1
|
Luiselli J, Rouzaud-Cornabas J, Lartillot N, Beslon G. Genome Streamlining: Effect of Mutation Rate and Population Size on Genome Size Reduction. Genome Biol Evol 2024; 16:evae250. [PMID: 39566106 DOI: 10.1093/gbe/evae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
Genome streamlining, i.e. genome size reduction, is observed in bacteria with very different life traits, including endosymbiotic bacteria and several marine bacteria, raising the question of its evolutionary origin. None of the hypotheses proposed in the literature is firmly established, mainly due to the many confounding factors related to the diverse habitats of species with streamlined genomes. Computational models may help overcome these difficulties and rigorously test hypotheses. In this work, we used Aevol, a platform designed to study the evolution of genome architecture, to test 2 main hypotheses: that an increase in population size (N) or mutation rate (μ) could cause genome reduction. In our experiments, both conditions lead to streamlining but have very different resulting genome structures. Under increased population sizes, genomes lose a significant fraction of noncoding sequences but maintain their coding size, resulting in densely packed genomes (akin to streamlined marine bacteria genomes). By contrast, under an increased mutation rate, genomes lose both coding and noncoding sequences (akin to endosymbiotic bacteria genomes). Hence, both factors lead to an overall reduction in genome size, but the coding density of the genome appears to be determined by N×μ. Thus, a broad range of genome size and density can be achieved by different combinations of N and μ. Our results suggest that genome size and coding density are determined by the interplay between selection for phenotypic adaptation and selection for robustness.
Collapse
Affiliation(s)
- Juliette Luiselli
- INSA-Lyon, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205, Lyon 69621, France
- Beagle Team, Inria Lyon La Doua, Villeurbanne, France
| | - Jonathan Rouzaud-Cornabas
- INSA-Lyon, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205, Lyon 69621, France
- Beagle Team, Inria Lyon La Doua, Villeurbanne, France
| | - Nicolas Lartillot
- Laboratoire de Biométrie et de Biologie Évolutive UMR CNRS 5558, Université Claude Bernard Lyon 1, Université Lyon 1, Villeurbanne, France
| | - Guillaume Beslon
- INSA-Lyon, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205, Lyon 69621, France
- Beagle Team, Inria Lyon La Doua, Villeurbanne, France
| |
Collapse
|
2
|
Zavala B, Dineen L, Fisher KJ, Opulente DA, Harrison MC, Wolters JF, Shen XX, Zhou X, Groenewald M, Hittinger CT, Rokas A, LaBella AL. Genomic factors shaping codon usage across the Saccharomycotina subphylum. G3 (BETHESDA, MD.) 2024; 14:jkae207. [PMID: 39213398 PMCID: PMC11540330 DOI: 10.1093/g3journal/jkae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Codon usage bias, or the unequal use of synonymous codons, is observed across genes, genomes, and between species. It has been implicated in many cellular functions, such as translation dynamics and transcript stability, but can also be shaped by neutral forces. We characterized codon usage across 1,154 strains from 1,051 species from the fungal subphylum Saccharomycotina to gain insight into the biases, molecular mechanisms, evolution, and genomic features contributing to codon usage patterns. We found a general preference for A/T-ending codons and correlations between codon usage bias, GC content, and tRNA-ome size. Codon usage bias is distinct between the 12 orders to such a degree that yeasts can be classified with an accuracy >90% using a machine learning algorithm. We also characterized the degree to which codon usage bias is impacted by translational selection. We found it was influenced by a combination of features, including the number of coding sequences, BUSCO count, and genome length. Our analysis also revealed an extreme bias in codon usage in the Saccharomycodales associated with a lack of predicted arginine tRNAs that decode CGN codons, leaving only the AGN codons to encode arginine. Analysis of Saccharomycodales gene expression, tRNA sequences, and codon evolution suggests that avoidance of the CGN codons is associated with a decline in arginine tRNA function. Consistent with previous findings, codon usage bias within the Saccharomycotina is shaped by genomic features and GC bias. However, we find cases of extreme codon usage preference and avoidance along yeast lineages, suggesting additional forces may be shaping the evolution of specific codons.
Collapse
Affiliation(s)
- Bryan Zavala
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Lauren Dineen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Kaitlin J Fisher
- Department of Biological Sciences, SUNY Oswego, Oswego, NY 13126, USA
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin–Madison, Madison, WI 53726, USA
| | - Dana A Opulente
- Department of Biology, Villianova University, Villanova, PA 19085, USA
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - John F Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xing-Xing Shen
- Institute of Insect Sciences and Centre for Evolutionary and Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Abigail Leavitt LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28233, USA
| |
Collapse
|
3
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
4
|
Zavala B, Dineen L, Fisher KJ, Opulente DA, Harrison MC, Wolters JF, Shen XX, Zhou X, Groenewald M, Hittinger CT, Rokas A, LaBella AL. Genomic factors shaping codon usage across the Saccharomycotina subphylum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595506. [PMID: 38826271 PMCID: PMC11142207 DOI: 10.1101/2024.05.23.595506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Codon usage bias, or the unequal use of synonymous codons, is observed across genes, genomes, and between species. The biased use of synonymous codons has been implicated in many cellular functions, such as translation dynamics and transcript stability, but can also be shaped by neutral forces. The Saccharomycotina, the fungal subphylum containing the yeasts Saccharomyces cerevisiae and Candida albicans , has been a model system for studying codon usage. We characterized codon usage across 1,154 strains from 1,051 species to gain insight into the biases, molecular mechanisms, evolution, and genomic features contributing to codon usage patterns across the subphylum. We found evidence of a general preference for A/T-ending codons and correlations between codon usage bias, GC content, and tRNA-ome size. Codon usage bias is also distinct between the 12 orders within the subphylum to such a degree that yeasts can be classified into orders with an accuracy greater than 90% using a machine learning algorithm trained on codon usage. We also characterized the degree to which codon usage bias is impacted by translational selection. Interestingly, the degree of translational selection was influenced by a combination of genome features and assembly metrics that included the number of coding sequences, BUSCO count, and genome length. Our analysis also revealed an extreme bias in codon usage in the Saccharomycodales associated with a lack of predicted arginine tRNAs. The order contains 24 species, and 23 are computationally predicted to lack tRNAs that decode CGN codons, leaving only the AGN codons to encode arginine. Analysis of Saccharomycodales gene expression, tRNA sequences, and codon evolution suggests that extreme avoidance of the CGN codons is associated with a decline in arginine tRNA function. Codon usage bias within the Saccharomycotina is generally consistent with previous investigations in fungi, which show a role for both genomic features and GC bias in shaping codon usage. However, we find cases of extreme codon usage preference and avoidance along yeast lineages, suggesting additional forces may be shaping the evolution of specific codons.
