleukin-13 cytokine levels. Whereas, tranilast effects on airway remodeling was found to be mainly mediated via its inhibitory effect on transforming growth beta-1. Both beclomethasone and tranilast influence airway remodeling by different degrees and mechanisms.
Collapse
Affiliation(s)
- Manar A Nader
- a Department of Pharmacology & Toxicology , College of Pharmacy, Taibah University , El-Madinah El-Munawarah , Saudi Arabia.,b Department of Pharmacology & Toxicology, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Nariman Gameil
- b Department of Pharmacology & Toxicology, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Rania R Abdelaziz
- b Department of Pharmacology & Toxicology, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Khaled R Zalata
- c Department of Clinical Pathology, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Amal Osman
- d Department of Pediatrics, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Mohamed M Zedan
- d Department of Pediatrics, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Nermin Abo-Elkheir
- c Department of Clinical Pathology, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Abeer Abdalla Elsiddig
- e Department of Pathology, Faculty of Medicine , Taibah University , El-Madinah El-Munawarah , Saudi Arabia
| | - Magdy Zedan
- d Department of Pediatrics, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| |
Collapse
|
16
|
Abstract
INTRODUCTION Asthma, a heterogeneous disease with multiple phenotypes, remains a significant health problem. Present treatments are not curative and prevention should be our ultimate goal. Vitamin E supplementation presents a potential easy and cheap preventive therapy but the results of studies are confusing and sometimes contradictory. Clarification is needed. AREAS COVERED Animal studies and research in pregnant women suggest enhanced lifetime resistance to asthma with appropriate fetal exposure to vitamin E. Vitamin E's preventive role is complex and includes functional variations of the different isoforms. Expert commentary: We review the most recent literature on the role of vitamin E isoforms on: lung inflammation, immune development, animal and clinical studies during pregnancy, and the potential influence of vitamin E isoforms on asthma development in offspring. We point out where data are seemingly contradictory, explain why this is so, and comment on where further clarifying research is needed and its future direction.
Collapse
Affiliation(s)
- Richard T Strait
- a Department of Pediatrics , University of Cincinnati, College of Medicine , Cincinnati , OH , USA.,b Division of Emergency Medicine , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Carlos A Camargo
- c Department of Emergency Medicine , Massachusetts General Hospital, Harvard, Medical School , Boston , MA , USA
| |
Collapse
|
17
|
Jia A, Wu S, Daniels KD, Snyder SA. Balancing the Budget: Accounting for Glucocorticoid Bioactivity and Fate during Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2870-80. [PMID: 26840181 DOI: 10.1021/acs.est.5b04893] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Numerous studies have identified the presence and bioactivity of glucocorticoid receptor (GR) active substances in water; however, the identification and activity-balance of GR compounds remained elusive. This study determined the occurrence and attenuation of GR bioactivity and closed the balance by determining those substances responsible. The observed in vitro GR activity ranged from 39 to 155 ng dexamethasone-equivalent/L (ng Dex-EQ/L) in the secondary effluents of four wastewater treatment plants. Monochromatic ultraviolet light of 80 mJ/cm(2) disinfection dose was efficient for GR activity photolysis, whereas chlorination could not appreciably attenuate the observed GR activity. Ozonation was effective only at relatively high dose (ozone/TOC 1:1). Microfiltration membranes were not efficient for GR activity attenuation; however, reverse osmosis removed GR activity to levels below the limits of detection. A high-sensitivity liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was then developed to screen 27 GR agonists. Twelve were identified and quantified in effluents at summed concentrations of 9.6-21.2 ng/L. The summed Dex-EQ of individual compounds based on their measured concentrations was in excellent agreement with the Dex-EQ obtained from bioassay, which demonstrated that the detected glucocorticoids can entirely explain the observed GR bioactivity. Four synthetic glucocorticoids (triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone propionate) predominantly accounted for GR activity. These data represent the first known publication where a complete activity balance has been determined for GR agonists in an aquatic environment.
Collapse
Affiliation(s)
- Ai Jia
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Shimin Wu
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Kevin D Daniels
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Shane A Snyder
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| |
Collapse
|
18
|
Froidure A, Shen C, Pilette C. Dendritic cells revisited in human allergic rhinitis and asthma. Allergy 2016; 71:137-48. [PMID: 26427032 DOI: 10.1111/all.12770] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/27/2022]
Abstract
The role of dendritic cells (DCs) in airway allergy has been studied for 15 years; recent data has highlighted the cross talk with airway epithelial cells and environmental factors (allergens, virus) during the inception and exacerbation of allergic asthma. Although murine models have provided key information, it remains uncertain to what extent these basic mechanisms take place in human allergic disease, notably with regard to different clinical phenotypes. In the present review, we discuss new evidence regarding mechanisms of DC regulation in the mouse which could be important in human asthma. Finally, after discussing the effects of current therapies on DC biology, we focus on pathways that could represent targets for future therapies.
Collapse
Affiliation(s)
- A. Froidure
- Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain and Walloon Institute for Excellence in Lifesciences and Biotechnology; Brussels Belgium
- Cliniques Universitaires Saint-Luc, service de pneumologie; Brussels Belgium
| | - C. Shen
- Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain and Walloon Institute for Excellence in Lifesciences and Biotechnology; Brussels Belgium
| | - C. Pilette
- Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain and Walloon Institute for Excellence in Lifesciences and Biotechnology; Brussels Belgium
- Cliniques Universitaires Saint-Luc, service de pneumologie; Brussels Belgium
| |
Collapse
|
19
|
Abstract
There is evidence that genetic factors are implicated in the observed differences in therapeutic responses to the common classes of asthma therapy such as β2-agonists, corticosteroids, and leukotriene modifiers. Pharmacogenomics explores the roles of genetic variation in drug response and continues to be a field of great interest in asthma therapy. Prior studies have focused on candidate genes and recently emphasized genome-wide association analyses. Newer integrative omics and system-level approaches have recently revealed novel understanding of drug response pathways. However, the current known genetic loci only account for a fraction of variability in drug response and ongoing research is needed. While the field of asthma pharmacogenomics is not yet fully translatable to clinical practice, ongoing research should hopefully achieve this goal in the near future buttressed by the recent precision medicine efforts in the USA and worldwide.
Collapse
|
20
|
Mirzakhani H, Al-Garawi A, Weiss ST, Litonjua AA. Vitamin D and the development of allergic disease: how important is it? Clin Exp Allergy 2015; 45:114-25. [PMID: 25307157 DOI: 10.1111/cea.12430] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin D has known effects on lung development and the immune system that may be important in the development, severity, and course of allergic diseases (asthma, eczema, and food allergy). Vitamin D deficiency is prevalent worldwide and may partly explain the increases in asthma and allergic diseases that have occurred over the last 50-60 years. In this review, we explore past and current knowledge on the effect of vitamin D on lung development and immunomodulation and present the evidence of its role in allergic conditions. While there is growing observational and experimental evidence for the role of vitamin D, well-designed and well-powered clinical trials are needed to determine whether supplementation of vitamin D should be recommended in these disorders.
