1
|
Machado FR, Bortolotto VC, Araujo SM, Dahleh MMM, Fernandes EJ, Musachio EAS, Funguetto-Ribeiro AC, Haas SE, Guerra GP, Prigol M, Boeira SP. Toxicological analysis of chronic exposure to polymeric nanocapsules with different coatings in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109939. [PMID: 38723702 DOI: 10.1016/j.cbpc.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Nanotechnology involves the utilization of nanomaterials, including polymeric nanocapsules (NCs) that are drug carriers. For modify drug release and stability, nanoformulations can feature different types of polymers as surface coatings: Polysorbate 80 (P80), Polyethylene glycol (PEG), Chitosan (CS) and Eudragit (EUD). Although nanoencapsulation aims to reduce side effects, these polymers can interact with living organisms, inducing events in the antioxidant system. Thus far, little has been described about the impacts of chronic exposure, with Drosophila melanogaster being an in vivo model for characterizing the toxicology of these polymers. This study analyzes the effects of chronic exposure to polymeric NCs with different coatings. Flies were exposed to 10, 50, 100, and 500 μL of NCP80, NCPEG, NCCS, or EUD. The survival rate, locomotor changes, oxidative stress markers, cell viability, and Nrf2 expression were evaluated. Between the coatings, NCPEG had minimal effects, as only 500 μL affected the levels of reactive species (RS) and the enzymatic activities of catalase (CAT) and glutathione S-transferase (GST) without reducing Nrf2 expression. However, NCEUD significantly impacted the total flies killed, RS, CAT, and Superoxide dismutase from 100 μL. In part, the toxicity mechanisms of these coatings can be explained by the imbalance of the antioxidant system. This research provided initial evidence on the chronic toxicology of these nanomaterials in D. melanogaster to clarify the nanosafety profile of these polymers in future nanoformulations. Further investigations are essential to characterize possible biochemical pathways involved in the toxicity of these polymeric coatings.
Collapse
Affiliation(s)
- Franciéle Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | | | - Sandra Elisa Haas
- Pharmacology Laboratory - LABFAR, Federal University of Pampa, Uruguaiana, RS 22 97650-970, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, RS 97650-000, Brazil.
| |
Collapse
|
2
|
Ajuwon OR, Nsole-Biteghe FA, Ndong JD, Davids LM, Ajiboye BO, Brai B, Bamisaye FA, Falode JA, Odoh IM, Adegbite KI, Adegoke BO, Ntwasa M, Lebelo SL, Ayeleso AO. Nrf2-Mediated Antioxidant Response and Drug Efflux Transporters Upregulation as Possible Mechanisms of Resistance in Photodynamic Therapy of Cancers. Onco Targets Ther 2024; 17:605-627. [PMID: 39131905 PMCID: PMC11313505 DOI: 10.2147/ott.s457749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/08/2024] [Indexed: 08/13/2024] Open
Abstract
Photodynamic therapy (PDT) is a groundbreaking approach involving the induction of cytotoxic reactive oxygen species (ROS) within tumors through visible light activation of photosensitizers (PS) in the presence of molecular oxygen. This innovative therapy has demonstrated success in treating various cancers. While PDT proves highly effective in most solid tumors, there are indications that certain cancers exhibit resistance, and some initially responsive cancers may develop intrinsic or acquired resistance to PDT. The molecular mechanisms underlying this resistance are not fully understood. Recent evidence suggests that, akin to other traditional cancer treatments, the activation of survival pathways, such as the KEAP1/Nrf2 signaling pathway, is emerging as an important mechanism of post-PDT resistance in many cancers. This article explores the dual role of Nrf2, highlighting evidence linking aberrant Nrf2 expression to treatment resistance across a range of cancers. Additionally, it delves into the specific role of Nrf2 in the context of photodynamic therapy for cancers, emphasizing evidence that suggests Nrf2-mediated upregulation of antioxidant responses and induction of drug efflux transporters are potential mechanisms of resistance to PDT in diverse cancer types. Therefore, understanding the specific role(s) of Nrf2 in PDT resistance may pave the way for the development of more effective cancer treatments using PDT.
Collapse
Affiliation(s)
| | | | | | | | | | - Bartholomew Brai
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | | | - John Adeolu Falode
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Ikenna Maximillian Odoh
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
- Medical Center, Federal University, Oye-Ekiti, Ekiti-State, Nigeria
| | - Kabirat Iyabode Adegbite
- Department of Environmental Health Science, College of Basic Medical and Health Sciences, Fountain University, Osogbo, Osun State, Nigeria
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
- Biochemistry Programme, Bowen University, Iwo, Osun State, Nigeria
| |
Collapse
|
3
|
Sakurai Y, Oba E, Honda A, Tanaka H, Takano H, Akita H. The stress-responsive cytotoxic effect of diesel exhaust particles on lymphatic endothelial cells. Sci Rep 2024; 14:10503. [PMID: 38714844 PMCID: PMC11076499 DOI: 10.1038/s41598-024-61255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Diesel exhaust particles (DEPs) are very small (typically < 0.2 μm) fragments that have become major air pollutants. DEPs are comprised of a carbonaceous core surrounded by organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs. Inhaled DEPs reach the deepest sites in the respiratory system where they could induce respiratory/cardiovascular dysfunction. Additionally, a previous study has revealed that a portion of inhaled DEPs often activate immune cells and subsequently induce somatic inflammation. Moreover, DEPs are known to localize in lymph nodes. Therefore, in this study we explored the effect of DEPs on the lymphatic endothelial cells (LECs) that are a constituent of the walls of lymph nodes. DEP exposure induced cell death in a reactive oxygen species (ROS)-dependent manner. Following exposure to DEPs, next-generation sequence (NGS) analysis identified an upregulation of the integrated stress response (ISR) pathway and cell death cascades. Both the soluble and insoluble components of DEPs generated intracellular ROS. Three-dimensional Raman imaging revealed that DEPs are taken up by LECs, which suggests internalized DEP cores produce ROS, as well as soluble DEP components. However, significant cell death pathways such as apoptosis, necroptosis, ferroptosis, pyroptosis, and parthanatos seem unlikely to be involved in DEP-induced cell death in LECs. This study clarifies how DEPs invading the body might affect the lymphatic system through the induction of cell death in LECs.
Collapse
Affiliation(s)
- Yu Sakurai
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Eiki Oba
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Akiko Honda
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8530, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hirohisa Takano
- Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, 621-8555, Japan
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, 615-8530, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
4
|
Zhang J, Liu K, Tang X, Wang XJ. Dysfunction of Nrf2-regulated cellular defence system and JNK activation induced by high dose of fly Ash particles are associated with pulmonary injury in mouse lungs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116239. [PMID: 38518612 DOI: 10.1016/j.ecoenv.2024.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
The mechanisms of the exposure to fine particulate matter (PM) as a risk factor for pulmonary injury are not fully understood. The transcription factor, NF-E2-related factor 2 (Nrf2), plays a key role in protection lung against PM insult and cancer chemoprevention. In this study, F3-S fly ash particles from a municipal waste incinerator were evaluated as a PM model. We found that F3-S triggered hierarchical oxidative stress responses involving the prolonged activation of the cytoprotective Nrf2 transcriptional program via Keap1 Cys151 modification, and c-Jun NH2-terminal kinase (JNK) phosphorylation at higher doses. In mouse lungs exposed to fly ash particles at a low dose (10-20 mg/kg), Nrf2 signalling was upregulated, while in those exposed to a high fly ash particle dose (40 mg/kg), there was significant activation of JNK, and this correlated with Nrf2 phosphorylation and the downregulation of antioxidant response element (ARE)-driven genes. The JNK inhibitor, SP600125, reversed Nrf2 phosphorylation, and downregulation of detoxifying enzymes. Silencing JNK expression in mouse lungs using adenoviral shRNA inhibited JNK activation and Nrf2 phosphorylation, promoted ARE-driven gene expression, and reduced pulmonary injury. Furthermore, we found that the 452-515 amino acid region within the Neh1 domain of Nrf2 was required for its interaction with P-JNK. We demonstrated that Nrf2 was an important P-JNK target in fly ash-induced pulmonary toxicity. JNK phosphorylated Nrf2, leading to a dysfunction of the Nrf2-mediated defence system.
Collapse
Affiliation(s)
- Jingwen Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Kaihua Liu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China
| | - Xiuwen Tang
- Department of Biochemistry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China.
| | - Xiu Jun Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention of the Ministry of Education), and Department of Pharmacology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, PR China.