Collapse
|
5
|
Wang H, Wu P, Xiong L, Kim HS, Kim JH, Ki JS. Nuclear genome of dinoflagellates: Size variation and insights into evolutionary mechanisms. Eur J Protistol 2024; 93:126061. [PMID: 38394997 DOI: 10.1016/j.ejop.2024.126061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Recent progress in high-throughput sequencing technologies has dramatically increased availability of genome data for prokaryotes and eukaryotes. Dinoflagellates have distinct chromosomes and a huge genome size, which make their genomic analysis complicated. Here, we reviewed the nuclear genomes of core dinoflagellates, focusing on the genome and cell size. Till now, the genome sizes of several dinoflagellates (more than 25) have been measured by certain methods (e.g., flow cytometry), showing a range of 3-250 pg of genomic DNA per cell. In contrast to their relatively small cell size, their genomes are huge (about 1-80 times the human haploid genome). In the present study, we collected the genome and cell size data of dinoflagellates and compared their relationships. We found that dinoflagellate genome size exhibits a positive correlation with cell size. On the other hand, we recognized that the genome size is not correlated with phylogenetic relatedness. These may be caused by genome duplication, increased gene copy number, repetitive non-coding DNA, transposon expansion, horizontal gene transfer, organelle-to-nucleus gene transfer, and/or mRNA reintegration into the genome. Ultimate verification of these factors as potential causative mechanisms would require sequencing of more dinoflagellate genomes in the future.
Collapse
Affiliation(s)
- Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Peiling Wu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Lu Xiong
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jin Ho Kim
- Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
6
|
Sproul JS, Hotaling S, Heckenhauer J, Powell A, Marshall D, Larracuente AM, Kelley JL, Pauls SU, Frandsen PB. Analyses of 600+ insect genomes reveal repetitive element dynamics and highlight biodiversity-scale repeat annotation challenges. Genome Res 2023; 33:1708-1717. [PMID: 37739812 PMCID: PMC10691545 DOI: 10.1101/gr.277387.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Repetitive elements (REs) are integral to the composition, structure, and function of eukaryotic genomes, yet remain understudied in most taxonomic groups. We investigated REs across 601 insect species and report wide variation in RE dynamics across groups. Analysis of associations between REs and protein-coding genes revealed dynamic evolution at the interface between REs and coding regions across insects, including notably elevated RE-gene associations in lineages with abundant long interspersed nuclear elements (LINEs). We leveraged this large, empirical data set to quantify impacts of long-read technology on RE detection and investigate fundamental challenges to RE annotation in diverse groups. In long-read assemblies, we detected ∼36% more REs than short-read assemblies, with long terminal repeats (LTRs) showing 162% increased detection, whereas DNA transposons and LINEs showed less respective technology-related bias. In most insect lineages, 25%-85% of repetitive sequences were "unclassified" following automated annotation, compared with only ∼13% in Drosophila species. Although the diversity of available insect genomes has rapidly expanded, we show the rate of community contributions to RE databases has not kept pace, preventing efficient annotation and high-resolution study of REs in most groups. We highlight the tremendous opportunity and need for the biodiversity genomics field to embrace REs and suggest collective steps for making progress toward this goal.
Collapse
Affiliation(s)
- John S Sproul
- Department of Biology, Brigham Young University, Provo, Utah 84602, USA;
- Department of Biology, University of Nebraska Omaha, Omaha, Nebraska 68182, USA
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, Washington 99163, USA
- Department of Watershed Sciences, Utah State University, Logan, Utah 84322, USA
| | - Jacqueline Heckenhauer
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
| | - Ashlyn Powell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 84602, USA
| | - Dez Marshall
- Department of Biology, University of Nebraska Omaha, Omaha, Nebraska 68182, USA
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington 99163, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Steffen U Pauls
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
- Department of Insect Biotechnology, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Paul B Frandsen
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 84602, USA
- Data Science Lab, Smithsonian Institution, Washington, District of Columbia 20560, USA
| |
Collapse
|
7
|
Loubalova Z, Konstantinidou P, Haase AD. Themes and variations on piRNA-guided transposon control. Mob DNA 2023; 14:10. [PMID: 37660099 PMCID: PMC10474768 DOI: 10.1186/s13100-023-00298-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are responsible for preventing the movement of transposable elements in germ cells and protect the integrity of germline genomes. In this review, we examine the common elements of piRNA-guided silencing as well as the differences observed between species. We have categorized the mechanisms of piRNA biogenesis and function into modules. Individual PIWI proteins combine these modules in various ways to produce unique PIWI-piRNA pathways, which nevertheless possess the ability to perform conserved functions. This modular model incorporates conserved core mechanisms and accommodates variable co-factors. Adaptability is a hallmark of this RNA-based immune system. We believe that considering the differences in germ cell biology and resident transposons in different organisms is essential for placing the variations observed in piRNA biology into context, while still highlighting the conserved themes that underpin this process.