Collapse
Affiliation(s)
- H Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
21
|
Ricciardolo FLM, Blasi F, Centanni S, Rogliani P. Therapeutic novelties of inhaled corticosteroids and bronchodilators in asthma. Pulm Pharmacol Ther 2015; 33:1-10. [PMID: 26014510 DOI: 10.1016/j.pupt.2015.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/15/2015] [Indexed: 12/15/2022]
Abstract
Orally inhaled agents are a key therapeutic class for treatment of asthma. Inhaled corticosteroids (ICS) are the most effective anti-inflammatory treatment for asthma thus representing the first-line therapy and bronchodilators complement the effects of ICSs. A significant body of evidence indicates that addition of a β2-agonist to ICS therapy is more effective than increasing the dose of ICS monotherapy. In this paper, pharmacological features of available ICSs and bronchodilators will be reviewed with a focus on fluticasone propionate/formoterol fumarate combination which represents the one of the most powerful ICS acting together with the most rapid active LABA.
Collapse
Affiliation(s)
- Fabio L M Ricciardolo
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milano, IRCCS Fondazione Cà Granda, Milano, Italy
| | - Stefano Centanni
- Respiratory Unit, San Paolo Hospital, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Paola Rogliani
- Unit of Respiratory Clinical Pharmacology, Department of System Medicine, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
22
|
Cassim R, Russell MA, Lodge CJ, Lowe AJ, Koplin JJ, Dharmage SC. The role of circulating 25 hydroxyvitamin D in asthma: a systematic review. Allergy 2015; 70:339-54. [PMID: 25631639 DOI: 10.1111/all.12583] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2015] [Indexed: 12/31/2022]
Abstract
Asthma is a major public health issue. The co-occurrence of the high prevalence of asthma and vitamin D deficiency documented globally in recent decades has prompted several investigations into a possible association between the two conditions. The objective of this paper was to synthesize the evidence from studies that have measured the association between serum vitamin D and asthma incidence, prevalence, severity and exacerbations. A systematic search of the literature was performed in PubMed, and the available evidence was summarized both qualitatively and by meta-analysis. Only English language, observational studies measuring serum levels of 25(OH)D as the exposure were included, as this is the most robust measure of vitamin D levels. The search identified 23 manuscripts: two case-control, 12 cohort and nine cross-sectional studies. Collectively, the evidence suggests that higher serum levels of 25(OH)D are associated with a reduced risk of asthma exacerbations, but there was little evidence to suggest an association with asthma incidence, prevalence or severity. A significant amount of heterogeneity between study methodology and results restricted the scope for meta-analysis. These results suggest that vitamin D supplementation may be effective for the prevention of asthma exacerbations, but the findings need to be confirmed by clinical trials.
Collapse
Affiliation(s)
- R. Cassim
- Allergy and Lung Health Unit; School of Population and Global Health; University of Melbourne; Carlton Vic Australia
| | - M. A. Russell
- Allergy and Lung Health Unit; School of Population and Global Health; University of Melbourne; Carlton Vic Australia
| | - C. J. Lodge
- Allergy and Lung Health Unit; School of Population and Global Health; University of Melbourne; Carlton Vic Australia
- Murdoch Childrens' Research Institute; Parkville Vic. Australia
| | - A. J. Lowe
- Allergy and Lung Health Unit; School of Population and Global Health; University of Melbourne; Carlton Vic Australia
- Murdoch Childrens' Research Institute; Parkville Vic. Australia
| | - J. J. Koplin
- Allergy and Lung Health Unit; School of Population and Global Health; University of Melbourne; Carlton Vic Australia
- Murdoch Childrens' Research Institute; Parkville Vic. Australia
| | - S. C. Dharmage
- Allergy and Lung Health Unit; School of Population and Global Health; University of Melbourne; Carlton Vic Australia
- Murdoch Childrens' Research Institute; Parkville Vic. Australia
| |
Collapse
|
23
|
Vitamin D as an adjunctive therapy in asthma. Part 1: A review of potential mechanisms. Pulm Pharmacol Ther 2015; 32:60-74. [PMID: 25732539 DOI: 10.1016/j.pupt.2015.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 12/24/2022]
Abstract
Vitamin D deficiency (VDD) is highly prevalent worldwide. The classical role for vitamin D is to regulate calcium absorption form the gastrointestinal tract and influence bone health. Recently vitamin D receptors and vitamin D metabolic enzymes have been discovered in numerous sites systemically supporting diverse extra-skeletal roles of vitamin D, for example in asthmatic disease. Further, VDD and asthma share several common risk factors including high latitude, winter season, industrialization, poor diet, obesity, and dark skin pigmentation. Vitamin D has been demonstrated to possess potent immunomodulatory effects, including effects on T cells and B cells as well as increasing production of antimicrobial peptides (e.g. cathelicidin). This immunomodulation may lead to asthma specific clinical benefits in terms of decreased bacterial/viral infections, altered airway smooth muscle-remodeling and -function as well as modulation of response to standard anti-asthma therapy (e.g. glucocorticoids and immunotherapy). Thus, vitamin D and its deficiency have a number of biological effects that are potentially important in altering the course of disease pathogenesis and severity in asthma. The purpose of this first of a two-part review is to review potential mechanisms whereby altering vitamin D status may influence asthmatic disease.
Collapse
|
24
|
Philip J. The effects of inhaled corticosteroids on growth in children. Open Respir Med J 2014; 8:66-73. [PMID: 25674176 PMCID: PMC4319193 DOI: 10.2174/1874306401408010066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022] Open
Abstract
Inhaled corticosteroids (ICS) are recommended as the first-line therapy for children with persistent asthma. These agents are particularly effective in reducing underlying airway inflammation, improving lung function, decreasing airway hyper-reactivity, and reducing intensity of symptoms in asthmatics. Chronic diseases, such as asthma, have growth-suppressing effects independent of the treatment, which inevitably complicates growth studies. One year studies showed a small, dose-dependent effect of most ICS on childhood growth, with some differences across various ICS molecules, and across individual children. Some ICS at the doses studied did not affect childhood growth when rigorous study designs were used. Most studies did not conform completely with the FDA guidance. The data on effects of childhood ICS use on final adult height are conflicting, but one recent well-designed study showed such an effect, clearly warranting additional studies. In spite of these measurable effects of ICS on childhood growth, it is important to understand that the safety profile of all ICS preparations, with focal anti-inflammatory effects on the lung, is significantly better than oral glucocorticoids.
