1
|
Racine CR, Ferguson T, Preston D, Ward D, Ball J, Anestis D, Valentovic M, Rankin GO. The role of biotransformation and oxidative stress in 3,5-dichloroaniline (3,5-DCA) induced nephrotoxicity in isolated renal cortical cells from male Fischer 344 rats. Toxicology 2016; 341-343:47-55. [PMID: 26808022 DOI: 10.1016/j.tox.2016.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Among the mono- and dichloroanilines, 3,5-dichloroaniline (3,5-DCA) is the most potent nephrotoxicant in vivo and in vitro. However, the role of renal biotransformation in 3,5-DCA induced nephrotoxicity is unknown. The current study was designed to determine the in vitro nephrotoxic potential of 3,5-DCA in isolated renal cortical cells (IRCC) obtained from male Fischer 344 rats, and the role of renal bioactivation and oxidative stress in 3,5-DCA nephrotoxicity. IRCC (∼ 4 million cells/ml) from male rats were exposed to 3,5-DCA (0-1.0mM) for up to 120 min. In IRCC, 3,5-DCA was cytotoxic at 1.0mM by 60 min as evidenced by the increased release of lactate dehydrogenase (LDH), but 120 min was required for 3,5-DCA 0.5mM to increase LDH release. In subsequent studies, IRCC were exposed to a pretreatment (antioxidant or enzyme inhibitor) prior to exposure to 3,5-DCA (1.0mM) for 90 min. Cytotoxicity induced by 3,5-DCA was attenuated by pretreatment with inhibitors of flavin-containing monooxygenase (FMO; methimazole, N-octylamine), cytochrome P450 (CYP; piperonyl butoxide, metyrapone), or peroxidase (indomethacin, mercaptosuccinate) enzymes. Use of more selective CYP inhibitors suggested that the CYP 2C family contributed to 3,5-DCA bioactivation. Antioxidants (glutathione, N-acetyl-l-cysteine, α-tocopherol, ascorbate, pyruvate) also attenuated 3,5-DCA nephrotoxicity, but oxidized glutathione levels and the oxidized/reduced glutathione ratios were not increased. These results indicate that 3,5-DCA may be activated via several renal enzyme systems to toxic metabolites, and that free radicals, but not oxidative stress, contribute to 3,5-DCA induced nephrotoxicity in vitro.
Collapse
Affiliation(s)
- Christopher R Racine
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Travis Ferguson
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Debbie Preston
- Department of Pediatrics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Dakota Ward
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - John Ball
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Dianne Anestis
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Monica Valentovic
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Gary O Rankin
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
2
|
3,4,5-Trichloroaniline nephrotoxicity in vitro: potential role of free radicals and renal biotransformation. Int J Mol Sci 2014; 15:20900-12. [PMID: 25402648 PMCID: PMC4264202 DOI: 10.3390/ijms151120900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/17/2014] [Accepted: 11/03/2014] [Indexed: 01/08/2023] Open
Abstract
Chloroanilines are widely used in the manufacture of drugs, pesticides and industrial intermediates. Among the trichloroanilines, 3,4,5-trichloroaniline (TCA) is the most potent nephrotoxicant in vivo. The purpose of this study was to examine the nephrotoxic potential of TCA in vitro and to determine if renal biotransformation and/or free radicals contributed to TCA cytotoxicity using isolated renal cortical cells (IRCC) from male Fischer 344 rats as the animal model. IRCC (~4 million cells/mL; 3 mL) were incubated with TCA (0, 0.1, 0.25, 0.5 or 1.0 mM) for 60–120 min. In some experiments, IRCC were pretreated with an antioxidant or a cytochrome P450 (CYP), flavin monooxygenase (FMO), cyclooxygenase or peroxidase inhibitor prior to incubation with dimethyl sulfoxide (control) or TCA (0.5 mM) for 120 min. At 60 min, TCA did not induce cytotoxicity, but induced cytotoxicity as early as 90 min with 0.5 mM or higher TCA and at 120 min with 0.1 mM or higher TCA, as evidenced by increased lactate dehydrogenase (LDH) release. Pretreatment with the CYP inhibitor piperonyl butoxide, the cyclooxygenase inhibitor indomethacin or the peroxidase inhibitor mercaptosuccinate attenuated TCA cytotoxicity, while pretreatment with FMO inhibitors or the CYP inhibitor metyrapone had no effect on TCA nephrotoxicity. Pretreatment with an antioxidant (α-tocopherol, glutathione, ascorbate or N-acetyl-l-cysteine) also reduced or completely blocked TCA cytotoxicity. These results indicate that TCA is directly nephrotoxic to IRCC in a time and concentration dependent manner. Bioactivation of TCA to toxic metabolites by CYP, cyclooxygenase and/or peroxidase contributes to the mechanism of TCA nephrotoxicity. Lastly, free radicals play a role in TCA cytotoxicity, although the exact nature of the origin of these radicals remains to be determined.