Collapse
Affiliation(s)
- Zuzana Loubalova
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Astrid D Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Wang Y, Obbard DJ. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol Lett 2023; 7:216-226. [PMID: 37475753 PMCID: PMC10355183 DOI: 10.1093/evlett/qrad027] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Mutation is the ultimate source of all genetic variation, and over the last 10 years the ready availability of whole-genome sequencing has permitted direct estimation of mutation rate for many non-model species across the tree of life. In this meta-analysis, we make a comprehensive search of the literature for mutation rate estimates in eukaryotes, identifying 140 mutation accumulation (MA) and parent-offspring (PO) sequencing studies covering 134 species. Based on these data, we revisit differences in the single-nucleotide mutation (SNM) rate between different phylogenetic lineages and update the known relationships between mutation rate and generation time, genome size, and nucleotide diversity-while accounting for phylogenetic nonindependence. We do not find a significant difference between MA and PO in estimated mutation rates, but we confirm that mammal and plant lineages have higher mutation rates than arthropods and that unicellular eukaryotes have the lowest mutation rates. We find that mutation rates are higher in species with longer generation times and larger genome sizes, even when accounting for phylogenetic relationships. Moreover, although nucleotide diversity is positively correlated with mutation rate, the gradient of the relationship is significantly less than one (on a logarithmic scale), consistent with higher mutation rates in populations with smaller effective size. For the 29 species for which data are available, we find that indel mutation rates are positively correlated with nucleotide mutation rates and that short deletions are generally more common than short insertions. Nevertheless, despite recent progress, no estimates of either SNM or indel mutation rates are available for the majority of deeply branching eukaryotic lineages-or even for most animal phyla. Even among charismatic megafauna, experimental mutation rate estimates remain unknown for amphibia and scarce for reptiles and fish.
Collapse
Affiliation(s)
- Yiguan Wang
- Corresponding author: Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Zuo B, Nneji LM, Sun YB. Comparative genomics reveals insights into anuran genome size evolution. BMC Genomics 2023; 24:379. [PMID: 37415107 PMCID: PMC10324214 DOI: 10.1186/s12864-023-09499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Amphibians, particularly anurans, display an enormous variation in genome size. Due to the unavailability of whole genome datasets in the past, the genomic elements and evolutionary causes of anuran genome size variation are poorly understood. To address this, we analyzed whole-genome sequences of 14 anuran species ranging in size from 1.1 to 6.8 Gb. By annotating multiple genomic elements, we investigated the genomic correlates of anuran genome size variation and further examined whether the genome size relates to habitat types. RESULTS Our results showed that intron expansions or contraction and Transposable Elements (TEs) diversity do not contribute significantly to genome size variation. However, the recent accumulation of transposable elements (TEs) and the lack of deletion of ancient TEs primarily accounted for the evolution of anuran genome sizes. Our study showed that the abundance and density of simple repeat sequences positively correlate with genome size. Ancestral state reconstruction revealed that genome size exhibits a taxon-specific pattern of evolution, with families Bufonidae and Pipidae experiencing extreme genome expansion and contraction events, respectively. Our result showed no relationship between genome size and habitat types, although large genome-sized species are predominantly found in humid habitats. CONCLUSIONS Overall, our study identified the genomic element and their evolutionary dynamics accounting for anuran genome size variation, thus paving a path to a greater understanding of the size evolution of the genome in amphibians.
Collapse
Affiliation(s)
- Bin Zuo
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
| | - Lotanna Micah Nneji
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Yan-Bo Sun
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
10
|
Loewenthal G, Wygoda E, Nagar N, Glick L, Mayrose I, Pupko T. The evolutionary dynamics that retain long neutral genomic sequences in face of indel deletion bias: a model and its application to human introns. Open Biol 2022; 12:220223. [PMID: 36514983 PMCID: PMC9748784 DOI: 10.1098/rsob.220223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insertions and deletions (indels) of short DNA segments are common evolutionary events. Numerous studies showed that deletions occur more often than insertions in both prokaryotes and eukaryotes. It raises the question why neutral sequences are not eradicated from the genome. We suggest that this is due to a phenomenon we term border-induced selection. Accordingly, a neutral sequence is bordered between conserved regions. Deletions occurring near the borders occasionally protrude to the conserved region and are thereby subject to strong purifying selection. Thus, for short neutral sequences, an insertion bias is expected. Here, we develop a set of increasingly complex models of indel dynamics that incorporate border-induced selection. Furthermore, we show that short conserved sequences within the neutrally evolving sequence help explain: (i) the presence of very long sequences; (ii) the high variance of sequence lengths; and (iii) the possible emergence of multimodality in sequence length distributions. Finally, we fitted our models to the human intron length distribution, as introns are thought to be mostly neutral and bordered by conserved exons. We show that when accounting for the occurrence of short conserved sequences within introns, we reproduce the main features, including the presence of long introns and the multimodality of intron distribution.