Collapse
Affiliation(s)
- Jim Philip
- Department of Endocrinology, NMC Hospital, Al Mutradeh area, AL AIN, UAE
| |
Collapse
|
25
|
Cholkar K, Hariharan S, Gunda S, Mitra AK. Optimization of dexamethasone mixed nanomicellar formulation. AAPS PharmSciTech 2014; 15:1454-67. [PMID: 24980081 DOI: 10.1208/s12249-014-0159-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/22/2014] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to develop a clear aqueous mixed nanomicellar formulation (MNF) of dexamethasone utilizing both D-α-tocopherol polyethylene glycol-1000 succinate (Vit E TPGS) and octoxynol-40 (Oc-40). In this study, Vit E TPGS and Oc-40 are independent variables. Formulations were prepared following solvent evaporation method. A three level full-factorial design was applied to optimize the formulation based on entrapment efficiency, size, and polydispersity index (PDI). A specific blend of Vit E TPGS and Oc-40 at a particular wt% ratio (4.5:2.0) produced excellent drug entrapment, loading, small mixed nanomicellar size and narrow PDI. Solubility of DEX in MNF is improved by ~6.3-fold relative to normal aqueous solubility. Critical micellar concentration (CMC) for blend of polymers (4.5:2.0) was found to be lower (0.012 wt%) than the individual polymers (Vit E TPGS (0.025 wt%) and Oc-40 (0.107 wt%)). No significant effect on mixed nanomicellar size and PDI with one-factor or multi-factor interactions was observed. Qualitative (1)H NMR studies confirmed absence of free drug in the outer aqueous MNF medium. MNF appeared to be highly stable. Cytotoxicity studies on rabbit primary corneal epithelial cells did not indicate any toxicity suggesting MNF of dexamethasone is safe and suitable for human topical ocular drops after further in vivo evaluations.
Collapse
|
26
|
A V R. Inhalational Steroids and Iatrogenic Cushing's Syndrome. Open Respir Med J 2014; 8:74-84. [PMID: 25674177 PMCID: PMC4319196 DOI: 10.2174/1874306401408010074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 11/22/2022] Open
Abstract
Bronchial asthma (BA) and Allergic rhinitis (AR) are common clinical problems encountered in day to day practice, where inhalational corticosteroids (ICS) or intranasal steroids (INS) are the mainstay of treatment. Iatrogenic Cushing syndrome (CS) is a well known complication of systemic steroid administration. ICS /INS were earlier thought to be safe, but now more and more number of case reports of Iatrogenic Cushing syndrome have been reported, especially in those who are taking cytochrome P450 (CYP 450) inhibitors. Comparing to the classical clinical features of spontaneous Cushing syndrome, iatrogenic Cushing syndrome is more commonly associated with osteoporosis, increase in intra-ocular pressure, benign intracranial hypertension, aseptic necrosis of femoral head and pancreatitis, where as hypertension, hirsuitisum and menstrual irregularities are less common. Endocrine work up shows low serum cortisol level with evidence of HPA (hypothalamo-pituitary-adrenal) axis suppression. In all patients with features of Cushing syndrome with evidence of adrenal suppression always suspect iatrogenic CS. Since concomitant administration of cytochrome P450 inhibitors in patients on ICS/INS can precipitate iatrogenic CS, avoidance of CYP450 inhibitors, its dose reduction or substitution of ICS are the available options. Along with those, measures to prevent the precipitation of adrenal crisis has to be taken. An update on ICS-/INS- associated iatrogenic CS and its management is presented here.
Collapse
Affiliation(s)
- Raveendran A V
- Department of Internal Medicine, Government Medical College & Hospitals, Kottayam, Kerala-686008, India
| |
Collapse
|
27
|
Glucocorticoids and endothelial cell barrier function. Cell Tissue Res 2013; 355:597-605. [PMID: 24352805 PMCID: PMC3972429 DOI: 10.1007/s00441-013-1762-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/05/2013] [Indexed: 01/14/2023]
Abstract
Glucocorticoids (GCs) are steroid hormones that have inflammatory and immunosuppressive effects on a wide variety of cells. They are used as therapy for inflammatory disease and as a common agent against edema. The blood brain barrier (BBB), comprising microvascular endothelial cells, serves as a permeability screen between the blood and the brain. As such, it maintains homeostasis of the central nervous system (CNS). In many CNS disorders, BBB integrity is compromised. GC treatment has been demonstrated to improve the tightness of the BBB. The responses and effects of GCs are mediated by the ubiquitous GC receptor (GR). Ligand-bound GR recognizes and binds to the GC response element located within the promoter region of target genes. Transactivation of certain target genes leads to improved barrier properties of endothelial cells. In this review, we deal with the role of GCs in endothelial cell barrier function. First, we describe the mechanisms of GC action at the molecular level. Next, we discuss the regulation of the BBB by GCs, with emphasis on genes targeted by GCs such as occludin, claudins and VE-cadherin. Finally, we present currently available GC therapeutic strategies and their limitations.
Collapse
|
28
|
Local and systemic oxidative stress status in chronic obstructive pulmonary disease patients. Can Respir J 2013; 20:35-41. [PMID: 23457673 DOI: 10.1155/2013/985382] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Previous studies have indicated that oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). OBJECTIVES To study local and systemic oxidative stress status in COPD patients, and to clarify the relationship between local and systemic oxidative stress. METHODS Lipid peroxide malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and GSH peroxidase (GSH-PX) levels in induced sputum and plasma, as well as glucocorticoid receptor (GR) levels in peripheral blood leukocytes were examined in 43 acute exacerbation of COPD patients (group A), 35 patients with stable COPD (group B) and 28 healthy controls (14 smokers [group C]; 14 nonsmokers [group D]). RESULTS MDA levels in induced sputum and plasma decreased progressively in groups A to D, with significant differences between any two groups (P<0.001). GSH, SOD and GSH-PX levels in both induced sputum and plasma increased progressively in groups A to D, with significant differences between any two groups (P<0.001). GR levels in peripheral blood leukocytes decreased progressively in groups D to A (all comparisons P<0.001). Pearson analysis revealed strong correlations between MDA, GSH, SOD and GSH-PX levels in plasma and induced sputum. The activity of SOD in plasma and sputum were both positively correlated with GR levels (partial correlation coefficients 0.522 and 0.574, respectively [P<0.001]). CONCLUSIONS Oxidative stress levels were elevated in COPD patients. There was a correlation between local and systemic oxidative status in COPD, and between decreased SOD activity and decreased GR levels in COPD patients.
Collapse
|
29
|
Tamm M, Richards DH, Beghé B, Fabbri L. Inhaled corticosteroid and long-acting β2-agonist pharmacological profiles: effective asthma therapy in practice. Respir Med 2013; 106 Suppl 1:S9-19. [PMID: 23273165 DOI: 10.1016/s0954-6111(12)70005-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fixed-dose combinations of inhaled corticosteroids (ICSs) and long-acting β2-agonists (LABAs) have been used to manage asthma for several years. They are the preferred therapy option for patients who do not achieve optimal control of their asthma with low-dose ICS monotherapy. In Europe, four ICS/LABA products are commercially available for asthma maintenance therapy (fluticasone propionate/formoterol fumarate, fluticasone propionate/salmeterol xinafoate, budesonide/formoterol fumarate and beclometasone dipropionate/formoterol fumarate), and other combinations are likely to be developed over the next few years (e.g. mometasone/formoterol fumarate, fluticasone furoate/vilanterol, mometasone/indacaterol). Data from randomized, controlled, clinical trials do not demonstrate a clear overall efficacy difference among ICS/LABA combinations approved for asthma therapy. Conversely, pharmacological data indicate that there may be certain advantages to using one ICS or LABA over another because of the specific pharmacodynamic and pharmacokinetic profiles associated with particular treatments. This review article summarizes the pharmacological characteristics oft he various ICSs and LABAs available for the treatment of asthma, including the potential for ICS and LABA synergy, and gives an insight into the rationale for the development of the latest ICS/LABA combination approved for asthma maintenance therapy.