Collapse
|
3
|
Rankin GO, Sweeney A, Racine C, Ferguson T, Preston D, Anestis DK. 4-Amino-2-chlorophenol: Comparative in vitro nephrotoxicity and mechanisms of bioactivation. Chem Biol Interact 2014; 222:126-32. [PMID: 25446496 DOI: 10.1016/j.cbi.2014.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 08/29/2014] [Accepted: 10/06/2014] [Indexed: 11/27/2022]
Abstract
Chlorinated anilines are nephrotoxicants both in vivo and in vitro. The mechanism of chloroaniline nephrotoxicity may occur via more than one mechanism, but aminochlorophenol metabolites appear to contribute to the adverse in vivo effects. The purpose of this study was to compare the nephrotoxic potential of 4-aminophenol (4-AP), 4-amino-2-chlorophenol (4-A2CP), 4-amino-3-chlorophenol (4-A3CP) and 4-amino-2,6-dichlorophenol (4-A2,6DCP) using isolated renal cortical cells (IRCC) from male Fischer 344 rats as the model and to explore renal bioactivation mechanisms for 4-A2CP. For these studies, IRCC (∼4×10(6)cells/ml) were incubated with an aminophenol (0.5 or 1.0mM) or vehicle for 60min at 37°C with shaking. In some experiments, cells were pretreated with an antioxidant or cytochrome P450 (CYP), flavin-containing monooxygenase (FMO), peroxidase or cyclooxygenase inhibitor prior to 4-A2CP (1.0mM). Lactate dehydrogenase (LDH) release served as a measure of cytotoxicity. The order of decreasing nephrotoxic potential in IRCC was 4-A2,6-DCP>4-A2CP>4-AP>4-A3CP. The cytotoxicity induced by 4-A2CP was reduced by pretreatment with the peroxidase inhibitor mercaptosuccinic acid, and some antioxidants (ascorbate, glutathione, N-acetyl-l-cysteine) but not by others (α-tocopherol, DPPD). In addition, pretreatment with the iron chelator deferoxamine, several CYP inhibitors (except for the general CYP inhibitor piperonyl butoxide), FMO inhibitors or indomethacin (a cyclooxygenase inhibitor) failed to attenuate 4-A2CP cytotoxicity. These results demonstrate that the number and ring position of chloro groups can influence the nephrotoxic potential of 4-aminochlorophenols. In addition, 4-A2CP may be bioactivated by cyclooxygenase and peroxidases, and free radicals appear to play a role in 4-A2CP cytotoxicity.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| | - Adam Sweeney
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Christopher Racine
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Travis Ferguson
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Deborah Preston
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Dianne K Anestis
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| |
Collapse
|
4
|
Transsulfuration Is a Significant Source of Sulfur for Glutathione Production in Human Mammary Epithelial Cells. ISRN BIOCHEMISTRY 2013; 2013:637897. [PMID: 24634789 PMCID: PMC3949734 DOI: 10.1155/2013/637897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The transsulfuration pathway, through which homocysteine from the methionine cycle provides sulfur for cystathionine formation, which may subsequently be used for glutathione synthesis, has not heretofore been identified as active in mammary cells. Primary human mammary epithelial cells (HMEC's) were labeled with S35-methionine for 24 hours following pretreatment with a vehicle control, the cysteine biosynthesis inhibitor propargylglycine or the gamma-glutamylcysteine synthesis inhibitor buthionine sulfoximine. Cell lysates were prepared and reacted with glutathione-S-transferase and the fluorescent labeling compound monochlorobimane to form a fluorescent glutathione-bimane conjugate. Comparison of fluorographic and autoradiographic images indicated that glutathione had incorporated S35-methionine demonstrating that functional transsulfuration occurs in mammary cells. Pathway inhibitors reduced incorporation by roughly 80%. Measurement of glutathione production in HMEC's treated with and without hydrogen peroxide and/or pathway inhibitors indicates that the transsulfuration pathway plays a significant role in providing cysteine for glutathione production both normally and under conditions of oxidant stress.