Collapse
Affiliation(s)
- Gil Loewenthal
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elya Wygoda
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Natan Nagar
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lior Glick
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
11
|
Schley RJ, Pellicer J, Ge X, Barrett C, Bellot S, Guignard MS, Novák P, Suda J, Fraser D, Baker WJ, Dodsworth S, Macas J, Leitch AR, Leitch IJ. The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity. THE NEW PHYTOLOGIST 2022; 236:433-446. [PMID: 35717562 PMCID: PMC9796251 DOI: 10.1111/nph.18323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.
Collapse
Affiliation(s)
- Rowan J. Schley
- University of ExeterLaver Building, North Park RoadExeterDevonEX4 4QEUK
- Royal Botanic GardensKewSurreyTW9 3ABUK
| | - Jaume Pellicer
- Royal Botanic GardensKewSurreyTW9 3ABUK
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia sn08038BarcelonaSpain
| | - Xue‐Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhou510650China
| | - Craig Barrett
- Department of BiologyWest Virginia UniversityMorgantownWV26506USA
| | | | | | - Petr Novák
- Biology Centre, Institute of Plant Molecular BiologyCzech Academy of Sciences370 05České BudějoviceCzech Republic
| | | | | | | | - Steven Dodsworth
- School of Biological SciencesUniversity of PortsmouthPortsmouthHampshirePO1 2DYUK
| | - Jiří Macas
- Biology Centre, Institute of Plant Molecular BiologyCzech Academy of Sciences370 05České BudějoviceCzech Republic
| | | | | |
Collapse
|
12
|
Cong Y, Ye X, Mei Y, He K, Li F. Transposons and non-coding regions drive the intrafamily differences of genome size in insects. iScience 2022; 25:104873. [PMID: 36039293 PMCID: PMC9418806 DOI: 10.1016/j.isci.2022.104873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022] Open
Abstract
Genome size (GS) can vary considerably between phylogenetically close species, but the landscape of GS changes in insects remain largely unclear. To better understand the specific evolutionary factors that determine GS in insects, we examined flow cytometry-based published GS data from 1,326 insect species, spanning 700 genera, 155 families, and 21 orders. Model fitting showed that GS generally followed an Ornstein-Uhlenbeck adaptive evolutionary model in Insecta overall. Ancestral reconstruction indicated a likely GS of 1,069 Mb, suggesting that most insect clades appeared to undergo massive genome expansions or contractions. Quantification of genomic components in 56 species from nine families in four insect orders revealed that the proliferation of transposable elements contributed to high variation in GS between close species, such as within Coleoptera. This study sheds lights on the pattern of GS variation in insects and provides a better understanding of insect GS evolution.
Collapse
Affiliation(s)
- Yuyang Cong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Wang FG, Wang AH, Bai CK, Jin DM, Nie LY, Harris AJ, Che L, Wang JJ, Li SY, Xu L, Shen H, Gu YF, Shang H, Duan L, Zhang XC, Chen HF, Yan YH. Genome size evolution of the extant lycophytes and ferns. PLANT DIVERSITY 2022; 44:141-152. [PMID: 35505989 PMCID: PMC9043363 DOI: 10.1016/j.pld.2021.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 05/11/2023]
Abstract
Ferns and lycophytes have remarkably large genomes. However, little is known about how their genome size evolved in fern lineages. To explore the origins and evolution of chromosome numbers and genome size in ferns, we used flow cytometry to measure the genomes of 240 species (255 samples) of extant ferns and lycophytes comprising 27 families and 72 genera, of which 228 species (242 samples) represent new reports. We analyzed correlations among genome size, spore size, chromosomal features, phylogeny, and habitat type preference within a phylogenetic framework. We also applied ANOVA and multinomial logistic regression analysis to preference of habitat type and genome size. Using the phylogeny, we conducted ancestral character reconstruction for habitat types and tested whether genome size changes simultaneously with shifts in habitat preference. We found that 2C values had weak phylogenetic signal, whereas the base number of chromosomes (x) had a strong phylogenetic signal. Furthermore, our analyses revealed a positive correlation between genome size and chromosome traits, indicating that the base number of chromosomes (x), chromosome size, and polyploidization may be primary contributors to genome expansion in ferns and lycophytes. Genome sizes in different habitat types varied significantly and were significantly correlated with habitat types; specifically, multinomial logistic regression indicated that species with larger 2C values were more likely to be epiphytes. Terrestrial habitat is inferred to be ancestral for both extant ferns and lycophytes, whereas transitions to other habitat types occurred as the major clades emerged. Shifts in habitat types appear be followed by periods of genomic stability. Based on these results, we inferred that habitat type changes and multiple whole-genome duplications have contributed to the formation of large genomes of ferns and their allies during their evolutionary history.