Collapse
Affiliation(s)
- Michael Tamm
- University Hospital Basel, Clinic of Pneumology, Petersgraben 4, Basel 4031, Switzerland.
| | | | | | | |
Collapse
|
30
|
Cetin S, Tobey AB, Sandulache VC, Yang T, Barsic M, Lin Y, Dohar JE, Hebda PA. Cyclooxygenase-2 inhibition for the prevention of subglottic stenosis. ACTA ACUST UNITED AC 2012; 138:962-8. [PMID: 23069827 DOI: 10.1001/archotol.2013.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To evaluate the role of targeted cyclooxygenase-2 inhibition in reducing scarring associated with a subglottic airway mucosal injury. DESIGN Thirty-four New Zealand white rabbits underwent anterior cricothyroidotomy. Subglottic stenosis (SGS) was created by carbon dioxide laser injury. INTERVENTION Treatment consisted of intraperitoneal injection of celecoxib or vehicle for 4 days. Endoscopies were performed to assess injury and healing. Subglottic mucosal secretions were collected with Gelfoam swabs (Pfizer Inc) before and after injury and at subsequent time points. Animals were humanely killed at 3 or 8 weeks after injury and airways were excised, followed by gross examination and histologic analysis to assess the severity of SGS. Secretions were analyzed for interleukin-1β, prostaglandin E2 (PGE2), and matrix metalloproteinase-8 by enzyme-linked immunosorbent assays. RESULTS Endoscopy showed mild to moderate stenosis in the celecoxib group, but mild to severe stenosis in the vehicle group. Histologic assessment confirmed and quantified reduction in stenosis and scarring as well as advanced reepithelialization. In the healing tissue, mucosal thickening (stenosis) was reduced significantly (P = .02) in celecoxib-treated animals compared with those treated with vehicle, at 3 and 8 weeks (decrease in thickness by 32% and 49%, respectively). Collagen density (fibrosis) was also reduced 25% at both 3 and 8 weeks but the difference was not statistically significant (P = .20). Reduced level of PGE2 in the subglottic mucosal secretions was correlated with mucosal thickness at 8 weeks (P = .02). CONCLUSION Short-duration, anti-inflammatory therapy resulted in reduced stenosis and fibrosis with correlation of PGE2 levels in subglottic mucosal secretions.
Collapse
Affiliation(s)
- Selma Cetin
- Division of Pediatric Otolaryngology, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tomašković L, Komac M, Makaruha Stegić O, Munić V, Ralić J, Stanić B, Banjanac M, Marković S, Hrvačić B, Čipčić Paljetak H, Padovan J, Glojnarić I, Eraković Haber V, Mesić M, Merćep M. Macrolactonolides: a novel class of anti-inflammatory compounds. Bioorg Med Chem 2012. [PMID: 23199485 DOI: 10.1016/j.bmc.2012.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new concept in design of safe glucocorticoid therapy was introduced by conjugating potent glucocorticoid steroids with macrolides (macrolactonolides). These compounds were synthesized from various steroid 17β-carboxylic acids and 9a-N-(3-aminoalkyl) derivatives of 9-deokso-9a-aza-9a-homoeritromicin A and 3-descladinosyl-9-deokso-9a-aza-9a-homoeritromicin A using stable alkyl chain. Combining property of macrolides to preferentially accumulate in immune cells, especially in phagocyte cells, with anti-inflammatory activity of classic steroids, we designed molecules which showed good anti-inflammatory activity in ovalbumin (OVA) induced asthma in rats. The synthesis, in vitro and in vivo anti-inflammatory activity of this novel class of compounds are described.
Collapse
Affiliation(s)
- Linda Tomašković
- GlaxoSmithKline Research Centre Limited, Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Weiss ST. New approaches to personalized medicine for asthma: where are we? J Allergy Clin Immunol 2012; 129:327-34. [PMID: 22284929 DOI: 10.1016/j.jaci.2011.12.971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 12/24/2022]
Abstract
Access to an electronic medical record is essential for personalized medicine. Currently, only 40% of US physicians have such access, but this is rapidly changing. It is expected that 100,000 Americans will have their whole genome sequenced in 2012. The cost of such sequencing is rapidly dropping, and is estimated to be $1000 by 2013. These technological advances will make interpretation of whole genome sequence data a major clinical challenge for the foreseeable future. At present, a relatively small number of genes have been identified to determine drug treatment response phenotypes for asthma. It is anticipated that this will dramatically increase over the next 10 years as personalized medicine becomes more of a reality for asthma patients.
Collapse
Affiliation(s)
- Scott T Weiss
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, Mass 02115, USA.
| |
Collapse
|
33
|
Berger WE. Mometasone furoate/formoterol in the treatment of persistent asthma. Expert Rev Respir Med 2012; 5:739-46. [PMID: 22082160 DOI: 10.1586/ers.11.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mometasone furoate and formoterol fumarate dihydrate (MF/F) administered via metered-dose inhaler with a dose counter is a new fixed-dose combination of an inhaled corticosteroid and a long-acting β2-agonist indicated for daily maintenance therapy in patients aged ≥12 years with persistent asthma. Randomized, controlled trials have suggested that MF/F reduces asthma deteriorations while improving lung function and other measures of asthma control, including quality-of-life. Clinical safety studies lasting up to 1 year have found that MF/F has a low incidence of local and systemic side effects.
Collapse
Affiliation(s)
- William E Berger
- Allergy and Asthma Associates, 27800 Medical Center Road, Suite 244, Mission Viejo, CA, USA.
| |
Collapse
|
34
|
Abdel Aziz RR, Helaly NY, Zalata KR, Gameil NM. Influence of inhaled beclomethasone and montelukast on airway remodeling in mice. Inflammopharmacology 2012; 21:55-66. [PMID: 22354687 DOI: 10.1007/s10787-012-0127-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/07/2012] [Indexed: 01/06/2023]
Abstract
This study examined the effect of montelukast and beclomethasone on airway remodeling in murine model of asthma. Mice were sensitized by i.p. injection of ovalbumin (OVA) on days 0 and 14, and then challenged by nebulization of 1% OVA 3 days/week for 6 or 10 weeks. Results of 6-week OVA-challenged group showed moderate inflammation, but the 10-week OVA-challenged group exhibited mild inflammation. The OVA challenge (6 and 10 weeks) exhibited marked airway fibrosis, illustrated by significant increase in goblet cell hyperplasia and epithelial thickness, increased lung content of collagen and transforming growth factor-β(1), together with a decrease in nitric oxide production; also, there was an increase in bronchoalveolar lavage fluid level of interleukin-13. Administration of montelukast or beclomethasone before each OVA challenge was capable of restoring most of the measured parameters to near normal levels. Inhalation of beclomethasone has a similar role in airway remodeling as montelukast, but its effects in regulating inflammatory changes is less pronounced than montelukast.