Collapse
|
5
|
Harmon RC, Duffy SP, Terneus MV, Ball JG, Valentovic MA. Characterization of a novel model for investigation of radiocontrast nephrotoxicity. Nephrol Dial Transplant 2008; 24:763-8. [PMID: 18840895 DOI: 10.1093/ndt/gfn540] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Radiocontrast agents are one of the most common causes of acute renal failure in the world. These agents are required for both diagnostic and therapeutic modalities of medical intervention, including computed tomography (CT), angiography and cardiac catheterization. Publications over the past 40 years support three potential mechanisms of toxicity: oxidative stress, haemodynamics and hyperosmolar effects. An in vitro model provides a rapid evaluation of cellular toxicity without the complications of haemodynamics. This study evaluated the renal toxicity of radiocontrast agents at clinically relevant concentrations. METHODS This study investigated the toxicity of two radiocontrast agents, diatrizoic acid (DA) and iothalamic acid (IA), using an in vitro model. Renal cortical slices isolated from F344 rats were incubated with 0-111 mg I/ml DA or IA. RESULTS Renal slices exposed to DA and IA showed toxicity as measured by increased lactate dehydrogenase (LDH) leakage at concentrations lower than previously published using isolated cell models. These data indicate that DA and IA are toxic to renal cortical slices, and this is a more sensitive model than previously used cell culture systems. DA and IA treatment failed to cause a significant decrease in total cellular glutathione or increase in percent glutathione disulphide (GSSG), implying that oxidative stress may not be an initial mechanism of toxicity. Finally, the addition of exogenous glutathione did provide complete protection from DA- and IA-induced LDH leakage. CONCLUSION These data validate the renal cortical slice in vitro model for investigation of radiocontrast nephrotoxicity. These studies further showed that glutathione was cytoprotective. Future research using this model is aimed at further characterization of radiocontrast nephrotoxicity, which may allow for improved prevention and treatment of radiocontrast-induced acute renal failure.
Collapse
Affiliation(s)
- Robert C Harmon
- Department of Pharmacology, Marshall University School of Medicine, WV 25755-9388, USA
| | | | | | | | | |
Collapse
|
6
|
Rankin GO, Racine C, Sweeney A, Kraynie A, Anestis DK, Barnett JB. In vitro nephrotoxicity induced by propanil. ENVIRONMENTAL TOXICOLOGY 2008; 23:435-442. [PMID: 18214888 PMCID: PMC4351968 DOI: 10.1002/tox.20353] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Propanil is a postemergence herbicide used primarily in rice and wheat production in the United States. The reported toxicities for propanil exposure include methemoglobinemia, immunotoxicity, and nephrotoxicity. A major metabolite of propanil, 3,4-dichloroaniline (3,4-DCA), has been shown to be a nephrotoxicant in vivo and in vitro, but the nephrotoxic potential of propanil has not been examined in detail. The purpose of this study was to determine the nephrotoxic potential of propanil using an in vitro kidney model, determine whether in vitro propanil nephrotoxicity is due to metabolites arising from propanil hydrolysis, and examine mechanistic aspects of propanil nephrotoxicity in vitro. Propanil, 3,4-DCA, propionic acid (0.1-5.0 mM), or vehicle was incubated for 15-120 min with isolated renal cortical cells (IRCC; approximately 4 million cells/mL) obtained from untreated male Fischer 344 rats. Cytotoxicity was determined by measuring lactate dehydrogenase release from IRCC. In 120-min incubations, propanil induced cytotoxicity at concentrations >0.5 mM. At 1.0 mM, propanil induced cytotoxicity following 60- or 120-min exposure. Cytotoxicity was observed with 3,4-DCA (2.0 mM) at 60 and 120 min, while propionic acid (5.0 mM) induced cytotoxicity at 60 min. In IRCC pretreated with an antioxidant, cytochrome P450(CYP) inhibitor, flavin adenine dinucleotide monooxygenase activity modulator, or cyclooxygenase inhibitor before propanil exposure (1.0 mM; 120 min), only piperonyl butoxide (0.1 mM), a CYP inhibitor, pretreatment decreased propanil cytotoxicity. These results demonstrate that propanil is an in vitro nephrotoxicant in IRCC. Propanil nephrotoxicity is not primarily due to metabolites resulting from hydrolysis of propanil, but a metabolite resulting from propanil oxidation may contribute to propanil cytotoxicity.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C Edwards School of Medicine, Marshall University, One John Marshall Drive, Huntington, West Virginia 25755, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Rankin GO, Hong SK, Anestis DK, Ball JG, Valentovic MA. Mechanistic aspects of 4-amino-2,6-dichlorophenol-induced in vitro nephrotoxicity. Toxicology 2007; 245:123-9. [PMID: 18243470 DOI: 10.1016/j.tox.2007.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/13/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