| |
Collapse
|
5
|
Egorov ES, Kondratenko ND, Averina OA, Permyakov OA, Emelyanova MA, Prikhodko AS, Zinovkina LA, Sergiev PV, Zinovkin RA. A New Mouse Strain with a Mutation in the NFE2L2 (NRF2) Gene. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1987-1996. [PMID: 38462445 DOI: 10.1134/s0006297923120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 03/12/2024]
Abstract
Transcription factor NRF2 is involved in inflammatory reactions, maintenance of redox balance, metabolism of xenobiotics, and is of particular interest for studying aging. In the present work, the CRISPR/Cas9 genome editing technology was used to generate the NRF2ΔNeh2 mice containing a substitution of eight amino acid residues at the N-terminus of the NRF2 protein, upstream of the functional Neh2 domain, which ensures binding of NRF2 to its inhibitor KEAP1. Heterozygote NRF2wt/ΔNeh2 mice gave birth to homozygous mice with lower than expected frequency, accompanied by their increased embryonic lethality and visual signs of anemia. Mouse embryonic fibroblasts (MEFs) from the NRF2ΔNeh2/ΔNeh2 homozygotes showed impaired resistance to oxidative stress compared to the wild-type MEFs. The tissues of homozygous NRF2ΔNeh2/ΔNeh2 animals had a decreased expression of the NRF2 target genes: NAD(P)H:Quinone oxidoreductase-1 (Nqo1); aldehyde oxidase-1 (Aox1); glutathione-S-transferase A4 (Gsta4); while relative mRNA levels of the monocyte chemoattractant protein 1 (Ccl2), vascular cell adhesion molecule 1 (Vcam1), and chemokine Cxcl8 was increased. Thus, the resulting mutation in the Nfe2l2 gene coding for NRF2, partially impaired function of this transcription factor, expanding our insights into the functional role of the unstructured N-terminus of NRF2. The obtained NRF2ΔNeh2 mouse line can be used as a model object for studying various pathologies associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Evgeniy S Egorov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Natalia D Kondratenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Russian Clinical Research Center for Gerontology, Ministry of Health of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, 129226, Russia
| | - Olga A Averina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oleg A Permyakov
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria A Emelyanova
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anastasia S Prikhodko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ludmila A Zinovkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Petr V Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- HSE University, Moscow, 101000, Russia
| |
Collapse
|
6
|
Mukherjee AG, Gopalakrishnan AV. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario. Med Oncol 2023; 40:248. [PMID: 37480500 DOI: 10.1007/s12032-023-02124-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The Nuclear factor erythroid 2-related factor 2 (Nrf2) protein has garnered significant interest due to its crucial function in safeguarding cells and tissues. The Nrf2 protein is crucial in preserving tissue integrity by safeguarding cells against metabolic, xenobiotic and oxidative stress. Due to its various functions, Nrf2 is a potential pharmacological target for reducing the incidence of diseases such as cancer. However, mutations in Keap1-Nrf2 are not consistently favored in all types of cancer. Instead, they seem to interact with specific driver mutations of tumors and their respective tissue origins. The Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 pathway mutations are a powerful cancer adaptation that utilizes inherent cytoprotective pathways, encompassing nutrient metabolism and ROS regulation. The augmentation of Nrf2 activity elicits significant alterations in the characteristics of neoplastic cells, such as resistance to radiotherapy and chemotherapy, safeguarding against apoptosis, heightened invasiveness, hindered senescence, impaired autophagy and increased angiogenesis. The altered activity of Nrf2 can arise from diverse genetic and epigenetic modifications that instantly impact Nrf2 regulation. The present study aims to showcase the correlation between the Keap1-Nrf2 pathway and the progression of cancers, emphasizing genetic mutations, metabolic processes, immune regulation, and potential therapeutic strategies. This article delves into the intricacies of Nrf2 pathway anomalies in cancer, the potential ramifications of uncontrolled Nrf2 activity, and therapeutic interventions to modulate the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
7
|
DeBlasi JM, Falzone A, Caldwell S, Prieto-Farigua N, Prigge JR, Schmidt EE, Chio IIC, Karreth FA, DeNicola GM. Distinct Nrf2 Signaling Thresholds Mediate Lung Tumor Initiation and Progression. Cancer Res 2023; 83:1953-1967. [PMID: 37062029 PMCID: PMC10267679 DOI: 10.1158/0008-5472.can-22-3848] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Mutations in the KEAP1-NRF2 (Kelch-like ECH-associated protein 1-nuclear factor-erythroid 2 p45-related factor 2) pathway occur in up to a third of non-small cell lung cancer (NSCLC) cases and often confer resistance to therapy and poor outcomes. Here, we developed murine alleles of the KEAP1 and NRF2 mutations found in human NSCLC and comprehensively interrogated their impact on tumor initiation and progression. Chronic NRF2 stabilization by Keap1 or Nrf2 mutation was not sufficient to induce tumorigenesis, even in the absence of tumor suppressors, p53 or LKB1. When combined with KrasG12D/+, constitutive NRF2 activation promoted lung tumor initiation and early progression of hyperplasia to low-grade tumors but impaired their progression to advanced-grade tumors, which was reversed by NRF2 deletion. Finally, NRF2 overexpression in KEAP1 mutant human NSCLC cell lines was detrimental to cell proliferation, viability, and anchorage-independent colony formation. Collectively, these results establish the context-dependence and activity threshold for NRF2 during the lung tumorigenic process. SIGNIFICANCE Stabilization of the transcription factor NRF2 promotes oncogene-driven tumor initiation but blocks tumor progression, indicating distinct, threshold-dependent effects of the KEAP1/NRF2 pathway in different stages of lung tumorigenesis.
Collapse
Affiliation(s)
- Janine M. DeBlasi
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida
| | - Aimee Falzone
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Samantha Caldwell
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nicolas Prieto-Farigua
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Justin R. Prigge
- Microbiology & Cell Biology Department, Montana State University, Bozeman, Montana
| | - Edward E. Schmidt
- Microbiology & Cell Biology Department, Montana State University, Bozeman, Montana
| | - Iok In Christine Chio
- Department of Genetics and Development, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gina M. DeNicola
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
8
|
Suzuki T, Takahashi J, Yamamoto M. Molecular Basis of the KEAP1-NRF2 Signaling Pathway. Mol Cells 2023; 46:133-141. [PMID: 36994473 PMCID: PMC10070164 DOI: 10.14348/molcells.2023.0028] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
Transcription factor NRF2 (NF-E2-related factor 2) is a master regulator of cellular responses against environmental stresses. NRF2 induces expression of detoxification and antioxidant enzymes and suppresses inductions of pro-inflammatory cytokine genes. KEAP1 (Kelch-like ECH-associated protein 1) is an adaptor subunit of CULLIN 3 (CUL3)-based E3 ubiquitin ligase. KEAP1 regulates the activity of NRF2 and acts as a sensor for oxidative and electrophilic stresses. NRF2 has been found to be activated in many types of cancers with poor prognosis. Therapeutic strategies to control NRF2-overeactivated cancers have been considered not only by targeting cancer cells with NRF2 inhibitors or NRF2 synthetic lethal chemicals, but also by targeting host defense with NRF2 inducers. Understanding precise molecular mechanisms how the KEAP1-NRF2 system senses and regulates the cellular response is critical to overcome intractable NRF2-activated cancers.
Collapse
Affiliation(s)
- Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - Jun Takahashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai 980-8573, Japan
| |
Collapse
|
9
|
Fu W, Xiao Z, Chen Y, Pei J, Sun Y, Zhang Z, Wu H, Pei Y, Wei S, Wang Y, Wang D. Molecular integrative study on interaction domains of nuclear factor erythroid 2-related factor 2 with sirtuin 6. Biochimie 2023; 211:68-77. [PMID: 36924820 DOI: 10.1016/j.biochi.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
Oxidative stress is one of the elements causing aging and related diseases. Inhibiting Nrf2 activity or increasing oxidative pressure can replicate the deficits of premature aging. SIRT6 is one of the few proteins that can regulate both life span and aging. Deletion of SIRT6 in human cells impairs the antioxidant capacity of cells, which results in the accumulation of intracellular reactive oxygen species and DNA oxidation products. Characterization of the binding of Nrf2 with SIRT6 is critical for understanding the modulation of Nrf2-correlated cell activities by SIRT6. The yeast two-hybrid experiments showed that the binding of Nrf2 with SIRT6 is mediated by Neh1 and Neh3 domains. The elimination of the Neh1 and Neh3 domains decreased the binding stability and free energy, according to the molecular dynamic analysis. The roles of theses domains in mediating the binding were confirmed by co-immunoprecipitation. In cells transfected with the small interfering RNA (siRNA) targeting the Nrf2 Neh1 domain and plasmids overexpressing domain-mutant Nrf2, it was discovered that Nrf2 lost its activity to stimulate the transcription of antioxidant genes in the absence of Neh1 and Neh3 domains.
Collapse
Affiliation(s)
- Wanmeng Fu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Zhengpan Xiao
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yibo Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jinli Pei
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yan Sun
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Zhuandan Zhang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Hao Wu
- Central Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315046, China
| | - Yechun Pei
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Shuangshuang Wei
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yuerong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou, Hainan, 570228, China; One Health Collaborative Innovation Center, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
10
|
Kwon M, Jung J, Park HS, Kim NH, Lee J, Park J, Kim Y, Shin S, Lee BS, Cheong YH, Youn HS, Kim SR, Park SA. Diesel exhaust particle exposure accelerates oxidative DNA damage and cytotoxicity in normal human bronchial epithelial cells through PD-L1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120705. [PMID: 36410599 DOI: 10.1016/j.envpol.2022.120705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/18/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Diesel exhaust particles (DEPs) are a major cause of cancer progression as well as a variety of acute and chronic diseases. It is well-known that programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule that can induce immune escape in tumor cells. However, the function of PD-L1 in bronchial epithelial cells or how PD-L1 relates to cellular oxidation under DEPs-mediated oxidative stress is not well known. In this study, we investigated how PD-L1 affected DEPs-induced oxidative stress and cytotoxicity in human bronchial epithelial (HBE) cells, Beas-2B. DEPs not only induced intracellular reactive oxygen species (ROS) production, but also increased PD-L1 expression in HBE cells. Beas-2B cells overexpressing PD-L1 showed higher levels of ROS production, DNA damage, and apoptosis after DEPs treatment compared to control cells. In particular, the expression of an antioxidant enzyme heme-oxygenase-1 (HO-1) and nuclear translocation and transcriptional activity of Nrf2, a major regulator of HO-1, were lower in Beas-2B overexpressing PD-L1 cells than in control cells. DEPs-induced ROS generation, DNA damage and apoptosis in Beas-2B cells overexpressing PD-L1 were significantly restored by overexpressing HO-1. Collectively, our results suggest that DEPs can increase the expression of PD-L1 in HBE cells and that overexpressing PD-L1 might eventually promote DEPs-induced oxidative DNA damage and apoptosis.
Collapse
Affiliation(s)
- Minji Kwon
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jiwoo Jung
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Hee Sun Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Na Hui Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jiwoo Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jayeon Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Youjin Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Seokwon Shin
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Byung Soo Lee
- Department of Ophthalmology, Konyang University Hospital and College of Medicine, Daejeon, 35365, Republic of Korea
| | - Ye Hwang Cheong
- Drug Discovery Research Laboratories, Dong-A ST Co., Ltd., Yongin, 17073, Republic of Korea
| | - Hyung-Sun Youn
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Sung Roul Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea; Department of Environmental Health Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Sin-Aye Park
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
11
|
Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants (Basel) 2022; 11:antiox11122345. [PMID: 36552553 PMCID: PMC9774434 DOI: 10.3390/antiox11122345] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Organisms are continually exposed to exogenous and endogenous sources of reactive oxygen species (ROS) and other oxidants that have both beneficial and deleterious effects on the cell. ROS have important roles in a wide range of physiological processes; however, high ROS levels are associated with oxidative stress and disease progression. Oxidative stress has been implicated in nearly all major human diseases, from neurogenerative diseases and neuropsychiatric disorders to cardiovascular disease, diabetes, and cancer. Antioxidant defence systems have evolved as a means of protection against oxidative stress, with the transcription factor Nrf2 as the key regulator. Nrf2 is responsible for regulating an extensive panel of antioxidant enzymes involved in the detoxification and elimination of oxidative stress and has been extensively studied in the disease contexts. This review aims to provide the reader with a general overview of oxidative stress and Nrf2, including basic mechanisms of Nrf2 activation and regulation, and implications in various major human diseases.
Collapse
|
12
|
Jyothidasan A, Sunny S, Murugesan S, Quiles JM, Challa AK, Dalley B, Cinghu SK, Nanda V, Rajasekaran NS. Transgenic Expression of Nrf2 Induces a Pro-Reductive Stress and Adaptive Cardiac Remodeling in the Mouse. Genes (Basel) 2022; 13:1514. [PMID: 36140682 PMCID: PMC9498410 DOI: 10.3390/genes13091514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Nuclear factor, erythroid 2 like 2 (Nfe2l2 or Nrf2), is a transcription factor that protects cells by maintaining a homeostatic redox state during stress. The constitutive expression of Nrf2 (CaNrf2-TG) was previously shown to be pathological to the heart over time. We tested a hypothesis that the cardiac-specific expression of full length Nrf2 (mNrf2-TG) would moderately increase the basal antioxidant defense, triggering a pro-reductive environment leading to adaptive cardiac remodeling. Transgenic and non-transgenic (NTG) mice at 7−8 months of age were used to analyze the myocardial transcriptome, structure, and function. Next generation sequencing (NGS) for RNA profiling and qPCR-based validation of the NGS data, myocardial redox levels, and imaging (echocardiography) were performed. Transcriptomic analysis revealed that out of 14,665 identified mRNAs, 680 were differently expressed (DEG) in TG hearts. Of 680 DEGs, 429 were upregulated and 251 were downregulated significantly (FC > 2.0, p < 0.05). Gene set enrichment analysis revealed that the top altered pathways were (a) Nrf2 signaling, (b) glutathione metabolism and (c) ROS scavenging. A comparative analysis of the glutathione redox state in the hearts demonstrated significant differences between pro-reductive vs. hyper-reductive conditions (233 ± 36.7 and 380 ± 68.7 vs. 139 ± 8.6 µM/mg protein in mNrf2-TG and CaNrf2-TG vs. NTG). Genes involved in fetal development, hypertrophy, cytoskeletal rearrangement, histone deacetylases (HDACs), and GATA transcription factors were moderately increased in mNrf2-TG compared to CaNrf2-TG. Non-invasive echocardiography analysis revealed an increase in systolic function (ejection fraction) in mNrf2-TG, suggesting an adaptation, as opposed to pathological remodeling in CaNrf2-TG mice experiencing a hyper-reductive stress, leading to reduced survival (40% at 60 weeks). The effects of excess Nrf2-driven antioxidant transcriptome revealed a pro-reductive condition in the myocardium leading to an adaptive cardiac remodeling. While pre-conditioning the myocardial redox with excess antioxidants (i.e., pro-reductive state) could be beneficial against oxidative stress, a chronic pro-reductive environment in the myocardium might transition the adaptation to pathological remodeling.