Collapse
Affiliation(s)
- Rania R Abdel Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | | | | | | |
Collapse
|
35
|
Soriano RN, Nicoli LG, Carnio EC, Branco LGS. Exogenous ghrelin attenuates endotoxin fever in rats. Peptides 2011; 32:2372-6. [PMID: 21377501 DOI: 10.1016/j.peptides.2011.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 11/30/2022]
Abstract
Ghrelin is a gut-derived peptide that plays a role in energy homeostasis. Recent studies have implicated ghrelin in systemic inflammation, showing increased plasma ghrelin levels after endotoxin (lipopolysaccharide, LPS) administration. The aims of this study were (1) to test the hypothesis that ghrelin administration affects LPS-induced fever; and (2) to assess the putative effects of ghrelin on plasma corticosterone secretion and preoptic region prostaglandin (PG) E(2) levels in euthermic and febrile rats. Rats were implanted with a temperature datalogger capsule in the peritoneal cavity to record body core temperature. One week later, they were challenged with LPS (50 μg/kg, intraperitoneal, i.p.) alone or combined with ghrelin (0.1mg/kg, i.p.). In another group of rats, plasma corticosterone and preoptic region PGE(2) levels were measured 2h after injections. In euthermic animals, systemic administration of ghrelin failed to elicit any thermoregulatory effect, and caused no significant changes in basal plasma corticosterone and preoptic region PGE(2) levels. LPS caused a typical febrile response, accompanied by increased plasma corticosterone and preoptic PGE(2) levels. When LPS administration was combined with ghrelin fever was attenuated, corticosterone secretion further increased, and the elevated preoptic PGE(2) levels were relatively reduced, but a correlation between these two variables (corticosterone and PGE(2)) failed to exist. The present data add ghrelin to the neurochemical milieu controlling the immune/thermoregulatory system acting as an antipyretic molecule. Moreover, our findings also support the notion that ghrelin attenuates fever by means of a direct effect of the peptide reducing PGE(2) production in the preoptic region.
Collapse
Affiliation(s)
- Renato N Soriano
- Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
36
|
Ciclesonide modulates in vitro allergen-driven activation of blood mononuclear cells and allergen-specific T-cell blasts. Immunol Lett 2011; 141:190-6. [PMID: 22015638 DOI: 10.1016/j.imlet.2011.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 10/05/2011] [Accepted: 10/05/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ciclesonide, an inhaled corticosteroid with almost no affinity for the glucocorticoid receptor, is highly effective in downregulating in vitro pro-inflammatory activities of airway parenchymal cells when converted into the active metabolite desisobutyryl-ciclesonide. OBJECTIVE We evaluate whether ciclesonide could effectively downregulate also antigen- or allergen-induced activation of peripheral blood mononuclear cell and of allergen-specific T-cell blasts. METHODS Peripheral blood mononuclear cells were isolated from non atopic and atopic asthmatic children sensitized to Phleum pratense (PhlP5). Proliferation toward Candida albicans or PhlP5 in the presence of ciclesonide or desisobutyryl-ciclesonide (0.003-3.0 μM) was evaluated as [(3)H]thymidine incorporation. Modulation of PhlP5-specific T-cell blasts proliferation and PhlP5-induced interleukin 4 expression by ciclesonide and desisobutyryl-ciclesonide were measured. RESULTS Peripheral blood mononuclear cell proliferation to C. albicans was dose-dependently inhibited by 0.3-3.0 μM ciclesonide and desisobutyryl-ciclesonide but inhibition by desisobutyryl-ciclesonide was higher. A significant proliferation to PhlP5 was observed only in cultures from atopic subjects: an effective downregulation was already detected at 0.03 μM ciclesonide and 0.003 μM desisobutyryl-ciclesonide (complete inhibition at 3 μM ciclesonide and 0.03 μM desisobutyryl-ciclesonide). 3 μM ciclesonide and desisobutyryl-ciclesonide reduced the PhlP5-specific T-cell blast proliferation and interleukin 4-producing cell proportion. CONCLUSIONS AND CLINICAL RELEVANCE These in vitro data, obtained at concentrations similar to those reached in vivo at bronchial level, are in favor of an efficient inhibition of ciclesonide on the T-cell mediated response toward allergens. Additional studies are required to confirm these preliminary data on the reduced activity of the drug on allergen-specific T-cell blast activation that may have clinical relevance.
Collapse
|
37
|
Tse SM, Tantisira K, Weiss ST. The pharmacogenetics and pharmacogenomics of asthma therapy. THE PHARMACOGENOMICS JOURNAL 2011; 11:383-92. [PMID: 21987090 DOI: 10.1038/tpj.2011.46] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the availability of several classes of asthma medications and their overall effectiveness, a significant portion of patients fail to respond to these therapeutic agents. Evidence suggests that genetic factors may partly mediate the heterogeneity in asthma treatment response. This review discusses important findings in asthma pharmacogenetic and pharmacogenomic studies conducted to date, examines limitations of these studies and, finally, proposes future research directions in this field. The focus will be on the three major classes of asthma medications: β-adrenergic receptor agonists, inhaled corticosteroids and leukotriene modifiers. Although many studies are limited by small sample sizes and replication of the findings is needed, several candidate genes have been identified. High-throughput technologies are also allowing for large-scale genetic investigations. Thus, the future is promising for a personalized treatment of asthma, which will improve therapeutic outcomes, minimize side effects and lead to a more cost-effective care.
Collapse
Affiliation(s)
- S M Tse
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
38
|
Lai H, Rogers DF. New pharmacotherapy for airway mucus hypersecretion in asthma and COPD: targeting intracellular signaling pathways. J Aerosol Med Pulm Drug Deliv 2010; 23:219-31. [PMID: 20695774 DOI: 10.1089/jamp.2009.0802] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Airway mucus hypersecretion is a pathophysiological feature of asthma and chronic obstructive pulmonary disease (COPD). The hypersecretion is associated with phenotypic changes in the airways, notably, increases in the number of surface epithelial goblet cells (hyperplasia) and in the size of the submucosal glands (hypertrophy). The hyperplasia and hypertrophy are associated with increased production of mucin, the gel-forming component of mucus. The excess mucus production contributes to morbidity and mortality in many patients, particularly in those with more severe disease. Although current pharmacotherapy is effective in clinical management of patients with stable asthma, severe asthma is poorly treated and there is no current drug treatment for COPD. In neither disease is there specific, effective pharmacotherapy for the hypersecretion. Consequently, identification of potential drug targets for treatment of hypersecretion in asthma and COPD is warranted. The inflammatory mediators and the associated intracellular signaling pathways underlying upregulation of mucin synthesis and development of goblet cell hyperplasia are gradually being elucidated. These include Th2 cytokines (predominantly IL-9 and IL-13), and IL-1 beta, tumor necrosis factor-alpha (TNF-alpha) and cyclooxygenase (COX)-2. IL-9 may act predominantly via calcium-activated chloride channels (CLCA), IL-13 via STAT-6 and FOXA2, TNF-alpha via NF-kappaB, and IL-1 beta via COX-2. Epidermal growth factor receptor (EGF-R) signaling and FOXA2 appear to be convergent intracellular pathways for a number of inflammatory mediators, with EGF-R upregulated in the airways of asthmatic and COPD patients. Thus, preclinical studies have clearly identified a number of intracellular signaling pathways as possible targets for pharmacotherapy of airway mucus hypersecretion in asthma and COPD. Of these, the EGF-R and Th2 cytokine pathways may have the greatest potential for inhibition of excessive mucus production. However, because these targets are so often intimately involved with different aspects of airway (and systemic) homeostasis, there is potential for development of unwanted side effects with drug intervention. Thus, translation of the promising preclinical studies to the clinic will depend on development of drug moieties with low off-target activity. This may be accomplished by maximizing airway selectivity, which may be facilitated by appropriate delivery device design.