Collapse
Affiliation(s)
- Fa-Guo Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ai-Hua Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China
| | - Cheng-Ke Bai
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Dong-Mei Jin
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Li-Yun Nie
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA
| | - Le Che
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Juan-Juan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shi-Yu Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lei Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hui Shen
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yu-Feng Gu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, China
- Life Science and Technology College, Harbin Normal University, Harbin, 150025, China
| | - Hui Shang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Lei Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hong-Feng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Corresponding author.
| | - Yue-Hong Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, the National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, China
- Corresponding author. The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, 518114, Shenzhen, Guangdong, China.
| |
Collapse
|
14
|
Heckenhauer J, Frandsen PB, Sproul JS, Li Z, Paule J, Larracuente AM, Maughan PJ, Barker MS, Schneider JV, Stewart RJ, Pauls SU. Genome size evolution in the diverse insect order Trichoptera. Gigascience 2022; 11:giac011. [PMID: 35217860 PMCID: PMC8881205 DOI: 10.1093/gigascience/giac011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome size is implicated in the form, function, and ecological success of a species. Two principally different mechanisms are proposed as major drivers of eukaryotic genome evolution and diversity: polyploidy (i.e., whole-genome duplication) or smaller duplication events and bursts in the activity of repetitive elements. Here, we generated de novo genome assemblies of 17 caddisflies covering all major lineages of Trichoptera. Using these and previously sequenced genomes, we use caddisflies as a model for understanding genome size evolution in diverse insect lineages. RESULTS We detect a ∼14-fold variation in genome size across the order Trichoptera. We find strong evidence that repetitive element expansions, particularly those of transposable elements (TEs), are important drivers of large caddisfly genome sizes. Using an innovative method to examine TEs associated with universal single-copy orthologs (i.e., BUSCO genes), we find that TE expansions have a major impact on protein-coding gene regions, with TE-gene associations showing a linear relationship with increasing genome size. Intriguingly, we find that expanded genomes preferentially evolved in caddisfly clades with a higher ecological diversity (i.e., various feeding modes, diversification in variable, less stable environments). CONCLUSION Our findings provide a platform to test hypotheses about the potential evolutionary roles of TE activity and TE-gene associations, particularly in groups with high species, ecological, and functional diversities.
Collapse
Affiliation(s)
- Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt 60325, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
| | - Paul B Frandsen
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt 60325, Germany
- Department of Plant & Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Smithsonian Institution, Washington, DC 20560, USA
| | - John S Sproul
- Department of Biology, University of Rochester, Rochester, NY 14620, USA
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
| | | | - Peter J Maughan
- Department of Plant & Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Julio V Schneider
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
| | - Russell J Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Steffen U Pauls
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt 60325, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt 60325, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Gießen 35390, Germany
| |
Collapse
|
15
|
Zhang FP, Zhang SB. Genome Size and Labellum Epidermal Cell Size Are Evolutionarily Correlated With Floral Longevity in Paphiopedilum Species. FRONTIERS IN PLANT SCIENCE 2021; 12:793516. [PMID: 34975981 PMCID: PMC8716874 DOI: 10.3389/fpls.2021.793516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 06/02/2023]
Abstract
Genome size is known to influence phenotypic traits in leaves and seeds. Although genome size is closely related to cellular and developmental traits across biological kingdoms, floral longevity is a floral trait with important fitness consequence, but less is known about the link between floral longevity and sizes of genomes and cells. In this study, we examined evolutionary coordination between genome size, floral longevity, and epidermal cell size in flowers and leaves in 13 Paphiopedilum species. We found that, across all the study species, the genome size was positively correlated with floral longevity but negatively associated with labellum epidermal cell size, and a negative relationship was found between floral longevity and labellum epidermal cell size. This suggested that genome size is potentially correlated with floral longevity, and genome size has an important impact on life-history trait. In addition, genome size was positively correlated with leaf epidermal cell size, which was different from the relationship in flower due to different selective pressures they experienced or different functions they performed. Therefore, genome size constraints floral longevity, and it is a strong predictor of cell size. The impact of genome size on reproduction might have more implications for the evolution of flowering plants and pollination ecology.
Collapse
Affiliation(s)
- Feng-Ping Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Moqtaderi Z, Brown S, Bender W. Genome-wide oscillations in G + C density and sequence conservation. Genome Res 2021; 31:2050-2057. [PMID: 34649930 PMCID: PMC8559709 DOI: 10.1101/gr.274332.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Eukaryotic genomes typically show a uniform G + C content among chromosomes, but on smaller scales, many species have a G + C density that fluctuates with a characteristic wavelength. This oscillation is evident in many insect species, with wavelengths ranging between 700 bp and 4 kb. Measures of evolutionary conservation oscillate in phase with G + C content, with conserved regions having higher G + C. Loci with large regulatory regions show more regular oscillations; coding sequences and heterochromatic regions show little or no oscillation. There is little oscillation in vertebrate genomes in regions with densely distributed mobile repetitive elements. However, species with few repeats show oscillation in both G + C density and sequence conservation. These oscillations may reflect optimal spacing of cis-regulatory elements.
Collapse
Affiliation(s)
- Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Susan Brown
- Department of Biology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
17
|
Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ. Exploring environmental selection on genome size in angiosperms. TRENDS IN PLANT SCIENCE 2021; 26:1039-1049. [PMID: 34219022 DOI: 10.1016/j.tplants.2021.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
Angiosperms show a remarkable range in genome size (GS), yet most species have small genomes, despite the frequency of polyploidy and repeat amplification in the ancestries of most lineages. It has been suggested that larger genomes incur costs that have driven selection for GS reduction, although the nature of these costs and how they might impact selection remain unclear. We explore potential costs of increased GS encompassing impacts on minimum cell size with consequences for photosynthesis and water-use efficiency and effects of greater nitrogen and phosphorus demands of the nucleus leading to more severe trade-offs with photosynthesis. We suggest that nutrient-, water-, and/or CO2-stressed conditions might favour species with smaller genomes, with implications for species' ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Lubna Faizullah
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Joseph A Morton
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK.
| | - Ilia J Leitch
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK.