Collapse
Affiliation(s)
- Arun Jyothidasan
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sini Sunny
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saravanakumar Murugesan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Justin M. Quiles
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Anil Kumar Challa
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brian Dalley
- Huntsman Cancer Center-Genomic Core Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Senthil Kumar Cinghu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vivek Nanda
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Namakkal-Soorappan Rajasekaran
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Center for Free Radical Biology (CFRB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022; 22:241. [PMID: 35906617 PMCID: PMC9336077 DOI: 10.1186/s12935-022-02660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized.
Collapse
Affiliation(s)
- Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Adibfar
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Wang Z, Ma J, He Y, Miu KK, Yao S, Tang C, Ye Y, Lin G. Nrf2-mediated liver protection by 18β-glycyrrhetinic acid against pyrrolizidine alkaloid-induced toxicity through PI3K/Akt/GSK3β pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154162. [PMID: 35598524 DOI: 10.1016/j.phymed.2022.154162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Misusage of pyrrolizidine alkaloid (PA)-containing plants or unaware intake of PA-contaminated foodstuffs causes thousands of PA poisoning cases in humans. PA intoxication is accompanied by oxidative stress and subsequent extensive hepatocellular damage. Our previous study has demonstrated that 18β-glycyrrhetinic acid (GA), a bioactive constituent of liquorice, prevented PA-induced hepatotoxicity in rats, however the underlying mechanisms remain unclear. OBJECTIVE This study aims to explore the mechanisms underlying the hepato-protective effect of GA in combating retrorsine (RTS, a representative toxic PA)-induced liver injury. METHODS Histological and biochemical assessments were employed to evaluate the protective effect of GA on RTS-induced hepatotoxicity in rats. Sulforhodamine B assay, real-time PCR, western blotting, and immunostaining were used to explore the underlying mechanisms in human hepatocytes and rats. RESULTS Our findings demonstrated that GA alleviated RTS-induced elevation of serum ALT and bilirubin levels, as well as hepatocytes necrosis and sinusoidal endothelial cells (SECs) damage in rats. GA also enhanced the activities and expressions of several antioxidant enzymes through upregulating nuclear factor-erythroid 2-related factor2 (Nrf2). Moreover, inhibition of Nrf2 blocked the hepatoprotective effect of GA against RTS intoxication. Mechanistically, GA increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and enhanced glycogen synthase kinase 3 beta (GSK3β) inhibitory phosphorylation at serine 9, thus promoting the nuclear accumulation of Nrf2 and activating its downstream targets. CONCLUSION This study for the first time demonstrated that GA exerted protective effects against RTS-induced liver injury by potentiating the Nrf2-mediated antioxidant system through PI3K/Akt/GSK3β pathway. The findings indicated that GA may serve as a potential candidate drug for the treatment of PA intoxication.
Collapse
Affiliation(s)
- Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 505A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 505A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 505A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 505A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunping Tang
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, 505A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Hong Kong SAR, China.
| |
Collapse
|
15
|
Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radic Biol Med 2022; 187:72-91. [PMID: 35613665 DOI: 10.1016/j.freeradbiomed.2022.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Environmental risk factors, including noise, air pollution, chemical agents, ultraviolet radiation (UVR) and mental stress have a considerable impact on human health. Oxidative stress and inflammation are key players in molecular pathomechanisms of environmental pollution and risk factors. In this review, we delineate the impact of environmental risk factors and the protective actions of the nuclear factor erythroid 2-related factor 2 (NRF2) in connection to oxidative stress and inflammation. We focus on well-established studies that demonstrate the protective actions of NRF2 and its downstream pathways against different environmental stressors. State-of-the-art mechanistic considerations on NRF2 signaling are discussed in detail, e.g. classical concepts like KEAP1 oxidation/electrophilic modification, NRF2 ubiquitination and degradation. Specific focus is also laid on NRF2-dependent heme oxygenase-1 induction with detailed presentation of the protective down-stream pathways of heme oxygenase-1, including interaction with BACH1 system. The significant impact of all environmental stressors on the circadian rhythm and the interactions of NRF2 with the circadian clock will also be considered here. A broad range of NRF2 activators is discussed in relation to environmental stressor-induced health side effects, thereby suggesting promising new mitigation strategies (e.g. by nutraceuticals) to fight the negative effects of the environment on our health.
Collapse
Affiliation(s)
- Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katie Frenis
- Department of Hematology and Oncology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Leibniz Insitute for Resilience Research (LIR), Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel
| | - Antonio Cuadrado
- Departamento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Langenbeckstraße 1, 55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
16
|
Li YJ, Takeda K, Yamamoto M, Kawada T. Potential of NRF2 Pathway in Preventing Developmental and Reproductive Toxicity of Fine Particles. FRONTIERS IN TOXICOLOGY 2022; 3:710225. [PMID: 35295150 PMCID: PMC8915851 DOI: 10.3389/ftox.2021.710225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Air pollution is associated with significant adverse health effects. Recent studies support the idea that inhalation of fine particles can instigate extrapulmonary effects on the cardiovascular system through several pathways. The systemic transfer of ultrafine particles (UFPs) or soluble particle components (organic compounds and metals) is of particular concern. An integral role of reactive oxygen species (ROS)-dependent pathways has been suggested in systemic inflammatory responses and vascular dysfunction at the molecular level. Accumulating lines of evidence suggest that fine particles affect fetal development, giving rise to low birth weight and a reduction in fetal growth, and also affect the immune, cardiovascular, and central nervous systems. Oxidative stress plays an important role in fine particles toxicity; pre-treatment with antioxidants partially suppresses the developmental toxicity of fine particles. On the other hand, Nuclear factor erythroid-derived 2-like 2 (Nfe2l2), also known as NRF2, is a transcription factor essential for inducible and/or constitutive expression of phase II and antioxidant enzymes. Studies using Nrf2-knockout mice revealed that NRF2 dysfunction is intimately involved in the pathogenesis of various human diseases. Multiple single nucleotide polymorphisms (SNPs) have been detected in human NRF2 locus. An NRF2 gene SNP (−617C > A; rs6721961), located in the upstream promoter region, affects the transcriptional level of NRF2 and thereby the protein level and downstream gene expression. It has been reported that the SNP-617 is associated with various diseases. The onset and exacerbation of the diseases are regulated by genetic predisposition and environmental factors; some people live in the air-polluted environment but are not affected and remain healthy, suggesting the presence of individual differences in the susceptibility to air pollutants. NRF2 polymorphisms may also be associated with the fetal effects of fine particles exposure. Screening high-risk pregnant women genetically susceptible to oxidative stress and prevention by antioxidant interventions to protect fetal development in air-polluted areas should be considered. This article reviews the recent advances in our understanding of the fetal health effects of fine particles and describes potential chemoprevention via the NRF2 pathway to prevent the developmental and reproductive toxicity of fine particles.
Collapse
Affiliation(s)
- Ying-Ji Li
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| | - Ken Takeda
- Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Sanyo-Onoda, Japan
| | - Masayuki Yamamoto
- Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyuki Kawada
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
17
|
Kim EY, Lee JM. NRF2 Activation in Autophagy Defects Suppresses a Pharmacological Transactivation of the Nuclear Receptor FXR. Antioxidants (Basel) 2022; 11:antiox11020370. [PMID: 35204252 PMCID: PMC8868494 DOI: 10.3390/antiox11020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
NF-E2-related factor 2 (NRF2), an antioxidant transcription factor, is activated in autophagy-deficient mice due to the accumulations of p62/SQSTM1 and its subsequent interaction with Kelch-like-ECH-associated protein 1 (KEAP1), an adaptor component for Cullin3-based E3 ubiquitin ligase complex. Farnesoid x receptor (FXR/NR1H4) is a ligand-dependent transcription factor that belongs to the nuclear receptor superfamily. FXR plays an essential role in bile acid synthesis and enterohepatic circulation, affecting glucose and lipid metabolism. Obeticholic acid as a potent FXR agonist has been approved to treat primary biliary cholangitis and clinical trials for its use in the treatment of other liver diseases are underway. Here we show that NRF2 activation in autophagy defects impedes a transactivation of FXR. Liver-specific Atg7 knockout mice or a treatment of autophagy inhibitor showed decreased inductions of FXR target genes upon its synthetic agonists. Moreover, enforced NRF2 activations with small molecules potently decreased the pharmacological activation of FXR in cultured cells. Finally, we demonstrate that NRF2 activation by the treatment with the food antioxidant butylated hydroxyanisole is necessary and sufficient to inhibit the pharmacological activation of FXR in vivo. These results reveal a novel function of the basal autophagy-NRF2 axis for the regulation of FXR transactivation, and shed light on a potential therapeutic strategy in metabolic disease.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4826
| |
Collapse
|
18
|
van der Merwe M, van Niekerk G, Fourie C, du Plessis M, Engelbrecht AM. The impact of mitochondria on cancer treatment resistance. Cell Oncol (Dordr) 2021; 44:983-995. [PMID: 34244972 DOI: 10.1007/s13402-021-00623-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The ability of cancer cells to develop treatment resistance is one of the primary factors that prevent successful treatment. Although initially thought to be dysfunctional in cancer, mitochondria are significant players that mediate treatment resistance. Literature indicates that cancer cells reutilize their mitochondria to facilitate cancer progression and treatment resistance. However, the mechanisms by which the mitochondria promote treatment resistance have not yet been fully elucidated. CONCLUSIONS AND PERSPECTIVES Here, we describe various means by which mitochondria can promote treatment resistance. For example, mutations in tricarboxylic acid (TCA) cycle enzymes, i.e., fumarate hydratase and isocitrate dehydrogenase, result in the accumulation of the oncometabolites fumarate and 2-hydroxyglutarate, respectively. These oncometabolites may promote treatment resistance by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, inhibiting the anti-tumor immune response, or promoting angiogenesis. Furthermore, stromal cells can donate intact mitochondria to cancer cells after therapy to restore mitochondrial functionality and facilitate treatment resistance. Targeting mitochondria is, therefore, a feasible strategy that may dampen treatment resistance. Analysis of tumoral DNA may also be used to guide treatment choices. It will indicate whether enzymatic mutations are present in the TCA cycle and, if so, whether the mutations or their downstream signaling pathways can be targeted. This may improve treatment outcomes by inhibiting treatment resistance or promoting the effectiveness of anti-angiogenic agents or immunotherapy.