Collapse
Affiliation(s)
- HonYee Lai
- Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
39
|
Forenza N, Ceccarelli S. [Inhaled corticosteroids in asthma: which have the best tolerance?]. Arch Pediatr 2010; 17:1114-8. [PMID: 20627671 DOI: 10.1016/j.arcped.2010.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 03/03/2010] [Accepted: 04/08/2010] [Indexed: 11/30/2022]
Abstract
Asthmatic syndrome, better definition of asthma, is an inflammatory chronic disease, probably the most frequent in pediatrics. An important characteristic of asthma is the bronchial inflammation with a complex network of cells and inflammatory mediators of pivotal importance in the pathogenesis. The long term control and treatment of this disease are cardinal points of the management of asthmatic syndrome. Inhaled corticosteroids (ICS) are the first-line treatment for persistent asthma in children of any age. The adverse events of the inhaled steroids on growth, bone mineralization, and hypothalamic-pituitary adrenal (HPA) axis function are the main concerns for the pediatricians. The long-term effects on growth and bone mineralization are actually reassuring. Good tolerance is achieved on hypothalamic-pituitary adrenal axis function with low to moderate doses in children. Scientific and clinical researches are pointed to find out molecules able to improve clinical efficacy of ICS with better tolerance and higher reduction of adverse events.
Collapse
Affiliation(s)
- N Forenza
- Unité de pneumologie pédiatrique, Clinica Pediatrica-Università di Perugia, hôpital S. M. della Misericordia, Perugia, Italy.
| | | |
Collapse
|
40
|
Hogan BV, Peter MB, Shenoy HG, Horgan K, Hughes TA. Surgery induced immunosuppression. Surgeon 2010; 9:38-43. [PMID: 21195330 DOI: 10.1016/j.surge.2010.07.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 07/22/2010] [Accepted: 07/25/2010] [Indexed: 02/07/2023]
Abstract
Surgery and anaesthesia result in a variety of metabolic and endocrine responses, which result in a generalised state of immunosuppression in the immediate post-operative period. Surgery induced immunosuppression has been implicated in the development of post-operative septic complications and tumour metastasis formation. In addition the effectiveness of many treatments in the adjuvant setting is dependent on a functioning immune system. By understanding the mechanisms contributing to surgery-induced immunosuppression, surgeons may undertake strategies to minimise its effect and reduce potential short-term and long-term consequences to patients.
Collapse
Affiliation(s)
- Brian V Hogan
- Department of Surgery, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, United Kingdom.
| | | | | | | | | |
Collapse
|
41
|
Mucus hypersecretion in asthma: intracellular signalling pathways as targets for pharmacotherapy. Curr Opin Allergy Clin Immunol 2010; 10:67-76. [PMID: 19907312 DOI: 10.1097/aci.0b013e328334643a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Airway mucus hypersecretion is a pathophysiological feature of asthma and, in many patients, contributes to morbidity and mortality. Although current pharmacotherapy is effective in patients with stable disease, severe asthma is poorly treated, and there is no specific treatment for the hypersecretion. Consequently, identification of potential targets for pharmacotherapy of hypersecretion in asthma is warranted. This review identifies intracellular signalling pathways as rational targets for treatment of excessive airway mucus production. RECENT FINDINGS The inflammatory mediators and the associated intracellular signalling pathways underlying development of goblet cell hyperplasia, an index of mucus hypersecretion, are becoming ever clearer, and include T-helper type 2 (Th2) cytokines, in particular interleukin (IL)-9 and IL-13, as well as IL-1beta, tumour necrosis factor (TNF)-alpha and cyclooxygenase (COX)-2. IL-9 may act predominantly via calcium-activated chloride channels (CLCAs), IL-13 via STAT-6 and FOXA2, TNF-alpha via nuclear factor (NF)-kappaB, and IL-1beta via COX-2. Epidermal growth factor receptor (EGF-R) and FOXA2 appear to be convergent pathways for a number of mediator signals, with EGF-R up-regulated in the airways of asthmatic patients. SUMMARY Although many potential intracellular signalling pathways have been identified as possible targets for pharmacotherapy of airway mucus hypersecretion in asthma, the EGF-R and Th2 cytokine pathways offer the greatest potential for inhibition of excessive mucus production.
Collapse
|
42
|
Reduced stress fever is accompanied by increased glucocorticoids and reduced PGE2 in adult rats exposed to endotoxin as neonates. J Neuroimmunol 2010; 225:77-81. [PMID: 20546941 DOI: 10.1016/j.jneuroim.2010.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/22/2022]
Abstract
Immune challenges during neonatal period may permanently program immune responses later in life, including endotoxin fever. We tested the hypothesis that neonatal endotoxin exposure affects stress fever in adult rats. In control rats (treated with saline as neonates; nSal) body temperature peaked approximately 1.5 degrees C during open-field stress, whereas in rats exposed to endotoxin (lipopolysaccharide, LPS) as neonates (nLPS) stress fever was significantly attenuated. Following stress, plasma corticosterone levels significantly increased from 74.29+/-7.05 ng ml(-1) to 226.29+/-9.87 ng ml(-1) in nSal rats, and from 83.43+/-10.31 ng ml(-1) to 324.7+/-36.87 ng ml(-1) in nLPS rats. Animals treated with LPS as neonates and adrenalectomized one week before experimentation no longer displayed the attenuated febrile response to stress. This attenuated stress fever caused by an increased corticosterone secretion is likely to be linked to an inhibitory effect of glucocorticoids on cyclooxygenase activity/PGE(2) production in preoptic/anteroventral third ventricular region (AV3V) since stress failed to cause a significant increase in PGE(2) in nLPS rats, and this effect was reverted by adrenalectomy. Altogether, the present results indicate that endogenous glucocorticoids are key modulators of the attenuated stress fever in adult rats treated with LPS as neonates, and they act downregulating PGE(2) production in AV3V. Moreover, our findings also support the notion that neonatal immune stimulus affects programming of stress responses during adulthood, despite the fact that inflammation and stress are two distinct processes mediated largely by different neurobiological mechanisms.