| |
Collapse
|
18
|
Boutanaev AM. Components of Intrageneric Genome Size Dynamics in Plants and Animals. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421080032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Paule J, von Döhren J, Sagorny C, Nilsson MA. Genome Size Dynamics in Marine Ribbon Worms (Nemertea, Spiralia). Genes (Basel) 2021; 12:1347. [PMID: 34573329 PMCID: PMC8468679 DOI: 10.3390/genes12091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022] Open
Abstract
Nemertea is a phylum consisting of 1300 mostly marine species. Nemertea is distinguished by an eversible muscular proboscis, and most of the species are venomous. Genomic resources for this phylum are scarce despite their value in understanding biodiversity. Here, we present genome size estimates of Nemertea based on flow cytometry and their relationship to different morphological and developmental traits. Ancestral genome size estimations were done across the nemertean phylogeny. The results increase the available genome size estimates for Nemertea three-fold. Our analyses show that Nemertea has a narrow genome size range (0.43-3.89 pg) compared to other phyla in Lophotrochozoa. A relationship between genome size and evolutionary rate, developmental modes, and habitat was found. Trait analyses show that the highest evolutionary rate of genome size is found in upper intertidal, viviparous species with direct development. Despite previous findings, body size in nemerteans was not correlated with genome size. A relatively small genome (1.18 pg) is assumed for the most recent common ancestor of all extant nemerteans. The results provide an important basis for future studies in nemertean genomics, which will be instrumental to understanding the evolution of this enigmatic and often neglected phylum.
Collapse
Affiliation(s)
- Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany;
| | - Jörn von Döhren
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121 Bonn, Germany; (J.v.D.); (C.S.)
| | - Christina Sagorny
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, D-53121 Bonn, Germany; (J.v.D.); (C.S.)
| | - Maria A. Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Stelzer CP, Pichler M, Hatheuer A. Linking genome size variation to population phenotypic variation within the rotifer, Brachionus asplanchnoidis. Commun Biol 2021; 4:596. [PMID: 34011946 PMCID: PMC8134563 DOI: 10.1038/s42003-021-02131-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic organisms usually contain much more genomic DNA than expected from their biological complexity. In explaining this pattern, selection-based hypotheses suggest that genome size evolves through selection acting on correlated life history traits, implicitly assuming the existence of phenotypic effects of (extra) genomic DNA that are independent of its information content. Here, we present conclusive evidence of such phenotypic effects within a well-mixed natural population that shows heritable variation in genome size. We found that genome size is positively correlated with body size, egg size, and embryonic development time in a population of the monogonont rotifer Brachionus asplanchnoidis. The effect on embryonic development time was mediated partly by an indirect effect (via egg size), and a direct effect, the latter indicating an increased replication cost of the larger amounts of DNA during mitosis. Our results suggest that selection-based change of genome size can operate in this population, provided it is strong enough to overcome drift or mutational change of genome size.
Collapse
Affiliation(s)
| | - Maria Pichler
- University of Innsbruck, Mondseestr. 9, 5310, Mondsee, Austria
| | - Anita Hatheuer
- University of Innsbruck, Mondseestr. 9, 5310, Mondsee, Austria
| |
Collapse
|
21
|
Roddy AB, Alvarez-Ponce D, Roy SW. Mammals with small populations do not exhibit larger genomes. Mol Biol Evol 2021; 38:3737-3741. [PMID: 33956142 PMCID: PMC8382904 DOI: 10.1093/molbev/msab142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Genome size in cellular organisms varies by six orders of magnitude, yet the cause of this large variation remains unexplained. The influential Drift-Barrier Hypothesis proposes that large genomes tend to evolve in small populations due to inefficient selection. However, to our knowledge no explicit tests of the Drift-Barrier Hypothesis have been reported. We performed the first explicit test, by comparing estimated census population size and genome size in mammals while incorporating potential covariates and the effect of shared evolutionary history. We found a lack of correlation between census population size and genome size among 199 species of mammals. These results suggest that population size is not the predominant factor influencing genome size and that the Drift-Barrier Hypothesis should be considered provisional.
Collapse
Affiliation(s)
- Adam B Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL
| | | | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA
| |
Collapse
|
22
|
Lamichhaney S, Catullo R, Keogh JS, Clulow S, Edwards SV, Ezaz T. A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog, Platyplectrum ornatum. Proc Natl Acad Sci U S A 2021; 118:e2011649118. [PMID: 33836564 PMCID: PMC7980411 DOI: 10.1073/pnas.2011649118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The diversity of genome sizes across the tree of life is of key interest in evolutionary biology. Various correlates of variation in genome size, such as accumulation of transposable elements (TEs) or rate of DNA gain and loss, are well known, but the underlying molecular mechanisms driving or constraining genome size are poorly understood. Here, we study one of the smallest genomes among frogs characterized thus far, that of the ornate burrowing frog (Platyplectrum ornatum) from Australia, and compare it to other published frog and vertebrate genomes to examine the forces driving reduction in genome size. At ∼1.06 gigabases (Gb), the P. ornatum genome is like that of birds, revealing four major mechanisms underlying TE dynamics: reduced abundance of all major classes of TEs; increased net deletion bias in TEs; drastic reduction in intron lengths; and expansion via gene duplication of the repertoire of TE-suppressing Piwi genes, accompanied by increased expression of Piwi-interacting RNA (piRNA)-based TE-silencing pathway genes in germline cells. Transcriptomes from multiple tissues in both sexes corroborate these results and provide insight into sex-differentiation pathways in Platyplectrum Genome skimming of two closely related frog species (Lechriodus fletcheri and Limnodynastes fletcheri) confirms a reduction in TEs as a major driver of genome reduction in Platyplectrum and supports a macroevolutionary scenario of small genome size in frogs driven by convergence in life history, especially rapid tadpole development and tadpole diet. The P. ornatum genome offers a model for future comparative studies on mechanisms of genome size reduction in amphibians and vertebrates generally.