Collapse
Affiliation(s)
- Michelle van der Merwe
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Carla Fourie
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Manisha du Plessis
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
19
|
Stading R, Gastelum G, Chu C, Jiang W, Moorthy B. Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (PAHs): Implications for human lung cancer. Semin Cancer Biol 2021; 76:3-16. [PMID: 34242741 DOI: 10.1016/j.semcancer.2021.07.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/04/2023]
Abstract
Lung cancer has the second highest incidence and highest mortality compared to all other cancers. Polycyclic aromatic hydrocarbon (PAH) molecules belong to a class of compounds that are present in tobacco smoke, diesel exhausts, smoked foods, as well as particulate matter (PM). PAH-derived reactive metabolites are significant contributors to lung cancer development. The formation of these reactive metabolites entails metabolism of the parent PAHs by cytochrome P4501A1/1B1 (CYP1A1/1B1) and epoxide hydrolase enzymes. These reactive metabolites then react with DNA to form DNA adducts, which contribute to key gene mutations, such as the tumor suppressor gene, p53 and are linked to pulmonary carcinogenesis. PAH exposure also leads to upregulation of CYP1A1 transcription by binding to the aryl hydrocarbon receptor (AHR) and eliciting transcription of the CYP1A1 promoter, which comprises specific xenobiotic-responsive element (XREs). While hepatic and pulmonary CYP1A1/1B1 metabolize PAHs to DNA-reactive metabolites, the hepatic CYP1A2, however, may protect against lung tumor development by suppressing both liver and lung CYP1A1 enzymes. Further analysis of these enzymes has shown that PAH-exposure also induces sustained transcription of CYP1A1, which is independent of the persistence of the parent PAH. CYP1A2 enzyme plays an important role in the sustained induction of hepatic CYP1A1. PAH exposure may further contribute to pulmonary carcinogenesis by producing epigenetic alterations. DNA methylation, histone modification, long interspersed nuclear element (LINE-1) activation, and non-coding RNA, specifically microRNA (miRNA) alterations may all be induced by PAH exposure. The relationship between PAH-induced enzymatic reactive metabolite formation and epigenetic alterations is a key area of research that warrants further exploration. Investigation into the potential interplay between these two mechanisms may lead to further understanding of the mechanisms of PAH carcinogenesis. These mechanisms will be crucial for the development of effective targeted therapies and early diagnostic tools.
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Grady Gastelum
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Chun Chu
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
20
|
Lu X, Lin Y, Qiu X, Liu J, Zhu T, Araujo JA, Zhang J, Zhu Y. Metabolomic Changes after Subacute Exposure to Polycyclic Aromatic Hydrocarbons: A Natural Experiment among Healthy Travelers from Los Angeles to Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5097-5105. [PMID: 33683876 DOI: 10.1021/acs.est.0c07627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Emerging epidemiological evidence has associated exposure to polycyclic aromatic hydrocarbons (PAHs) with chronic diseases including cardiometabolic diseases and neurodegeneration. However, little information is available about their subacute effects, which may accumulate over years and contribute to chronic disease development. To fill this knowledge gap, we designed a natural experiment among 26 healthy young adults who were exposed to elevated PAHs for 10 weeks after traveling from Los Angeles to Beijing in 2014 and 2015. Serum was collected before, during, and after the trip for metabolomics analysis. We identified 50 metabolites that significantly changed 6-8 weeks after the travel to Beijing (FDR < 5%). The network analysis revealed two main independent modules. Module 1 was allocated to oxidative homeostasis-related response and module 2 to delayed enzymatic deinduction response. Remarkably, the module 1 metabolites were recovered 4-7 weeks after participants' return, while the module 2 metabolites were not. Urinary hydroxylated PAHs were significantly associated with metabolites from both modules, while PAH carboxylic acids, likely metabolites of alkylated PAHs, were only associated with antioxidation-related metabolites. These results suggested differential subacute effects of unsubstituted and alkylated PAHs. Further studies are warranted to elucidate the role of the reversibility of metabolite changes in adverse health effects of PAHs.
Collapse
Affiliation(s)
- Xinchen Lu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Yan Lin
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, California 90095, United States
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| | - Jesus A Araujo
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, California 90095, United States
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Junfeng Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Yifang Zhu
- Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Wang J, Yu M, Chen J, Zhu L, Liu J, Xu J. Association of Nuclear Factor Erythroid-2-Related Actor 2 Gene Polymorphisms with Diabetic Nephropathy in Chinese Patients. Int J Gen Med 2021; 14:1231-1237. [PMID: 33854365 PMCID: PMC8039206 DOI: 10.2147/ijgm.s300152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Aim Nuclear factor erythroid-2-related factor 2 (NRF2) has emerged as a therapeutic target in many diseases. To explore this further, we evaluated the relationships between the -617C/A (rs6721961) polymorphisms within the NRF2 promoter and diabetic nephropathy (DN) in Chinese Han patients with type 2 diabetes mellitus (T2DM). Methods A total of 883 subjects with T2DM (500 without and 383 with DN) were enrolled in this study. Multivariable linear regression models were carried out to assess the association of DN with the -617C/A (rs6721961) polymorphisms. Results The AA genotype frequencies in patients with DN were significantly lower than those in patients without DN (χ2 = 8.04, p = 0.018). Multivariate logistic regression analyses showed that individuals with the AA genotype had a significantly lower risk for DN (OR 0.52; 95% CI 0.28, 0.94; p = 0.029) than those with the CC genotype. Moreover, AA carriers had a significantly lower risk of DN (OR 0.46; 95% CI 0.26, 0.82; p = 0.009) relative to those with the CC + CA genotype, even after adjusting for known DN risk factors. Conclusion Our study indicated that the -617C/A polymorphism within the NRF2 promoter was significantly associated with DN in Chinese Han patients with T2DM.
Collapse
Affiliation(s)
- Jiancheng Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Meiling Yu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jianrong Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lingyan Zhu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jianying Liu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| |
Collapse
|
22
|
Harris CM, Zamperoni KE, Sernoskie SC, Chow NSM, Massey TE. Effects of in vivo treatment of mice with sulforaphane on repair of DNA pyridyloxylbutylation. Toxicology 2021; 454:152753. [PMID: 33741493 DOI: 10.1016/j.tox.2021.152753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023]
Abstract
The phytochemical sulforaphane (SF) has gained interest for its apparent association with reduced cancer risk and other cytoprotective properties, at least some of which are attributed to activation of the transcription factor Nrf2. Repair of bulky DNA adducts is important for mitigating carcinogenesis from exogenous DNA damaging agents, but it is unknown whether in vivo treatment with SF affects adduct repair. At 12 h following a single oral dose of 100 mg/kg SF, an almost doubling in activity for repair of pyridyloxobutylated DNA was observed in CD-1 mouse liver nuclear extracts, but not in lung extracts. This change at 12 h in repair activity was preceded by the induction of Nrf2-regulated genes but not accompanied by changes in levels of the specific nucleotide excision repair (NER) proteins XPC, XPA, XPB and p53 or in binding of hepatic XPC, XPA and XPB to damaged DNA. SF also did not significantly alter histone deacetylase activity as measured by acetylated histone H3 levels, or stimulate formation of γ-H2A.X, a marker of DNA damage. A significant reduction in oxidative DNA damage, as measured by 8-OHdG (a biomarker of oxidative DNA damage), was observed only in DNA from the lungs of SF-treated mice 3 h post-dosing. These results suggest that the ability of SF to increase bulky adduct repair activity is organ-selective and is consistent with activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Christopher M Harris
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kristen E Zamperoni
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Samantha C Sernoskie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Natalie S M Chow
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Thomas E Massey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
23
|
Kozieł MJ, Kowalska K, Piastowska-Ciesielska AW. Nrf2: a main responsive element in cells to mycotoxin-induced toxicity. Arch Toxicol 2021; 95:1521-1533. [PMID: 33554281 PMCID: PMC8113212 DOI: 10.1007/s00204-021-02995-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor participating in response to cellular oxidative stress to maintain the redox balance. Generation of reactive oxygen species (ROS) and, in consequence, oxidative stress, are physiological as well as pathological processes which take place in almost all types of cells. Nrf2, in response to oxidative stress, activates expression and production of antioxidant enzymes to remove free radicals. However, the role of Nrf2 seems to be more sophisticated and its increased expression observed in cancer cells allows to draw a conclusion that its role is tissue—and condition—dependent. Interestingly, Nrf2 might also play a crucial role in response to environmental factors like mycotoxins. Thus, the aim of the study is to review the role of Nrf2 in cells exposed to most common mycotoxins to check if the Nrf2 signaling pathway serves as the main response element to mycotoxin-induced oxidative stress in human and animal cells and if it can be a target of detoxifying agents.
Collapse
Affiliation(s)
- Marta Justyna Kozieł
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Karolina Kowalska
- Medical University of Lodz, Department of Cell Cultures and Genomic Analysis, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | | |
Collapse
|
24
|
Nrf2 Lowers the Risk of Lung Injury via Modulating the Airway Innate Immune Response Induced by Diesel Exhaust in Mice. Biomedicines 2020; 8:biomedicines8100443. [PMID: 33096811 PMCID: PMC7589508 DOI: 10.3390/biomedicines8100443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
In the present study, we investigated the role of Nrf2 in airway immune responses induced by diesel exhaust (DE) inhalation in mice. C57BL/6J Nrf2+/+ and Nrf2−/− mice were exposed to DE or clean air for 8 h/day and 6 days/week for 4 weeks. After DE exposure, the number of neutrophils and macrophage inflammatory protein (MIP)-2 level in bronchoalveolar lavage fluid (BALF) and interleukin (IL)-17 level in the lung tissue increased in Nrf2−/− mice compared with Nrf2+/+ mice; however, the lack of an increase in the level of tumor necrosis factor (TNF)-α in the lung tissue in Nrf2+/+ mice and mild suppression of the level of TNF-α in Nrf2−/− mice were observed; the level of granulocyte macrophage colony-stimulating factor (GM-CSF) in the lung tissue decreased in Nrf2−/− mice than in Nrf2+/+ mice; the number of DE particle-laden alveolar macrophages in BALF were larger in Nrf2−/− mice than in Nrf2+/+ mice. The results of electron microscope observations showed alveolar type II cell injury and degeneration of the lamellar body after DE exposure in Nrf2−/− mice. Antioxidant enzyme NAD(P)H quinone dehydrogenase (NQO)1 mRNA expression level was higher in Nrf2+/+ mice than in Nrf2−/− mice after DE exposure. Our results suggested that Nrf2 reduces the risk of pulmonary disease via modulating the airway innate immune response caused by DE in mice.