Collapse
|
43
|
Kenins L, Gill JW, Holländer GA, Wodnar-Filipowicz A. Flt3 ligand-receptor interaction is important for maintenance of early thymic progenitor numbers in steady-state thymopoiesis. Eur J Immunol 2010; 40:81-90. [PMID: 19830725 DOI: 10.1002/eji.200839213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
T-cell production throughout life depends on efficient colonization and intrathymic expansion of BM-derived hematopoietic precursors. After irradiation-induced thymic damage, thymic recovery is facilitated by Flt3 ligand (FL), expressed by perivascular fibroblasts surrounding the thymic entry site of Flt3 receptor-positive progenitor cells. Whether intrathymic FL-Flt3 interactions play a role in steady-state replenishment of T cells remains unknown. Here, using competitive BM transplantation studies and fetal thymic organ cultures we demonstrated the continued numerical advantage of Flt3+ intrathymic T-cell precursors. Sub-kidney capsule thymic transplantation experiments, in which WT and FL-/- thymic lobes were grafted into FL-/- recipients, revealed that FL expression by the thymic microenvironment plays a role in steady-state thymopoiesis. The deficiency of the most immature thymic T-cell precursors correlated to upregulation of FL by thymic MTS15+ fibroblasts, suggesting that the number of Flt3+ progenitor cells may regulate the thymic expression of this cytokine. Together, these results show that FL expression by thymic stromal fibroblasts interacting with Flt3+ T-cell progenitors is important for the physiological maintenance of early T-cell development.
Collapse
Affiliation(s)
- Linda Kenins
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
44
|
Canonica GW, Compalati E. Minimal persistent inflammation in allergic rhinitis: implications for current treatment strategies. Clin Exp Immunol 2009; 158:260-71. [PMID: 19765020 PMCID: PMC2792821 DOI: 10.1111/j.1365-2249.2009.04017.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2009] [Indexed: 12/21/2022] Open
Abstract
Patients with allergic rhinitis have traditionally been placed into 'seasonal' and 'perennial' categories, which do not account for the subclinical inflammatory state that exists in many patients. In subjects with seasonal and perennial allergic rhinitis, even subthreshold doses of allergen have been found to cause inflammatory cell infiltration in the nasal mucosa, including increases in expression of cellular adhesion molecules, nasal and conjunctival eosinophilia, and other markers of inflammation, which do not result in overt allergy symptoms. This state - which has been termed 'minimal persistent inflammation'- may contribute to hyperreactivity and increased susceptibility to development of clinical symptoms as well as common co-morbidities of allergic rhinitis, such as asthma. Treating overt allergy symptoms as well as this underlying inflammatory state requires agents that have well-established clinical efficacy, convenient administration, potent anti-inflammatory effects and proven long-term safety, so that long-term continuous administration is feasible. Of the three major classes of commonly used allergic rhinitis medications - intranasal corticosteroids, anti-histamines, and anti-leukotrienes - intranasal corticosteroids appear to represent the most reasonable therapeutic option in patients who would benefit from continuous inhibition of persistent inflammation.
Collapse
MESH Headings
- Administration, Intranasal
- Allergens/immunology
- Asthma/etiology
- Chronic Disease
- Glucocorticoids/therapeutic use
- Histamine H1 Antagonists/therapeutic use
- Humans
- Intercellular Adhesion Molecule-1/immunology
- Leukotriene Antagonists/therapeutic use
- Rhinitis, Allergic, Perennial/complications
- Rhinitis, Allergic, Perennial/drug therapy
- Rhinitis, Allergic, Perennial/immunology
- Rhinitis, Allergic, Seasonal/complications
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/immunology
Collapse
Affiliation(s)
- G W Canonica
- Allergy and Respiratory Diseases, Clinic Dipartmento di Medicina Interna e Specialita Mediche (DIMI), University of Genova, Genova, Italy.
| | | |
Collapse
|
45
|
Velthove KJ, Leufkens HGM, Souverein PC, Schweizer RC, Bracke M, van Solinge WW. Effects of glucocorticoids on the neutrophil count: a cohort study among hospitalized patients. Pulm Pharmacol Ther 2009; 23:129-34. [PMID: 19879372 DOI: 10.1016/j.pupt.2009.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 09/30/2009] [Accepted: 10/08/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND Systemic glucocorticoids are often used in clinical practice for a large variety of indications. Clinical observations have shown that patients using glucocorticoids often have higher neutrophil counts. Debate remains whether this observed neutrophilia is associated with glucocorticoid use or that other factors, like disease and severity of disease, should be considered. The objective of this study was to investigate the effect of systemic glucocorticoids on the absolute neutrophil count in hospitalized patients. METHODS A cohort study was conducted using data from the Utrecht Patient Oriented Database which comprises clinical data of patients of the University Medical Center Utrecht. We identified all adult patients, hospitalized in 2005 with at least two blood samples for hematological testing during admission and compared in-hospital glucocorticoid use with non-use. RESULTS A total of 809 glucocorticoid users and 2658 non-users were included in the study with comparable neutrophil counts at admission (8.2.10(9)/l for glucocorticoid users and 8.0.10(9)/l for non-users). Overall analysis showed a slight association between glucocorticoid use and an increase in neutrophil count (RR 1.3; 95% CI 1.1-1.5). However, within diagnostic subgroups there was no increase in neutrophil count in glucocorticoid users. Furthermore, among all no dose response relationship, no effect of time between the two samples, and no effect of anti-inflammatory/sodium retaining potency was found. CONCLUSION Observed neutrophilia in users of systemic glucocorticoids is probably associated with underlying disease, rather than glucocorticoid use itself.
Collapse
Affiliation(s)
- Karin J Velthove
- Faculty of Science, Division of Pharmacoepidemiology and Pharmacotherapy, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Nave R. Clinical pharmacokinetic and pharmacodynamic profile of inhaled ciclesonide. Clin Pharmacokinet 2009; 48:243-52. [PMID: 19492869 DOI: 10.2165/00003088-200948040-00002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways, and inhaled corticosteroids (ICSs) are recommended as first-line therapy for persistent asthma of all severities. Ciclesonide is a novel ICS, which is administered as an aerosol solution in a metered-dose inhaler, using hydrofluoroalkane-134a as a propellant. Because of the high respirable particle fraction, high pulmonary deposition is obtained in patients, which constitutes the basis of effective therapeutic action. The parent compound, ciclesonide, is pharmacologically inactive and is activated in the target organ, the lung, to form its only pharmacologically active metabolite, desisobutyryl-ciclesonide (des-CIC). Low oral deposition combined with minimal formation of des-CIC in the oropharynx may minimize the typical oropharyngeal adverse events associated with ICSs. Low oral bioavailability, rapid clearance and high protein binding reduce pharmacologically relevant systemic exposure. The unique pharmacokinetic and pharmacodynamic profile of ciclesonide offers a rationale that supports the favourable risk-benefit profile observed in clinical trials in patients with persistent asthma.