4-Amino-2,6-dichlorophenol (ADCP) is a potent acute nephrotoxicant in vivo inducing prominent renal corticomedullary necrosis. In vitro, ADCP exposure increases lactate dehydrogenase (LDH) release from rat renal cortical slices at 0.05 mM or greater. The purpose of this study was to examine the ability of antioxidants, cytochrome P450 (CYP) and flavin adenine dinucleotide monooxygenase (FMO) activity modulators, indomethacin, glutathione and inhibitors of glutathione conjugate metabolism to attenuate ADCP cytotoxicity in vitro. Renal cortical slices prepared from untreated male Fischer 344 rats (N=4/group) were preincubated at 37 degrees C under a 100% oxygen atmosphere with an inhibitor or vehicle for 5-30 min. ADCP (0.05-0.5mM) or vehicle was added and incubations continued for 120 min. At the end of the incubation period, LDH release was measured as an index of nephrotoxicity. ADCP cytotoxicity was partially attenuated by ascorbate (1.0 or 2.0mM), but not by N,N'-diphenyl-p-phenylenediamine (DPPD), alpha-tocopherol or deferoxamine. Inhibitors of CYP (metyrapone, piperonyl butoxide and isoniazid) and FMO activity modulators (methimazole, N-octylamine) had no effect on ADCP cytotoxicity. Indomethacin or glutathione 1.0mM completely and partially blocked ADCP 0.1 and 0.5mM cytotoxicity, respectively. N-acetylcysteine, AOAA (an inhibitor of cysteine conjugate beta-lyase) and probenecid (an organic anion transport inhibitor), but not AT-125 (an inhibitor of gamma-glutamyl transferase), partially attenuated ADCP 0.1mM cytotoxicity. Overall, these results suggest that reactive metabolites may be produced from ADCP primarily via a co-oxidation-mediated mechanism. The difference in the ability of ascorbate and glutathione to attenuate ADCP-induced cytotoxicity in vitro in kidney cells could indicate that alkylation via the reactive benzoquinoneimine metabolite might be responsible for cytotoxicity rather than a free radical-mediated mechanism.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | | | | | | | | |
Collapse
|
8
|
Harmon RC, Terneus MV, Kiningham KK, Valentovic M. Time-dependent effect of p-aminophenol (PAP) toxicity in renal slices and development of oxidative stress. Toxicol Appl Pharmacol 2005; 209:86-94. [PMID: 16271624 DOI: 10.1016/j.taap.2005.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/18/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
p-Aminophenol (PAP), a metabolite of acetaminophen, is nephrotoxic. This study investigated PAP-mediated changes as a function of time that occur prior to loss of membrane integrity. Experiments further evaluated the development of oxidative stress by PAP. Renal slices from male Fischer 344 (F344) rats (N = 4-6) were exposed to 0.1, 0.25, and 0.5 mM PAP for 15-120 min under oxygen and constant shaking at 37 degrees C. Pyruvate-stimulated gluconeogenesis, adenine nucleotide levels, and total glutathione (GSH) levels were diminished in a concentration- and time-dependent manner prior to detection of a rise in lactate dehydrogenase (LDH) leakage. Glutathione disulfide (GSSG) levels were increased by PAP suggesting the induction of oxidative stress. Western blot analysis confirmed a rise in 4-hydroxynonenal (4-HNE)-adducted proteins in tissues exposed to 0.1 and 0.25 mM PAP for 90 min. The appearance of 4-HNE-adducted proteins at the 0.1 mM concentration of PAP occurred prior to development of increased LDH leakage. Pretreatment with 1 mM glutathione (GSH) for 30 min only partially reduced PAP toxicity as LDH values were less severely depleted relative to tissues not pretreated with GSH. In contrast, pretreatment for 15 min with 2 mM ascorbic acid completely protected against PAP toxicity. Further studies showed that ascorbic acid pretreatment prevented PAP-mediated depletion of GSH. In summary, PAP rapidly depletes GSH and adenine nucleotides and inhibits gluconeogenesis prior to a rise in LDH leakage. PAP induces oxidative stress as indicated by an increase in GSSG and 4-HNE-adducted proteins. Ascorbic acid pretreatment prevents PAP toxicity by maintaining GSH status.