Collapse
|
25
|
Xu Y, Liu H, Song L. Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: a review. J Nanobiotechnology 2020; 18:145. [PMID: 33076918 PMCID: PMC7570055 DOI: 10.1186/s12951-020-00703-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is significantly involved in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD). Combining antioxidant drugs or nutrients results in a noteworthy therapeutic value in animal models of COPD. However, the benefits have not been reproduced in clinical applications, this may be attributed to the limited absorption, concentration, and half-life of exogenous antioxidants. Therefore, novel drug delivery systems to combat oxidative stress in COPD are needed. This review presents a brief insight into the current knowledge on the role of oxidative stress and highlights the recent trends in novel drug delivery carriers that could aid in combating oxidative stress in COPD. The introduction of nanotechnology has enabled researchers to overcome several problems and improve the pharmacokinetics and bioavailability of drugs. Large porous microparticles, and porous nanoparticle-encapsulated microparticles are the most promising carriers for achieving effective pulmonary deposition of inhaled medication and obtaining controlled drug release. However, translating drug delivery systems for administration in pulmonary clinical settings is still in its initial phases.
Collapse
Affiliation(s)
- You Xu
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, People's Republic of China
- Department of Pharmacy, Faculty of Health & Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Hongmei Liu
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, People's Republic of China
| | - Lei Song
- Department of Respiratory Medicine, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, People's Republic of China.
| |
Collapse
|
26
|
Dandelion polyphenols protect against acetaminophen-induced hepatotoxicity in mice via activation of the Nrf-2/HO-1 pathway and inhibition of the JNK signaling pathway. Chin J Nat Med 2020; 18:103-113. [PMID: 32172946 DOI: 10.1016/s1875-5364(20)30011-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/11/2022]
Abstract
We investigated the liver protective activity of dandelion polyphenols (DP) against acetaminophen (APAP; Paracetamol)-induced hepatotoxicity. Mice were acclimated for 1 week and randomly divided into the following groups (n = 9 per group): Control, APAP, APAP + DP (100 mg·kg-1), APAP + DP (200 mg·kg-1), and APAP + DP (400 mg·kg-1) groups. Mice were pretreated with DP (100, 200, and 400 mg·kg-1) by oral gavage for 7 d before being treated with 350 mg·kg-1 APAP for 24 h to induced hepatotoxicity. Severe liver injury was observed, and hepatotoxicity was analyzed after 24 h by evaluation of biochemical markers, protein expressions levels, and liver histopathology. Pretreatment with DP was able to restore serum liver characteristics (aspartate transaminase, AST; alanine aminotransferase, ALT; alkaline phosphatase, AKP), improve redox imbalance (superoxide dismutase, SOD; glutathione, GSH; malondialdehyde, MDA), and decrease inflammatory factors (tumor necrosis factor-α, TNF-α; interleukin-1β, IL-1β). Pretreatment with DP also significantly inhibited the expression levels of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, DP pretreatment could inhibit the apoptosis of liver cells caused by APAP through up-regulation of Bcl-2 and down-regulation of Bax and caspase-9 protein. DP also down-regulated p-JNK protein expression levels to inhibit APAP-induced mitochondrial oxidative stress and up-regulated the expression of Nrf-2 and its target gene HO-1. The histopathological staining demonstrated that DP pretreatment could inhibit APAP-induced hepatocyte infiltration, congestion, and necrosis. Our results demonstrate that DP pretreatment could protect against APAP-induced hepatic injury by activating the Nrf-2/HO-1 pathway and inhibition of the intrinsic apoptosis pathway.
Collapse
|
27
|
Abstract
The KEAP1-NRF2 pathway is the principal protective response to oxidative and electrophilic stresses. Under homeostatic conditions, KEAP1 forms part of an E3 ubiquitin ligase, which tightly regulates the activity of the transcription factor NRF2 by targeting it for ubiquitination and proteasome-dependent degradation. In response to stress, an intricate molecular mechanism facilitated by sensor cysteines within KEAP1 allows NRF2 to escape ubiquitination, accumulate within the cell, and translocate to the nucleus, where it can promote its antioxidant transcription program. Recent advances have revealed that KEAP1 contains multiple stress sensors and inactivation modalities, which together allow diverse cellular inputs, from oxidative stress and cellular metabolites to dysregulated autophagy, to regulate NRF2 activity. This integration of the KEAP1-NRF2 system into multiple cellular signaling and metabolic pathways places NRF2 activation as a critical regulatory node in many disease phenotypes and suggests that the pharmaceutical modulation of NRF2's cytoprotective activity will be beneficial for human health in a broad range of noncommunicable diseases.
Collapse
|
28
|
Akin-Bali DF, Eroglu T, Ilk S, Egin Y, Kankilic T. Evaluation of the role of Nrf2/Keap1 pathway-associated novel mutations and gene expression on antioxidant status in patients with deep vein thrombosis. Exp Ther Med 2020; 20:868-881. [PMID: 32742329 PMCID: PMC7388273 DOI: 10.3892/etm.2020.8790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Deep vein thrombosis (DVT) is a type of venous thromboembolism and a clinically complex vascular disease. Oxidative stress serves a key role in the pathogenesis of numerous cardiovascular diseases, particularly in endothelial dysfunction-associated syndromes. Nuclear factor erythroid-2-like 2(Nrf2) transcription factor is the primary regulator of antioxidant responses. The levels of reactive oxygen species (ROS) are regulated by Nrf2 and its suppressor protein Kelch-like ECH-associated protein 1 (Keap1). However, to the best of our knowledge, genetic abnormalites in the Nrf2/Keap1 pathway in DVT syndrome have not been thoroughly investigated. The aim of the present study was to investigate the association between the Nrf2/Keap1 pathway and antioxidant responses in DVT. Mutations and expression levels of genes involved in the Nrf2/Keap1 pathway were measured in 27 patients with DVT via DNA sequencing analysis and reverse transcription-quantitative PCR, respectively. The Polymorphism Phenotyping v2 program was used to identify the pathogenic mutations. Total antioxidant activity levels were determined by measuring the effect of serum samples from 27 patients with DVT on oxidation of the 2,2'-azino-bis (3-ethylbenz-thiazoline-6-sulfonic acid) system. A total of 23 mutations, including seven novel mutations, were detected in the Nrf2/Keap1 pathway in 24 (89%) of the 27 patients with DVT. Keap1 mRNA expression levels were significantly higher compared with Nrf2 expression levels in patients with DVT (P=0.02). Analysis of molecular characteristics and gene expression levels demonstrated that Nrf2/Keap1-associated mutations and total antioxidant levels can be used as precursor markers in the diagnosis of DVT.
Collapse
Affiliation(s)
- Dilara Fatma Akin-Bali
- Department of Medical Biology, Faculty of Medicine, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Tamer Eroglu
- Department of Cardiovascular Surgery, Faculty of Medicine, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Sedef Ilk
- Department of Immunology, Faculty of Medicine, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Yonca Egin
- Department of Pediatric Molecular Genetics, Faculty of Medicine, Ankara University, 06100 Ankara, Turkey
| | - Teoman Kankilic
- Department of Biotechnology, Faculty of Science Literature, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| |
Collapse
|
29
|
Ashraf-Uz-Zaman M, Bhalerao A, Mikelis CM, Cucullo L, German NA. Assessing the Current State of Lung Cancer Chemoprevention: A Comprehensive Overview. Cancers (Basel) 2020; 12:E1265. [PMID: 32429547 PMCID: PMC7281533 DOI: 10.3390/cancers12051265] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
Chemoprevention of lung cancer is thought to significantly reduce the risk of acquiring these conditions in the subpopulation of patients with underlying health issues, such as chronic obstructive pulmonary disorder and smoking-associated lung problems. Many strategies have been tested in the previous decades, with very few translating to successful clinical trials in specific subpopulations of patients. In this review, we analyze these strategies, as well as new approaches that have emerged throughout the last few years, including synthetic lethality concept and microbiome-induced regulation of lung carcinogenesis. Overall, the continuous effort in the area of lung chemoprevention is required to develop practical therapeutical approaches. Given the inconsistency of results obtained in clinical trials targeting lung cancer chemoprevention in various subgroups of patients that differ in the underlying health condition, race, and gender, we believe that individualized approaches will have more promise than generalized treatments.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
| | - Aditya Bhalerao
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nadezhda A. German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (M.A.-U.-Z.); (A.B.); (C.M.M.); (L.C.)