Collapse
Affiliation(s)
- Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Renee Catullo
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, Australia 2601
- Australian National Insect Collection and Future Science Platform Environomics, Commonwealth Scientific and Industrial Research Organization, Acton, ACT, Australia 2601
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, Australia 2601
| | - Simon Clulow
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia 2109
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Tariq Ezaz
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia 2617
| |
Collapse
|
23
|
Ghosh I, Saha PS, Bhowmick BK, Jha S. A phylogenetic analysis of Momordica (Cucurbitaceae) in India based on karyo-morphology, nuclear DNA content and rDNA ITS1-5.8S-ITS2 sequences. PROTOPLASMA 2021; 258:347-360. [PMID: 33083915 DOI: 10.1007/s00709-020-01576-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
The infrageneric delimitation of Momordica, a medicinally important genus of Cucurbitaceae, is ill-defined until date. Momordica chromosomes are extremely small and are difficult to stain and visualize because of the dense cytoplasmic background. We have conducted karyomorphometric analysis by EMA method in five Indian Momordica species, and the nuclear genome sizes were estimated by flow cytometry for the first time. The somatic chromosome numbers ranged from 2n = 18 to 56 in the species. We have resolved previously disputed chromosome numbers in M. cymbalaria and M. dioica as 2n = 18 (lowest) and 2n = 56, respectively. Chromosome counts in the other species were re-confirmed as 2n = 22 in M. charantia, 2n = 28 in M. cochinchinensis and 2n = 56 in M. subangulata. The largest genome size was recorded in M. cymbalaria (3.74 pg 2C-1), while the smallest size (0.72 pg 2C-1) was detected in M. charantia var. charantia. The nuclear genome sizes were analysed in comparison to chromosome numbers and total chromosome lengths of the species. Karyomorphometric indices showed comparable symmetric karyotypes in the species except in M. cymbalaria having tendency towards asymmetry. The UPGMA phenogram and principle component analysis based on nuclear DNA contents and karyomorphometric parameters demonstrated interspecies differences, intraspecific distinction within M. charantia varieties and highlighted distinction of M. cymbalaria. This study was further supported by the rDNA ITS sequence-based phylogenetic analysis which revealed the monophyletic origin of the Indian members of Momordica and clarified the intraspecies relationship among the studied members. As a whole, the study brought out new insights on species diversification within the genus Momordica in India and would benefit further studies on biosystematics and plant breeding programmes.
Collapse
Affiliation(s)
- Ipshita Ghosh
- Center of Advanced study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Partha Sarathi Saha
- Department of Botany, Sree Chaitanya College, Habra, West Bengal, 743268, India
| | - Biplab Kumar Bhowmick
- Department of Botany, Scottish Church College, 1&3, Urquhart Square, Kolkata, West Bengal, 700006, India
| | - Sumita Jha
- Center of Advanced study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
24
|
Smukowski Heil C, Patterson K, Hickey ASM, Alcantara E, Dunham MJ. Transposable Element Mobilization in Interspecific Yeast Hybrids. Genome Biol Evol 2021; 13:6141023. [PMID: 33595639 PMCID: PMC7952228 DOI: 10.1093/gbe/evab033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Barbara McClintock first hypothesized that interspecific hybridization could provide a “genomic shock” that leads to the mobilization of transposable elements (TEs). This hypothesis is based on the idea that regulation of TE movement is potentially disrupted in hybrids. However, the handful of studies testing this hypothesis have yielded mixed results. Here, we set out to identify if hybridization can increase transposition rate and facilitate colonization of TEs in Saccharomyces cerevisiae × Saccharomyces uvarum interspecific yeast hybrids. Saccharomyces cerevisiae have a small number of active long terminal repeat retrotransposons (Ty elements), whereas their distant relative S. uvarum have lost the Ty elements active in S. cerevisiae. Although the regulation system of Ty elements is known in S. cerevisiae, it is unclear how Ty elements are regulated in other Saccharomyces species, and what mechanisms contributed to the loss of most classes of Ty elements in S. uvarum. Therefore, we first assessed whether TEs could insert in the S. uvarum sub-genome of a S. cerevisiae × S. uvarum hybrid. We induced transposition to occur in these hybrids and developed a sequencing technique to show that Ty elements insert readily and nonrandomly in the S. uvarum genome. We then used an in vivo reporter construct to directly measure transposition rate in hybrids, demonstrating that hybridization itself does not alter rate of mobilization. However, we surprisingly show that species-specific mitochondrial inheritance can change transposition rate by an order of magnitude. Overall, our results provide evidence that hybridization can potentially facilitate the introduction of TEs across species boundaries and alter transposition via mitochondrial transmission, but that this does not lead to unrestrained proliferation of TEs suggested by the genomic shock theory.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Kira Patterson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Erica Alcantara
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Evans TA, Erwin JA. Retroelement-derived RNA and its role in the brain. Semin Cell Dev Biol 2020; 114:68-80. [PMID: 33229216 DOI: 10.1016/j.semcdb.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Comprising ~40% of the human genome, retroelements are mobile genetic elements which are transcribed into RNA, then reverse-transcribed into DNA and inserted into a new site in the genome. Retroelements are referred to as "genetic parasites", residing among host genes and relying on host machinery for transcription and evolutionary propagation. The healthy brain has the highest expression of retroelement-derived sequences compared to other somatic tissue, which leads to the question: how does retroelement-derived RNA influence human traits and cellular states? While the functional importance of upregulating retroelement expression in the brain is an active area of research, RNA species derived from retroelements influence both self- and host gene expression by contributing to chromatin remodeling, alternative splicing, somatic mosaicism and translational repression. Here, we review the emerging evidence that the functional importance of RNA derived from retroelements is multifaceted. Retroelements can influence organismal states through the seeding of epigenetic states in chromatin, the production of structured RNA and even catalytically active ribozymes, the generation of cytoplasmic ssDNA and RNA/DNA hybrids, the production of viral-like proteins, and the generation of somatic mutations. Comparative sequencing suggests that retroelements can contribute to intraspecies variation through these mechanisms to alter transcript identity and abundance. In humans, an increasing number of neurodevelopmental and neurodegenerative conditions are associated with dysregulated retroelements, including Aicardi-Goutieres syndrome (AGS), Rett syndrome (RTT), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS), schizophrenia (SZ), and aging. Taken together, these concepts suggest a larger functional role for RNA derived from retroelements. This review aims to define retroelement-derived RNA, discuss how it impacts the mammalian genome, as well as summarize data supporting phenotypic consequences of this unique RNA subset in the brain.