Collapse
Affiliation(s)
- R Christopher Harmon
- Department of Pharmacology, Marshall University, Joan C. Edwards School of Medicine, 1542 Spring Valley Drive Huntington, WV 25704-9388, USA
| | | | | | | |
Collapse
|
9
|
Minigh JL, Valentovic MA. Characterization of myoglobin toxicity in renal cortical slices from Fischer 344 rats. Toxicology 2003; 187:77-87. [PMID: 12679054 DOI: 10.1016/s0300-483x(03)00007-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rhabdomyolysis is associated with acute renal failure. The following study first characterized myoglobin in vitro toxicity using renal cortical slices isolated from male Fischer 344 rats. This model provided interaction between various cells within the nephron and provides myoglobin access predominantly through the basolateral membrane. Second, this study examined the effect of deferoxamine (DFX) and glutathione on myoglobin toxicity to determine the role of radicals and iron. Renal cortical slices were incubated for 30-120 min with 0, 4, 10 or 12 mg/ml myoglobin. Myoglobin was pretreated with 4 mM ascorbic acid prior to addition to the slices to ensure that myoglobin was in its reduced state. In other experiments tissues were pretreated for 15 min with 0.1 mM of the iron chelator DFX or 30 min with 1 mM glutathione prior to co-incubation with myoglobin. Finally, slices were pretreated with 1 mM glutathione for 30 min, rinsed and incubated only with myoglobin. Early event changes occurred within a 60 min exposure and included a decline in pyruvate-stimulated gluconeogenesis, increased lipid peroxidation levels and decreased glutathione levels. Loss of ATP levels and increased lactate dehydrogenase (LDH) release required a 120 min exposure to myoglobin. DFX reduced myoglobin induced effects on LDH leakage but had no effect on gluconeogenesis suggesting that myoglobin toxicity had an iron dependent (LDH) and independent (gluconeogenesis) pathway. Pretreatment with glutathione provided complete protection and was mediated by intracellular events.
Collapse
Affiliation(s)
- Jennifer L Minigh
- Department of Pharmacology, Joan C Edward School of Medicine, Marshall University, 1542 Spring Valley Drive, Huntington, WV 24704-9388, USA
| | | |
Collapse
|
10
|
Cojocel C, Thomson MS. Impairment of the renal p-aminohippurate transport induced by 6-hydroxydopamine. J Pharm Pharmacol 2003; 55:669-74. [PMID: 12831510 DOI: 10.1211/002235703765344586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In this study, the effects of 6-hydroxydopamine (6-OHDA) on renal p-aminohippurate transport were investigated in-vitro using rat renal cortical slices. Cisplatin, a known nephrotoxin, was used as positive control. Renal cortical slices were incubated for 60 min in a cisplatin-containing medium (0.83-5.0 microM) at 37 degrees C under a 100% O(2) atmosphere. In another series of experiments, renal cortical slices were incubated in a 3.33 microM cisplatin-containing medium for 15-120 min or in a cisplatin-free medium. Subsequently, for each series of experiments, kidney slices were incubated at 25 degrees C for 90 min in a media containing p-aminohippurate. In a further series of experiments, renal cortical slices were incubated for 60 min in a 6-OHDA containing medium (3.125-100 microM) at 37 degrees C under a 100% O(2) atmosphere. In another series of experiments, renal cortical slices were incubated in a 50 microM 6-OHDA-containing medium for 15-120 min or in 6-OHDA-free medium. Subsequently, for each series of experiments, kidney slices were incubated at 25 degrees C for 90 min in a media containing p-aminohippurate. The results of this study where slices were incubated in 6-OHDA- or cisplatin-containing media indicate that both 6-OHDA and cisplatin induced a time- and concentration-dependent decrease in p-aminohippurate accumulation by renal cortical slices. Therefore, similarly to cisplatin, 6-OHDA causes functional injury of renal proximal tubule cells, leading to impairment of transport processes across the cell membrane.