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
30
|
Kitakaze T, Makiyama A, Nakai R, Kimura Y, Ashida H. Kaempferol modulates TCDD- and t-BHQ-induced drug-metabolizing enzymes and luteolin enhances this effect. Food Funct 2020; 11:3668-3680. [PMID: 32301455 DOI: 10.1039/c9fo02951f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The expression of drug-metabolizing enzymes is deeply involved in chemical-induced cancer progression and prevention. The aryl hydrocarbon receptor (AhR) induces phase I, and certain phase II drug-metabolizing enzymes after the binding of ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We have previously demonstrated that luteolin inhibited TCDD-induced AhR transformation, and modulated the expression of drug-metabolizing enzymes through not only the AhR, but also the nuclear factor-erythroid-2-related factor 2 (Nrf2). We have examined the effect of kaempferol on the expression of drug-metabolizing enzymes through modulation of the AhR- and Nrf2-pathways, and the effect of co-treatment with kaempferol and luteolin. Kaempferol dose-dependently inhibited not only the TCDD-induced expression of phase I and phase II drug-metabolizing enzymes, but also the tertiary butylhydroquinone (t-BHQ)-induced expression of phase II drug-metabolizing enzymes, by modulating the AhR- and Nrf2-pathways. Co-treatment with kaempferol and luteolin enhanced the inhibitory effect on the expression of drug-metabolizing enzymes, compared with either kaempferol or luteolin alone. Moreover, co-treatment with kaempferol and luteolin increased the cellular levels of kaempferol without affecting the levels of luteolin. An in vivo study was also performed and the results demonstrated that co-treatment with kaempferol and luteolin enhanced the inhibition of benzo[a]pyrene-induced drug-metabolizing enzymes compared with either kaempferol or luteolin alone, in the liver of ICR mice. These results suggest that luteolin promoted the incorporation of kaempferol into hepatocytes and enhanced the inhibitory effect of kaempferol on chemical-induced drug-metabolizing enzymes. Thus, luteolin enhances the kaempferol-inhibited expression of drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Tomoya Kitakaze
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| | - Atsushi Makiyama
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| | - Rika Nakai
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| | - Yuki Kimura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
31
|
Liang H, Liu N, Wang R, Zhang Y, Chen J, Dai Z, Yang Y, Wu G, Wu Z. N-Acetyl Serotonin Alleviates Oxidative Damage by Activating Nuclear Factor Erythroid 2-Related Factor 2 Signaling in Porcine Enterocytes. Antioxidants (Basel) 2020; 9:antiox9040303. [PMID: 32272634 PMCID: PMC7222184 DOI: 10.3390/antiox9040303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Apoptosis of intestinal epithelial cells following oxidative stress is a major cause of mucosal barrier dysfunction and is associated with the pathogenesis of various gastrointestinal diseases. Although L-tryptophan (Trp) is known to improve intestinal integrity and function, a beneficial effect of N-acetyl serotonin (NAS), a metabolite of Trp, on the apoptosis of enterocytes and the underlying mechanisms remain largely unknown. In the present study, we showed that porcine enterocytes treated with 4-hydroxy-2-nonenal (4-HNE), a metabolite of lipid peroxidation, led to upregulation of apoptotic proteins, including Bax and cleaved caspase-3, and reduction of tight junction proteins. These effects of 4-HNE were significantly abrogated by NAS. In addition, NAS reduced ROS accumulation while increasing the intracellular concentration of glutathione (GSH), and the abundance of the Nrf2 protein in the nucleus and its downstream target proteins. Importantly, these protective effects of NAS were abrogated by Atra, an inhibitor of Nrf2, indicating a dependence on Nrf2 signaling. Taken together, we demonstrated that NAS attenuated oxidative stress-induced cellular injury in porcine enterocytes by regulating Nrf2 signaling. These findings provide new insights into a functional role of NAS in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Haiwei Liang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Ning Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.L.); (R.W.); (Y.Z.); (J.C.); (Z.D.); (Y.Y.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-6273-1003
| |
Collapse
|
32
|
Aoki Y, Taniguchi Y, Matsumoto M, Matsumoto M, Ohno M, Masumura K, Sasaki S, Tsuzuki T, Yamamoto M, Nohmi T. Oxidative-stress-driven mutagenesis in the small intestine of the gpt delta mouse induced by oral administration of potassium bromate. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 850-851:503136. [PMID: 32247553 DOI: 10.1016/j.mrgentox.2020.503136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Tumorigenesis induced by oxidative stress is thought to be initiated by mutagenesis, but via an indirect mechanism. The dose-response curves for agents that act by this route usually show a threshold, for unknown reasons. To gain insight into these phenomena, we have analyzed the dose response for mutagenesis induced by the oral administration of potassium bromate, a typical oxidative-stress-generating agent, to gpt delta mice. The agent was given orally for 90 d to either Nrf2+ or Nrf2-knockout (KO) mice and mutants induced in the small intestine were analyzed. In Nrf2+mice, the mutant frequency was significantly greater than in the vehicle controls at a dose of 0.6 g/L but not at 0.2 g/L, indicating that a practical threshold for mutagenesis lies between these doses. At 0.6 g/L, the frequencies of G-to-T transversions (landmark mutations for oxidative stress) and G-to-A transitions were significantly elevated. In Nrf2-KO mice, too, the total mutant frequency was increased only at 0.6 g/L. G-to-T transversions are likely to have driven tumorigenesis in the small intestine. A site-specific G-to-T transversion at guanine (nucleotide 406) in a 5'-TGAA-3' sequence in gpt, and our primer extension reaction showed that formation of the oxidative DNA base modification 8-oxo-deoxyguanosine (8-oxo-dG) at nucleotide 406 was significantly increased at doses of 0.6 and 2 g/L in the gpt delta mice. In the Apc oncogene, guanine residues in the same or similar sequences (TGAA or AGAA) are highly substituted by thymine (G-to-T transversions) in potassium bromate-induced tumors. We propose that formation of 8-oxo-dG in the T(A)GAA sequence is an initiating event in tumor formation in the small intestine in response to oxidative stress.
Collapse
Affiliation(s)
- Yasunobu Aoki
- National Institute for Environmental Studies, Center for Health and Environmental Risk Research, Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Yosuke Taniguchi
- Kyushu University, Graduate School of Pharmaceutical Sciences, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Michiyo Matsumoto
- National Institute for Environmental Studies, Center for Health and Environmental Risk Research, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Michi Matsumoto
- National Institute for Environmental Studies, Center for Health and Environmental Risk Research, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Mizuki Ohno
- Kyushu University, Faculty of Medical Sciences, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Masumura
- National Institute of Health Sciences, Division of Genetics and Mutagenesis, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Shigeki Sasaki
- Kyushu University, Graduate School of Pharmaceutical Sciences, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Teruhisa Tsuzuki
- Kyushu University, Faculty of Medical Sciences, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masayuki Yamamoto
- Tohoku University, Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takehiko Nohmi
- National Institute of Health Sciences, Division of Genetics and Mutagenesis, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
33
|
Wang M, Li J, Zheng Y. The Potential Role of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) in Glaucoma: A Review. Med Sci Monit 2020; 26:e921514. [PMID: 31949124 PMCID: PMC6986212 DOI: 10.12659/msm.921514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a regulator of many biological processes and plays an essential role in preventing oxidation, inflammation, and fibrosis. In the past 20 years, there has been increasing research on the role of Nrf2 and oxidative stress in human glaucoma, including the roles of inflammation, trabecular meshwork cells, retinal ganglion cells, Tenon's capsule, antioxidants, fibrosis, and noncoding RNAs. Studies have shown that the upregulation of Nrf2 can reduce damage from oxidative stress in the trabecular meshwork cells and the retinal ganglion cells, reduce fibrosis in Tenon's capsule fibroblasts, which may reduce the progression of fibrosis after surgery for glaucoma. The regulatory roles of Nrf2, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and exogenous compounds on trabecular meshwork cells (TMCs) and retinal ganglion cells have also been studied. The use of Nrf2 agonists, including noncoding RNAs, control the expression of Nrf2 through signaling pathways that continue to be investigated to identify effective treatments to improve clinical outcome following surgery for glaucoma. This review of publications between 1999 and 2019 aims to focus on the potential mechanisms of Nrf2 in the occurrence and development of glaucoma and the prognosis following surgical treatment. Also, several factors that induce the expression of Nrf2 in trabecular meshwork cells, retinal ganglion cells, and human Tenon's capsule fibroblasts are discussed.
Collapse
Affiliation(s)
- Mingxuan Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
34
|
Kopacz A, Klóska D, Proniewski B, Cysewski D, Personnic N, Piechota-Polańczyk A, Kaczara P, Zakrzewska A, Forman HJ, Dulak J, Józkowicz A, Grochot-Przęczek A. Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells. Redox Biol 2020; 28:101304. [PMID: 31491600 PMCID: PMC6731384 DOI: 10.1016/j.redox.2019.101304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Premature senescence, a death escaping pathway for cells experiencing stress, is conducive to aging and cardiovascular diseases. The molecular switch between senescent and apoptotic fate remains, however, poorly recognized. Nrf2 is an important transcription factor orchestrating adaptive response to cellular stress. Here, we show that both human primary endothelial cells (ECs) and murine aortas lacking Nrf2 signaling are senescent but unexpectedly do not encounter damaging oxidative stress. Instead, they exhibit markedly increased S-nitrosation of proteins. A functional role of S-nitrosation is protection of ECs from death by inhibition of NOX4-mediated oxidative damage and redirection of ECs to premature senescence. S-nitrosation and senescence are mediated by Keap1, a direct binding partner of Nrf2, which colocalizes and precipitates with nitric oxide synthase (NOS) and transnitrosating protein GAPDH in ECs devoid of Nrf2. We conclude that the overabundance of this "unrestrained" Keap1 determines the fate of ECs by regulation of S-nitrosation and propose that Keap1/GAPDH/NOS complex may serve as an enzymatic machinery for S-nitrosation in mammalian cells.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Damian Klóska
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 30-348, Krakow, Poland
| | - Dominik Cysewski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, 02-106, Warsaw, Poland
| | - Nicolas Personnic
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Aleksandra Piechota-Polańczyk
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 30-348, Krakow, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, 30-348, Krakow, Poland
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
35
|
Murray JR, de la Vega L, Hayes JD, Duan L, Penning TM. Induction of the Antioxidant Response by the Transcription Factor NRF2 Increases Bioactivation of the Mutagenic Air Pollutant 3-Nitrobenzanthrone in Human Lung Cells. Chem Res Toxicol 2019; 32:2538-2551. [PMID: 31746589 PMCID: PMC6934363 DOI: 10.1021/acs.chemrestox.9b00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
3-Nitrobenzanthrone (3-NBA) is a suspected human carcinogen present in diesel exhaust. It requires metabolic activation via nitroreduction in order to form DNA adducts and promote mutagenesis. We have determined that human aldo-keto reductases (AKR1C1-1C3) and NAD(P)H:quinone oxidoreductase 1 (NQO1) contribute equally to the nitroreduction of 3-NBA in lung epithelial cell lines and collectively represent 50% of the nitroreductase activity. The genes encoding these enzymes are induced by the transcription factor NF-E2 p45-related factor 2 (NRF2), which raises the possibility that NRF2 activation exacerbates 3-NBA toxification. Since A549 cells possess constitutively active NRF2, we examined the effect of heterozygous (NRF2-Het) and homozygous NRF2 knockout (NRF2-KO) by CRISPR-Cas9 gene editing on the activation of 3-NBA. To evaluate whether NRF2-mediated gene induction increases 3-NBA activation, we examined the effects of NRF2 activators in immortalized human bronchial epithelial cells (HBEC3-KT). Changes in AKR1C1-1C3 and NQO1 expression by NRF2 knockout or use of NRF2 activators were confirmed by qPCR, immunoblots, and enzyme activity assays. We observed decreases in 3-NBA activation in the A549 NRF2 KO cell lines (53% reduction in A549 NRF2-Het cells and 82% reduction in A549 NRF2-KO cells) and 40-60% increases in 3-NBA bioactivation due to NRF2 activators in HBEC3-KT cells. Together, our data suggest that activation of the transcription factor NRF2 exacerbates carcinogen metabolism following exposure to diesel exhaust which may lead to an increase in 3-NBA-derived DNA adducts.