Collapse
Affiliation(s)
- Rüdiger Nave
- Department of Pharmacometrics/Pharmacokinetics, Nycomed GmbH, Konstanz, Germany.
| |
Collapse
|
47
|
Chung KF, Caramori G, Adcock IM. Inhaled corticosteroids as combination therapy with beta-adrenergic agonists in airways disease: present and future. Eur J Clin Pharmacol 2009; 65:853-71. [PMID: 19557399 DOI: 10.1007/s00228-009-0682-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 05/27/2009] [Accepted: 06/02/2009] [Indexed: 12/31/2022]
Abstract
Inhaled corticosteroid (ICS) therapy in combination with long-acting beta-adrenergic agonists represents the most important treatment for chronic airways diseases such as asthma and chronic obstructive pulmonary disease (COPD). ICS therapy forms the basis for treatment of asthma of all severities, improving asthma control, lung function and preventing exacerbations of disease. Use of ICS has also been established in the treatment of COPD, particularly symptomatic patients, who experience useful gains in quality of life, likely from an improvement in symptoms such as breathlessness and in reduction in exacerbations, and an attenuation of the yearly rate of deterioration in lung function. The addition of long-acting beta-agonist (LABA) therapy with ICS increases the efficacy of ICS effects in moderate-to-severe asthma. Thus, a 800 mug daily dose of the ICS budesonide reduced severe exacerbation rates by 49% compared to a low dose of 200 mug daily, and addition of the LABA formoterol to budesonide (800 mug) led to a 63% reduction. In COPD, the effects of ICS are less prominent but there are beneficial effects on the decline in FEV(1) and the rate of exacerbations. A reduction in the rate of decline in FEV(1) of 16 ml/year with a 25% reduction in exacerbation rate has been reported with the salmeterol and fluticasone combination. A non-significant 17.5% reduction in all-cause mortality rate with ICS and LABA is reported. Chronic inflammation is a feature of both asthma and COPD, although there are site and characteristic differences. ICS targets this inflammation although this effect of ICS is less effective in patients with severe asthma and with COPD; however, addition of LABA may potentiate the anti-inflammatory effects of ICS. An important consideration is the presence of corticosteroid insensitivity in these patients. Currently available ICS have variably potent binding activities to specific glucocorticoid receptors, leading to inhibition of gene expression by either binding to DNA and inducing anti-inflammatory genes or by repressing the induction of pro-inflammatory mediators. Local side effects of ICS include oral candidiasis, hoarseness and dysphonia, while systemic side effects, such as easy bruising and reduction in growth velocity or bone mineral densitometry, are usually restricted to doses above maximally recommended doses. Use of LABA alone in patients with asthma increases the risk of asthma-related events including deaths, but this is less observed with the combination of ICS and LABA. Therefore, use of LABA alone is not recommended for asthma therapy. Future progress in ICS development will be characterised by the introduction of ICS with greater efficacy with a limited side-effect profile, and by longer-acting ICS that can be used in combination with once-daily LABAs. Other agents that could improve the efficacy of corticosteroids or reverse corticosteroid insensitivity may be added to ICS. ICS in combination with LABAs will continue to remain the main focus of treatment of airways diseases.
Collapse
Affiliation(s)
- Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW36LY, UK.
| | | | | |
Collapse
|
48
|
Wang H, Aslanian R, Madison VS. Induced-fit docking of mometasone furoate and further evidence for glucocorticoid receptor 17alpha pocket flexibility. J Mol Graph Model 2008; 27:512-21. [PMID: 18986818 DOI: 10.1016/j.jmgm.2008.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 08/22/2008] [Accepted: 09/02/2008] [Indexed: 11/18/2022]
Abstract
An induced-fit docking method was used to characterize the interactions of the glucocorticoid receptor binding-site with mometasone furoate, a glucocorticoid with a lipophilic ester at the C17alpha position. Two validation studies demonstrated that the protocol can reproduce crystal structures of nuclear receptors, and is appropriate for modeling ligand binding to the glucocorticoid receptor. Key hydrogen bonding interactions between mometasone furoate and the glucocorticoid receptor, as well as favorable hydrophobic interactions between the furoate group and the 17alpha pocket, contribute to high affinity and specificity of this ligand for the receptor. Using the glucocorticoid des-ciclesonide, which has an even larger moiety at the 16,17alpha position, induced-fit docking demonstrates the ability of the 17alpha pocket of the receptor to expand even further to accommodate the ligand.
Collapse
Affiliation(s)
- Hongwu Wang
- Department of Structural Chemistry, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | |
Collapse
|
49
|
Fertl A, Menzel M, Hofer TPJ, Morresi-Hauf A, Ziegler-Heitbrock L, Frankenberger M. Monitoring of glucocorticoid therapy by assessment of CD14(+)CD16(+) monocytes: a case report. Immunobiology 2008; 213:909-16. [PMID: 18926305 DOI: 10.1016/j.imbio.2008.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 01/15/2023]
Abstract
Bronchiolitis obliterans with organizing pneumonia (BOOP) is a disease affecting small airways and alveoli. It is characterized by interstitial inflammation rich in foamy macrophages and by fibroblastic connective tissue expanding into the airway and alveolar lumen. We report herein on a 54-year-old male BOOP patient who was treated with glucocorticoids (GCs) and who over a 5-year period had three relapses. At diagnosis the patient showed elevated CD14(+)CD16(+) monocyte numbers (85 cells/microl) and increased serum C-reactive protein (CRP) levels (29.4 mg/l). With GC therapy both parameters decreased within a few days. Diagnosis of relapse was preceded by a rise in CD14(+)CD16(+) monocyte numbers and in CRP levels which again responded to GC treatment. We conclude that determination of CD14(+)CD16(+) monocytes is a useful marker for monitoring of BOOP diagnosis and GC therapy.
Collapse
Affiliation(s)
- Andreas Fertl
- Asklepios Fachkliniken München-Gauting, Gauting, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Increased serum levels of the chemokine CXCL13 and up-regulation of its gene expression are distinctive features of HCV-related cryoglobulinemia and correlate with active cutaneous vasculitis. Blood 2008; 112:1620-7. [PMID: 18550853 DOI: 10.1182/blood-2008-02-137455] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chemokine CXCL13, also known as BCA-1 (B cell-attracting chemokine-1) or BLC (B-lymphocyte chemoattractant), is a major regulator of B-cell trafficking. Hepatitis C virus (HCV) infection may be associated with B-cell dysfunction and lymphoproliferative disorders, including mixed cryoglobulinemia (MC). This study evaluates circulating levels of CXCL13 protein and specific mRNA expression in chronically HCV-infected patients with and without MC. Compared with healthy controls and HCV-infected patients without MC, CXCL13 serum levels were significantly higher in MC patients. The highest CXCL13 levels strongly correlated with active cutaneous vasculitis. CXCL13 gene expression in portal tracts, isolated from liver biopsy tissues with laser capture microdissection, showed enhanced levels of specific mRNA in MC patients with active cutaneous vasculitis. Specific CXCL13 gene mRNA expression was also up-regulated in skin tissue of these patients. These findings paralleled specific deposits of CXCL13 protein both in the liver and in the skin. Our results indicate that up-regulation of CXCL13 gene expression is a distinctive feature of HCV-infected patients. Higher levels of this chemokine in the liver as well as in the skin of patients with active MC vasculitis suggest a possible interrelation between these biologic compartments.
Collapse
|