Collapse
Affiliation(s)
- C Cojocel
- Faculty of Medicine, Department of Pharmacology and Toxicology, Kuwait University, Safat, Kuwait.
| | | |
Collapse
|
11
|
Minigh JL, Valentovic MA. Characterization of myoglobin toxicity in renal cortical slices from Fischer 344 rats. Toxicology 2003; 184:113-23. [PMID: 12499114 DOI: 10.1016/s0300-483x(02)00554-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rhabdomyolysis is associated with acute renal failure. The following study first characterized myoglobin in vitro toxicity using renal cortical slices isolated from male Fischer 344 rats. This model provided interaction between various cells within the nephron and provides myoglobin access predominantly through the basolateral membrane. Second, this study examined the effect of deferoxamine (DFX) and glutathione on myoglobin toxicity to determine the role of radicals and iron. Renal cortical slices were incubated for 30-120 min with 0, 4, 10 or 12 mg/ml myoglobin. Myoglobin was pretreated with 4 mM ascorbic acid prior to addition to the slices to ensure that myoglobin was in its reduced state. In other experiments tissues were pretreated for 15 min with 0.1 mM of the iron chelator DFX or 30 min with 1 mM glutathione prior to co-incubation with myoglobin. Finally, slices were pretreated with 1 mM glutathione for 30 min, rinsed and incubated only with myoglobin. Early event changes occurred within a 60 min exposure and included a decline in pyruvate-stimulated gluconeogenesis, increased lipid peroxidation levels and decreased glutathione levels. Loss of ATP levels and increased lactate dehydrogenase (LDH) release required a 120 min exposure to myoglobin. DFX reduced myoglobin induced effects on LDH leakage but had no effect on gluconeogenesis suggesting that myoglobin toxicity had an iron dependent (LDH) and independent (gluconeogenesis) pathway. Pretreatment with glutathione provided complete protection and was mediated by intracellular events.
Collapse
Affiliation(s)
- Jennifer L Minigh
- Department of Pharmacology, Joan C. Edward School of Medicine, Marshall University, Huntington, WV 25704-9388, USA
| | | |
Collapse
|
12
|
Cojocel C, Thomson MS. Effect of 6-hydroxydopamine on gluconeogenesis in the rat renal cortex. Clin Exp Pharmacol Physiol 2003; 30:55-9. [PMID: 12542454 DOI: 10.1046/j.1440-1681.2003.03798.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. In the present study, the effects of 6-hydroxydopamine (6-OHDA) on renal gluconeogenesis were investigated in vitro using rat renal cortical slices. Cisplatin, a known nephrotoxin, was used as a positive control. The working hypothesis for the present study was that 6-OHDA, as a reactive oxygen species-producing agent, could inhibit renal gluconeogenesis. 2. 6-Hydroxydopamine is used for chemical sympathectomy because it selectively destroys adrenergic nerve endings. Long-term use of levodopa causes a variety of side-effects in parkinsonian patients. 6-Hydroxydopamine has been reported to be present in the urine of parkinsonian patients on levodopa medication. The renal toxicity of endogenously formed 6-OHDA is a matter of concern in these patients. 3. In one series of experiments, renal cortical slices were incubated for 60 min in medium containing 0.5, 1.0, 2.08, 5.15, 10.30 or 20.60 mg/mL 6-OHDA at 37 degrees C under a 100% O2 atmosphere. In another series of experiments, renal cortical slices were incubated in medium containing 10.30 mg/mL 6-OHDA for 15, 30, 45, 60, 90 or 120 min or in 6-OHDA-free medium. 4. In a second series of experiments, renal cortical slices were incubated for 60 min in medium containing 0.25, 0.50, 0.75, 1.0, 1.25 or 1.50 mg/mL cisplatin at 37 degrees C under a 100% O2 atmosphere. In another set of experiments, renal cortical slices were incubated in medium containing 1 mg/mL cisplatin for 15, 30, 45, 60, 90 or 120 min or in a cisplatin-free medium. 5. The results of the studies in which slices were incubated in 6-OHDA-containing media indicate that 6-OHDA induced a time- and concentration-dependent decrease in renal gluconeogenesis. Therefore, 6-OHDA causes functional injury of renal proximal tubule cells responsible for renal gluconeogenesis, thus leading to nephrotoxicity.