Collapse
Affiliation(s)
- Jessica R. Murray
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland U.K
| | - John D. Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland U.K
| | - Ling Duan
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Trevor M. Penning
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
36
|
Saif-Elnasr M, Abdel Fattah SM, Swailam HM. Treatment of hepatotoxicity induced by γ-radiation using platelet-rich plasma and/or low molecular weight chitosan in experimental rats. Int J Radiat Biol 2019; 95:1517-1528. [PMID: 31290709 DOI: 10.1080/09553002.2019.1642538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
Background and aim: Platelet-rich plasma (PRP) is rich in growth factors and plays an important role in tissue healing and cytoprotection. Also, it has been proved that low molecular weight chitosan (LMC) possesses many outstanding health benefits. The aim of this study was to assess the possibility of using PRP and/or fungal LMC to treat hepatotoxicity induced by γ-radiation in albino rats.Materials and methods: Forty-eight adult male albino rats were randomly divided into eight groups. Group I (control), Group II (PRP alone), Group III (LMC alone), Group IV (PRP + LMC), Group V (γ-irradiated alone), Group VI (γ-irradiated + PRP), Group VII (γ-irradiated + LMC), and Group VIII (γ-irradiated + PRP + LMC). The irradiated rats were whole body exposed to γ-radiation (8 Gy) as fractionated doses (2 Gy) twice a week for 2 consecutive weeks. The treated groups received PRP (0.5 mL/kg body weight, s.c.) and/or LMC (10 mg/kg body weight, s.c.) 2 days a week 1 h after every dose of γ-radiation and continued for another week after the last dose of radiation. Serum alanine transaminase (ALT) and aspartate transaminase (AST) activities, as well as reduced glutathione (GSH) content, malondialdehyde (MDA), total antioxidant capacity (TAC), and nuclear factor erythroid 2-related factor 2 (Nrf2) levels in the liver tissue and relative expression of microRNA-21 (miR-21) in serum were measured, in addition to histopathological examination.Results: Exposure of rats to γ-radiation resulted in a significant increase in serum ALT and AST activities, hepatic MDA levels, and serum miR-21 relative expression, along with a significant decrease in hepatic GSH content, TAC, and Nrf2 levels. Treatment with PRP and/or fungal LMC after exposure to γ-radiation ameliorated these parameters and improved the histopathological changes induced by γ-radiation.Conclusions: The results demonstrated that PRP and/or LMC inhibited γ-radiation-induced hepatotoxicity and using both of them together seems more effective. They can be a candidate to be studied toward the development of a therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Mostafa Saif-Elnasr
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Salma M Abdel Fattah
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hesham M Swailam
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
37
|
Liu X, Wang J, Fan Y, Xu Y, Xie M, Yuan Y, Li H, Qian X. Particulate Matter Exposure History Affects Antioxidant Defense Response of Mouse Lung to Haze Episodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9789-9799. [PMID: 31328514 DOI: 10.1021/acs.est.9b01068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Few studies have focused on the association between previous particulate matter (PM) exposure and antioxidant defense response to a haze challenge. In this study, a combined exposure model was used to investigate whether and how PM exposure history affected the antioxidant defense response to haze episodes. At first, C57BL/6 male mice were randomly assigned to three groups and exposed for 5 weeks to whole ambient air, ambient air containing a low (≤75 μg/m3) PM concentration, and filtered air, which simulated different exposure history of high, relatively low, and almost zero PM concentrations. Thereafter, all mice underwent a 3-day haze exposure followed by a 7-day exposure to filtered air. The indexes involved in the primary and secondary antioxidant defense response were determined after pre-exposure and haze exposure, as well as 1 day, 3 days, and 7 days after haze exposure. Our research demonstrated repeated exposure to a high PM concentration compromised the antioxidant defense response and was accompanied by an increased susceptibility to a haze challenge. Conversely, mice with a lower PM exposure developed an oxidative stress adaption that protected them against haze challenge more efficiently and in a more timely manner than was the case in mice without PM exposure history.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
- Huaiyin Institute of Technology , School of Chemical Engineering , Huaian 223001 , P. R. China
| | - Jinhua Wang
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Xu
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Mengxing Xie
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Yu Yuan
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
| | - Huiming Li
- School of Environment , Nanjing Normal University , Nanjing 210023 , P. R. China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resources Reuse , School of the Environment, Nanjing University , Nanjing 210023 , P. R. China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET) , Nanjing University of Information Science & Technology , Nanjing 210044 , P. R. China
| |
Collapse
|
38
|
Aoki Y, Nakajima D, Matsumoto M, Yagishita M, Matsumoto M, Yanagisawa R, Goto S, Masumura K, Nohmi T. Change over time of the mutagenicity in the lungs of gpt delta transgenic mice by extract of airborne particles collected from ambient air in the Tokyo metropolitan area. Genes Environ 2018; 40:25. [PMID: 30519368 PMCID: PMC6263556 DOI: 10.1186/s41021-018-0113-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/30/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Previously we found that DNA adducts were accumulated in the lungs of the rats exposed to ambient air in the Tokyo metropolitan area. To examine chronological change in in vivo mutagenicity of airborne particles, extracts produced from samples of total suspended particulates (TSP) collected from urban air in 1980, 1990, and 2010 in the Tokyo metropolitan area were intratracheally administered into the lungs of gpt delta mice, and differences in mutation and mutant frequency were determined by using the gpt assay. In vivo mutations induced by the extracts were characterized and mutation hotspots were identified by DNA sequencing of the mutated gpt gene. RESULTS Administration of the 1990 extract at a dose of 0.3 mg/animal significantly elevated total mutant frequency to 3.3-times that in vehicle control, and the in vivo mutagenicity of the extract (induced mutation frequency per milligram extract) was estimated to be 2.0- and 2.4-times higher than that of the 2010 and 1980 extract, respectively. G-to-A transition was the most common base substitution in the vehicle control mice. However, administration of the 1990 extract increased the frequency of G-to-T transversion, which is a landmark base substitution induced by oxidative stress; furthermore, when the extract was administered at a dose of 0.15 mg, the mutant and mutation frequencies of G-to-T transversion were significantly increased to frequencies comparable with those of G-to-A transition. Similar increases in the mutant and mutation frequencies of G-to-T transversion were observed after administration of the 2010 extract. Hotspots (mutation foci identified in three or more mice) of G-to-A transition mutations at nucleotides 64 and 110 were induced by the 1980, 1990, and 2010 extracts; a hotspot of G-to-T transversions at nucleotide 406 was also induced by the 2010 extract. Previously, we showed that diesel exhaust particles or their extract, as well as 1,6-dinitropyrene, administered to mice induced these hotspots of G-to-A transitions. CONCLUSIONS The results of the present study suggested that mutagenesis induced by extracts produced from TSP collected in the Tokyo metropolitan area induced in vivo mutagenicity via the same mechanism underlying the induction of in vivo mutagenicity by components of diesel exhaust.
Collapse
Affiliation(s)
- Yasunobu Aoki
- National Institute for Environmental Studies, Center for Health and Environmental Risk Research, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Daisuke Nakajima
- National Institute for Environmental Studies, Center for Health and Environmental Risk Research, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Michiyo Matsumoto
- National Institute for Environmental Studies, Center for Health and Environmental Risk Research, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Mayuko Yagishita
- National Institute for Environmental Studies, Center for Health and Environmental Risk Research, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Michi Matsumoto
- National Institute for Environmental Studies, Center for Health and Environmental Risk Research, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Rie Yanagisawa
- National Institute for Environmental Studies, Center for Health and Environmental Risk Research, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Sumio Goto
- Azabu University, School of Life and Environmental Science, Sagamihara, Japan
| | - Kenichi Masumura
- National Institute of Health Sciences, Division of Genetics and Mutagenesis, Kawasaki-ku, Japan
| | - Takehiko Nohmi
- National Institute of Health Sciences, Division of Genetics and Mutagenesis, Kawasaki-ku, Japan
| |
Collapse
|
39
|
Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6208067. [PMID: 30515256 PMCID: PMC6234444 DOI: 10.1155/2018/6208067] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Virus-induced oxidative stress plays a critical role in the viral life cycle as well as the pathogenesis of viral diseases. In response to reactive oxygen species (ROS) generation by a virus, a host cell activates an antioxidative defense system for its own protection. Particularly, a nuclear factor erythroid 2p45-related factor 2 (Nrf2) pathway works in a front-line for cytoprotection and detoxification. Recently, a series of studies suggested that a group of clinically relevant viruses have the capacity for positive and negative regulations of the Nrf2 pathway. This virus-induced modulation of the host antioxidative response turned out to be a crucial determinant for the progression of several viral diseases. In this review, virus-specific examples of positive and negative modulations of the Nrf2 pathway will be summarized first. Then a number of successful genetic and pharmacological manipulations of the Nrf2 pathway for suppression of the viral replication and the pathogenesis-associated oxidative damage will be discussed later. Understanding of the interplay between virus-induced oxidative stress and antioxidative host response will aid in the discovery of potential antiviral supplements for better management of viral diseases.
Collapse
|
40
|
Iranshahy M, Iranshahi M, Abtahi SR, Karimi G. The role of nuclear factor erythroid 2-related factor 2 in hepatoprotective activity of natural products: A review. Food Chem Toxicol 2018; 120:261-276. [DOI: 10.1016/j.fct.2018.07.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
|
41
|
Fetoni AR, Zorzi V, Paciello F, Ziraldo G, Peres C, Raspa M, Scavizzi F, Salvatore AM, Crispino G, Tognola G, Gentile G, Spampinato AG, Cuccaro D, Guarnaccia M, Morello G, Van Camp G, Fransen E, Brumat M, Girotto G, Paludetti G, Gasparini P, Cavallaro S, Mammano F. Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway. Redox Biol 2018; 19:301-317. [PMID: 30199819 PMCID: PMC6129666 DOI: 10.1016/j.redox.2018.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/26/2018] [Accepted: 08/05/2018] [Indexed: 11/29/2022] Open
Abstract
Mutations in GJB2, the gene that encodes connexin 26 (Cx26), are the most common cause of sensorineural hearing impairment. The truncating variant 35delG, which determines a complete loss of Cx26 protein function, is the prevalent GJB2 mutation in several populations. Here, we generated and analyzed Gjb2+/- mice as a model of heterozygous human carriers of 35delG. Compared to control mice, auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) worsened over time more rapidly in Gjb2+/- mice, indicating they were affected by accelerated age-related hearing loss (ARHL), or presbycusis. We linked causally the auditory phenotype of Gjb2+/- mice to apoptosis and oxidative damage in the cochlear duct, reduced release of glutathione from connexin hemichannels, decreased nutrient delivery to the sensory epithelium via cochlear gap junctions and deregulated expression of genes that are under transcriptional control of the nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal regulator of tolerance to redox stress. Moreover, a statistically significant genome-wide association with two genes (PRKCE and TGFB1) related to the Nrf2 pathway (p-value < 4 × 10-2) was detected in a very large cohort of 4091 individuals, originating from Europe, Caucasus and Central Asia, with hearing phenotype (including 1076 presbycusis patients and 1290 healthy matched controls). We conclude that (i) elements of the Nrf2 pathway are essential for hearing maintenance and (ii) their dysfunction may play an important role in the etiopathogenesis of human presbycusis.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy; Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; Institute of Otolaryngology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy; Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Fabiola Paciello
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy; Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Gaia Ziraldo
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy; Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Chiara Peres
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
| | - Marcello Raspa
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
| | | | | | - Giulia Crispino
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy
| | - Gabriella Tognola
- CNR Institute of Electronics, Computer and Telecommunication Engineering, 20133 Milano, Italy
| | - Giulia Gentile
- CNR Institute of Neurological Sciences, 95126 Catania, Italy
| | | | - Denis Cuccaro
- CNR Institute of Neurological Sciences, 95126 Catania, Italy
| | | | | | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Erik Fransen
- Department of Biomedical Sciences, University of Antwerp, 2650 Antwerp, Belgium
| | - Marco Brumat
- Dept Med Surg & Hlth Sci, University of Trieste, Trieste, Italy; IRCCS Burlo Garofolo, Inst Maternal & Child Hlth, Trieste, Italy
| | - Giorgia Girotto
- Dept Med Surg & Hlth Sci, University of Trieste, Trieste, Italy; IRCCS Burlo Garofolo, Inst Maternal & Child Hlth, Trieste, Italy
| | - Gaetano Paludetti
- Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; Institute of Otolaryngology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168 Rome, Italy
| | - Paolo Gasparini
- Dept Med Surg & Hlth Sci, University of Trieste, Trieste, Italy; IRCCS Burlo Garofolo, Inst Maternal & Child Hlth, Trieste, Italy.
| | | | - Fabio Mammano
- CNR Institute of Cell Biology and Neurobiology, Monterotondo 00015, Italy; University of Padova, Department of Physics and Astronomy "G. Galilei", Padova, Italy.
| |
Collapse
|
42
|
Khurana N, Sikka SC. Targeting Crosstalk between Nrf-2, NF-κB and Androgen Receptor Signaling in Prostate Cancer. Cancers (Basel) 2018; 10:cancers10100352. [PMID: 30257470 PMCID: PMC6210752 DOI: 10.3390/cancers10100352] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 01/02/2023] Open
Abstract
Oxidative stress, inflammation and androgen receptor (AR) signaling play a pivotal role in the initiation, development and progression of prostate cancer (PCa). Numerous papers in the literature have documented the interconnection between oxidative stress and inflammation; and how antioxidants can combat the inflammation. It has been shown in the literature that both oxidative stress and inflammation regulate AR, the key receptor involved in the transition of PCa to castration resistant prostate cancer (CRPC). In this review, we discuss about the importance of targeting Nrf-2-antioxidant signaling, NF-κB inflammatory response and AR signaling in PCa. Finally, we discuss about the crosstalk between these three critical pathways as well as how the anti-inflammatory antioxidant phytochemicals like sulforaphane (SFN) and curcumin (CUR), which can also target AR, can be ideal candidates in the chemoprevention of PCa.