Collapse
Affiliation(s)
- C Cojocel
- Faculty of Medicine, Department of Pharmacology and Toxicology, Kuwait University, Safat, Kuwait.
| | | |
Collapse
|
13
|
Hong SK, Anestis DK, Ball JG, Valentovic MA, Rankin GO. In vitro nephrotoxicity induced by chloronitrobenzenes in renal cortical slices from Fischer 344 rats. Toxicol Lett 2002; 129:133-41. [PMID: 11879984 DOI: 10.1016/s0378-4274(01)00526-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chloronitrobenzenes are important chemical intermediates in the manufacture of industrial, agricultural and pharmaceutical agents. Toxicity induced by the various chloronitrobenzene isomers in vivo includes hematotoxicity, immunotoxicity, hepatotoxicity and nephrotoxicity. The purpose of the study was to determine the direct nephrotoxic effects of nitrobenzene and ten chlorinated nitrobenzene derivatives using renal cortical slices as the in vitro model. Renal cortical slices were prepared from kidneys of untreated, male Fischer 344 rats and incubated with nitrobenzene (1.0-5.0 mM), a chloronitrobenzene (0.5-5.0 mM) or vehicle for 2 h. At the end of the 2 h incubation, tissue gluconeogenesis capacity (pyruvate-stimulated gluconeogenesis) and lactate dehydrogenase (LDH) release were determined as measures of cellular function and cytotoxicity. Based on decreased pyruvate-stimulated gluconeogenesis and increased LDH release, the order of decreasing nephrotoxic potential was trichloronitrobenzenes>dichloronitrobenzenes>monochloronitrobenzenes>nitrobenzene. Among the mono- and dichloronitrobenzenes, 1-chloro-3-nitrobenzene and 3,4-dichloronitrobenzene were the most potent nephrotoxicants, while the two trichloronitrobenzenes tested exhibited similar nephrotoxic potentials. These results demonstrate that chloronitrobenzenes are directly nephrotoxic in vitro and that increasing the number of chloro groups increases the nephrotoxic potential of the resulting chloronitrobenzene derivative.
Collapse
Affiliation(s)
- Suk K Hong
- Department of Pharmacology, Joan C. Edwards School of Medicine, Marshall University, 1542 Spring Valley Drive, Huntington, WV 25704-9388, USA
| | | | | | | | | |
Collapse
|
14
|
Valentovic MA, Ball JG, Sun H, Rankin GO. Characterization of 2-amino-4,5-dichlorophenol (2A45CP) in vitro toxicity in renal cortical slices from male Fischer 344 rats. Toxicology 2002; 172:113-23. [PMID: 11882351 DOI: 10.1016/s0300-483x(01)00597-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
2-Amino-4,5-dichlorophenol (2A45CP) is a major, aromatic ring hydroxylated metabolite of the renal toxicant, 3,4-dichloroaniline. 3,4-Dichloroaniline is nephrotoxic with primary damage located to the proximal tubules. The purpose of this study was to first characterize the in vitro toxicity of 2A45CP in renal cortical slices. Second, the effect of antioxidants and sulfhydryl containing agents on the severity of 2A45CP toxicity was explored since part of the mechanism of toxicity for aminophenols may involve redox cycling. Renal tissue was isolated from male Fischer 344 rats (190--220 g). Renal slices were rinsed three times for 3 min each in 5-ml Krebs buffer. Tissues were then incubated for 90--120 min with varying concentrations of 2A45CP between 0 and 0.5 mM. In a separate series of experiments, the slices (50--100 mg) were preincubated for 30 min with 1 mM dithiothreitol (DTT), 1 mM glutathione (GSH) or 2 mM ascorbic acid prior to exposure to 0, 0.05, 0.1 or 0.25 mM 2A45CP. 2A45CP produced a concentration and time dependent increase in LDH leakage from renal cortical slices. Total glutathione levels were diminished by 0.5 mM 2A45CP within 30 min. Renal slices incubated for 60 and 120 min with 0.05 and 0.1 mM 2A45CP had lower malondialdehyde levels than control. Pretreatment with DTT did not alter 2A45CP toxicity. Pretreatment of renal cortical slices with GSH or ascorbic acid reduced 2A45CP toxicity. These findings indicate that 2A45CP is directly toxic to renal cortical slices and that cytotoxicity is at least partially mediated by a reactive intermediate.
Collapse
Affiliation(s)
- Monica A Valentovic
- Department of Pharmacology, Marshall University School of Medicine, Huntington, WV 25704-9388, USA.
| | | | | | | |
Collapse
|
15
|
Kim SR, Lee JY, Lee MY, Chung SM, Bae ON, Chung JH. Association of quinone-induced platelet anti-aggregation with cytotoxicity. Toxicol Sci 2001; 62:176-82. [PMID: 11399805 DOI: 10.1093/toxsci/62.1.176] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Various anti-platelet drugs, including quinones, are being investigated as potential treatments for cardiovascular disease because of their ability to prevent excessive platelet aggregation. In the present investigation 3 naphthoquinones (2,3-dimethoxy-1,4-naphthoquinone [DMNQ], menadione, and 1,4-naphthoquinone [4-NQ]) were compared for their abilities to inhibit platelet aggregation, deplete glutathione (GSH) and protein thiols, and cause cytotoxicity. Platelet-rich plasma, isolated from Sprague-Dawley rats, was used for all experiments. The relative potency of the 3 quinones to inhibit platelet aggregation, deplete intracellular GSH and protein thiols, and cause cytotoxicity was 1,4-NQ > menadione >> DMNQ. Experiments using 2 thiol-modifying agents, dithiothreitol (DTT) and 1-chloro-2,4-dintrobenzene (CDNB), confirmed the key roles for GSH in quinone-induced platelet anti-aggregation and for protein thiols in quinone-induced cytotoxicity. Furthermore, the anti-aggregative effects of a group of 12 additional quinone derivatives were positively correlated with their ability to cause platelet cytotoxicity. Quinones that had a weak anti-aggregative effect did not induce cytotoxicity (measured as LDH leakage), whereas quinones that had a potent anti-aggregative effect resulted in significant LDH leakage (84-96%). In one instance, however, p-chloranil demonstrated a potent anti-aggregative effect, but did not induce significant LDH leakage. This can be explained by the inability of p-chloranil to deplete protein thiols, even though intracellular GSH levels decreased rapidly. These results suggest that quinones that deplete GSH in platelets demonstrate a marked anti-aggregative effect. If this anti-aggregative effect is subsequently followed by depletion of protein thiols, cytotoxicity results.
Collapse
Affiliation(s)
- S R Kim
- College of Pharmacy, Seoul National University, Shinrim-dong San 56-1, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
16
|
Valentovic M, Ball JG, Stoll S, Rankin GO. 3,4-Dichlorophenylhydroxylamine cytotoxicity in renal cortical slices from Fischer 344 rats. Toxicology 2001; 162:149-56. [PMID: 11369111 DOI: 10.1016/s0300-483x(01)00356-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
3,4-Dichlorophenylhydroxylamine (3,4-CPHA) is the N-hydroxyl metabolite of 3,4-dichloroaniline. 3,4-Dichloroaniline is a breakdown product of the herbicide Propanil. Previous work has shown that 3,4-dichloroaniline is acutely toxic to the kidney and bladder. The purpose of this study was to examine the in vitro toxicity of 3,4-dichlorophenylhydroxylamine. Renal cortical slices were prepared from male Fischer 344 rats (190-250 g) and were incubated with 0-0.5 mM 3,4-CPHA for 30-120 min under oxygen and constant shaking. 3,4-CPHA produced a concentration and time dependent alteration in lactate dehydrogenase (LDH) leakage, organic ion accumulation and pyruvate stimulated gluconeogenesis. Glutathione levels were diminished within 60 min below control values by 0.1 and 0.5 mM 3,4-CPHA. A 30 min pretreatment with 0.1 mM deferoxamine did not alter 3,4-CPHA toxicity. Alterations in pyruvate stimulated gluconeogenesis and LDH leakage were comparable between vehicle and deferoxamine pretreated tissues. Other studies examined the effect of (1 mM) glutathione, 2 mM ascorbic acid and 1 mM dithiothreitol (DTT) on toxicity. Pretreatment for 30 min with vehicle or 1 mM DTT induced comparable changes in LDH leakage and pyruvate stimulated gluconeogenesis. Pretreatment for 30 min with 1 mM glutathione or 2 mM ascorbic acid reduced 3,4-CPHA toxicity. LDH leakage was not elevated as markedly in renal slices pretreated with glutathione relative to slices pretreated with vehicle. These results indicate that 3,4-CPHA toxicity is through an iron independent mechanism. 3,4-CPHA cytotoxicity was reduced by pretreatment with glutathione or ascorbic acid suggesting formation of a reactive intermediate.
Collapse
Affiliation(s)
- M Valentovic
- Department of Pharmacology, Marshall University School of Medicine, 1542 Spring Valley Drive, Huntington, WV 25704-9388, USA.
| | | | | | | |
Collapse
|