Collapse
Affiliation(s)
- Namrata Khurana
- Department of Internal Medicine-Medical Oncology, Washington University in St. Louis Medical Campus, 660 S Euclid Ave, St. Louis, MO 63110-1010, USA.
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine,1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
43
|
Ryoo IG, Kwak MK. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol Appl Pharmacol 2018; 359:24-33. [PMID: 30236989 DOI: 10.1016/j.taap.2018.09.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria play essential roles in cellular bioenergetics, biosynthesis, and apoptosis. During the process of respiration and oxidative phosphorylation, mitochondria utilize oxygen to generate ATP, and at the same time, there is an inevitable generation of reactive oxygen species (ROS). As excess ROS create oxidative stress and damage cells, the proper function of the antioxidant defense system is critical for eukaryotic cell survival under aerobic conditions. Nuclear factor, erythroid 2-like 2 (Nfe2l2/Nrf2) is a master transcription factor for regulating basal as well as inducible expression of multiple antioxidant proteins. Nrf2 has been involved in maintaining mitochondrial redox homeostasis by providing reduced forms of glutathione (GSH); the reducing cofactor NADPH; and mitochondrial antioxidant enzymes such as GSH peroxidase 1, superoxide dismutase 2, and peroxiredoxin 3/5. In addition, recent research advances suggest that Nrf2 contributes to mitochondrial regulation through more divergent intermolecular linkages. Nrf2 has been positively associated with mitochondrial biogenesis through the direct upregulation of mitochondrial transcription factors and is involved in the mitochondrial quality control system through mitophagy activation. Moreover, several mitochondrial proteins participate in regulating Nrf2 to form a reciprocal regulatory loop between mitochondria and Nrf2. Additionally, Nrf2 modulation in cancer cells leads to changes in the mitochondrial respiration system and cancer bioenergetics that overall affect cancer metabolism. In this review, we describe recent experimental observations on the relationship between Nrf2 and mitochondria, and further discuss the effects of Nrf2 on cancer mitochondria and metabolism.
Collapse
Affiliation(s)
- In-Geun Ryoo
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea; College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
44
|
Tang X, Wu S, Shen L, Wei Y, Cao X, Wang Y, Long C, Zhou Y, Li D, Huang F, Liu B, Wei G. Di-(2-ethylhexyl) phthalate (DEHP)-induced testicular toxicity through Nrf2-mediated Notch1 signaling pathway in Sprague-Dawley rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:720-728. [PMID: 29663635 DOI: 10.1002/tox.22559] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/14/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an environmental endocrine disruptor widely used in China that is harmful to the male reproductive system. Many studies have shown that DEHP causes testicular toxicity through oxidative stress, but the specific mechanism is unknown. Because the Notch pathway is a key mechanism for regulating cell growth and proliferation, we investigated whether Notch is involved in DEHP-induced testicular toxicity and whether vitamins E and C could rescue testicular impairment in Sprague-Dawley (SD) rats. Compared with the control group, we found that DEHP exposure induced testicular toxicity through oxidative stress injury, and it decreased the testosterone level (P < .01) and upregulated nuclear factor-erythroid 2 related factor (Nrf2) expression (P < .01). Therefore, because oxidative stress might be the initiating factor of DEHP-induced testicular toxicity, treatment with the antioxidant vitamins E and C activated the Notch1 signaling pathway in the testis and in Leydig cells. Treatment with vitamins E and C normalized the oxidative stress state after DEHP exposure and restored testicular development to be similar to the control group. In summary, antioxidant vitamins E and C may be used to treat DEHP-induced testicular toxicity.
Collapse
Affiliation(s)
- Xiangliang Tang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shengde Wu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lianju Shen
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yi Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xining Cao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yangcai Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chunlan Long
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yue Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Dian Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Fangyuan Huang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bo Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Guanghui Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
45
|
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol Rev 2018; 98:1169-1203. [PMID: 29717933 PMCID: PMC9762786 DOI: 10.1152/physrev.00023.2017] [Citation(s) in RCA: 1105] [Impact Index Per Article: 184.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2) system forms the major node of cellular and organismal defense against oxidative and electrophilic stresses of both exogenous and endogenous origins. KEAP1 acts as a cysteine thiol-rich sensor of redox insults, whereas NRF2 is a transcription factor that robustly transduces chemical signals to regulate a battery of cytoprotective genes. KEAP1 represses NRF2 activity under quiescent conditions, whereas NRF2 is liberated from KEAP1-mediated repression on exposure to stresses. The rapid inducibility of a response based on a derepression mechanism is an important feature of the KEAP1-NRF2 system. Recent studies have unveiled the complexities of the functional contributions of the KEAP1-NRF2 system and defined its broader involvement in biological processes, including cell proliferation and differentiation, as well as cytoprotection. In this review, we describe historical milestones in the initial characterization of the KEAP1-NRF2 system and provide a comprehensive overview of the molecular mechanisms governing the functions of KEAP1 and NRF2, as well as their roles in physiology and pathology. We also refer to the clinical significance of the KEAP1-NRF2 system as an important prophylactic and therapeutic target for various diseases, particularly aging-related disorders. We believe that controlled harnessing of the KEAP1-NRF2 system is a key to healthy aging and well-being in humans.
Collapse
|
46
|
Ghezzi P, Floridi L, Boraschi D, Cuadrado A, Manda G, Levic S, D'Acquisto F, Hamilton A, Athersuch TJ, Selley L. Oxidative Stress and Inflammation Induced by Environmental and Psychological Stressors: A Biomarker Perspective. Antioxid Redox Signal 2018; 28:852-872. [PMID: 28494612 DOI: 10.1089/ars.2017.7147] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE The environment can elicit biological responses such as oxidative stress (OS) and inflammation as a consequence of chemical, physical, or psychological changes. As population studies are essential for establishing these environment-organism interactions, biomarkers of OS or inflammation are critical in formulating mechanistic hypotheses. Recent Advances: By using examples of stress induced by various mechanisms, we focus on the biomarkers that have been used to assess OS and inflammation in these conditions. We discuss the difference between biomarkers that are the result of a chemical reaction (such as lipid peroxides or oxidized proteins that are a result of the reaction of molecules with reactive oxygen species) and those that represent the biological response to stress, such as the transcription factor NRF2 or inflammation and inflammatory cytokines. CRITICAL ISSUES The high-throughput and holistic approaches to biomarker discovery used extensively in large-scale molecular epidemiological exposome are also discussed in the context of human exposure to environmental stressors. FUTURE DIRECTIONS We propose to consider the role of biomarkers as signs and to distinguish between signs that are just indicators of biological processes and proxies that one can interact with and modify the disease process. Antioxid. Redox Signal. 28, 852-872.
Collapse
Affiliation(s)
- Pietro Ghezzi
- 1 Brighton & Sussex Medical School , Brighton, United Kingdom
| | - Luciano Floridi
- 2 Oxford Internet Institute, University of Oxford , Oxford, United Kingdom .,3 Alan Turing Institute , London, United Kingdom
| | - Diana Boraschi
- 4 Institute of Protein Biochemistry , National Research Council, Napoli, Italy
| | - Antonio Cuadrado
- 5 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC , Madrid, Spain .,6 Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid , Madrid, Spain
| | - Gina Manda
- 7 "Victor Babes" National Institute of Pathology , Bucharest, Romania
| | - Snezana Levic
- 1 Brighton & Sussex Medical School , Brighton, United Kingdom
| | - Fulvio D'Acquisto
- 8 William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London , London, United Kingdom
| | - Alice Hamilton
- 8 William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London , London, United Kingdom
| | - Toby J Athersuch
- 9 Department of Surgery and Cancer, Faculty of Medicine, and MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London , London, United Kingdom
| | - Liza Selley
- 9 Department of Surgery and Cancer, Faculty of Medicine, and MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London , London, United Kingdom
| |
Collapse
|
47
|
Nrf2-Keap1 signaling in oxidative and reductive stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:721-733. [PMID: 29499228 DOI: 10.1016/j.bbamcr.2018.02.010] [Citation(s) in RCA: 1028] [Impact Index Per Article: 171.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
Abstract
Nrf2 and its endogenous inhibitor, Keap1, function as a ubiquitous, evolutionarily conserved intracellular defense mechanism to counteract oxidative stress. Sequestered by cytoplasmic Keap1 and targeted to proteasomal degradation in basal conditions, in case of oxidative stress Nrf2 detaches from Keap1 and translocates to the nucleus, where it heterodimerizes with one of the small Maf proteins. The heterodimers recognize the AREs, that are enhancer sequences present in the regulatory regions of Nrf2 target genes, essential for the recruitment of key factors for transcription. In the present review we briefly introduce the Nrf2-Keap1 system and describe Nrf2 functions, illustrate the Nrf2-NF-κB cross-talk, and highlight the effects of the Nrf2-Keap1 system in the physiology and pathophysiology of striated muscle tissue taking into account its role(s) in oxidative stress and reductive stress.
Collapse
|
48
|
Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A. Nrf2, the Master Regulator of Anti-Oxidative Responses. Int J Mol Sci 2017; 18:ijms18122772. [PMID: 29261130 PMCID: PMC5751370 DOI: 10.3390/ijms18122772] [Citation(s) in RCA: 461] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/11/2017] [Accepted: 12/16/2017] [Indexed: 12/15/2022] Open
Abstract
Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2). Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development.
Collapse
Affiliation(s)
- Sandra Vomund
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Anne Schäfer
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Andreas von Knethen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
49
|
Brod JM, Demasi APD, Montalli VA, Teixeira LN, Furuse C, Aguiar MC, Soares AB, Sperandio M, Araujo VC. Nrf2-peroxiredoxin I axis in polymorphous adenocarcinoma is associated with low matrix metalloproteinase 2 level. Virchows Arch 2017; 471:793-798. [DOI: 10.1007/s00428-017-2218-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022]
|
50
|
Pandey P, Singh AK, Singh M, Tewari M, Shukla HS, Gambhir IS. The see-saw of Keap1-Nrf2 pathway in cancer. Crit Rev Oncol Hematol 2017; 116:89-98. [DOI: 10.1016/j.critrevonc.2017.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/28/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
|