Collapse
Affiliation(s)
- Taylor A Evans
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer Ann Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Siljak-Yakovlev S, Lamy F, Takvorian N, Valentin N, Gouesbet V, Hennion F, Robert T. Genome size and chromosome number of ten plant species from Kerguelen Islands. Polar Biol 2020. [DOI: 10.1007/s00300-020-02755-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Low Base-Substitution Mutation Rate but High Rate of Slippage Mutations in the Sequence Repeat-Rich Genome of Dictyostelium discoideum. G3-GENES GENOMES GENETICS 2020; 10:3445-3452. [PMID: 32732307 PMCID: PMC7466956 DOI: 10.1534/g3.120.401578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe the rate and spectrum of spontaneous mutations for the social amoeba Dictyostelium discoideum, a key model organism in molecular, cellular, evolutionary and developmental biology. Whole-genome sequencing of 37 mutation accumulation lines of D. discoideum after an average of 1,500 cell divisions yields a base-substitution mutation rate of 2.47 × 10−11 per site per generation, substantially lower than that of most eukaryotic and prokaryotic organisms, and of the same order of magnitude as in the ciliates Paramecium tetraurelia and Tetrahymena thermophila. Known for its high genomic AT content and abundance of simple sequence repeats, we observe that base-substitution mutations in D. discoideum are highly A/T biased. This bias likely contributes both to the high genomic AT content and to the formation of simple sequence repeats in the AT-rich genome of Dictyostelium discoideum. In contrast to the situation in other surveyed unicellular eukaryotes, indel rates far exceed the base-substitution mutation rate in this organism with a high proportion of 3n indels, particularly in regions without simple sequence repeats. Like ciliates, D. discoideum has a large effective population size, reducing the power of random genetic drift, magnifying the effect of selection on replication fidelity, in principle allowing D. discoideum to evolve an extremely low base-substitution mutation rate.
Collapse
|
28
|
Blommaert J. Genome size evolution: towards new model systems for old questions. Proc Biol Sci 2020; 287:20201441. [PMID: 32842932 PMCID: PMC7482279 DOI: 10.1098/rspb.2020.1441] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Genome size (GS) variation is a fundamental biological characteristic; however, its evolutionary causes and consequences are the topic of ongoing debate. Whether GS is a neutral trait or one subject to selective pressures, and how strong these selective pressures are, may remain open questions. Fundamentally, the genomic sequences responsible for this variation directly impact the potential evolutionary outcomes and, equally, are the targets of different evolutionary pressures. For example, duplications and deletions of genic regions (large or small) can have immediate and drastic phenotypic effects, while an expansion or contraction of non-coding DNA is less likely to cause catastrophic phenotypic effects. However, in the long term, the accumulation or deletion of ncDNA is likely to have larger effects. Modern sequencing technologies are allowing for the dissection of these proximate causes, but a combination of these new technologies with more traditional evolutionary experiments and approaches could revolutionize this debate and potentially resolve many of these arguments. Here, I discuss an ambitious way forward for GS research, putting it in context of historical debates, theories and sometimes contradictory evidence, and highlighting the promise of combining new sequencing technologies and analytical developments with more traditional experimental evolution approaches.
Collapse
Affiliation(s)
- Julie Blommaert
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Boutanaev AM, Nemchinov LG. Genome Size Dynamics within Multiple Genera of Diploid Seed Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Kremer SC, Linquist S, Saylor B, Elliott TA, Gregory TR, Cottenie K. Transposable element persistence via potential genome-level ecosystem engineering. BMC Genomics 2020; 21:367. [PMID: 32429843 PMCID: PMC7236351 DOI: 10.1186/s12864-020-6763-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The nuclear genomes of eukaryotes vary enormously in size, with much of this variability attributable to differential accumulation of transposable elements (TEs). To date, the precise evolutionary and ecological conditions influencing TE accumulation remain poorly understood. Most previous attempts to identify these conditions have focused on evolutionary processes occurring at the host organism level, whereas we explore a TE ecology explanation. RESULTS As an alternative (or additional) hypothesis, we propose that ecological mechanisms occurring within the host cell may contribute to patterns of TE accumulation. To test this idea, we conducted a series of experiments using a simulated asexual TE/host system. Each experiment tracked the accumulation rate for a given type of TE within a particular host genome. TEs in this system had a net deleterious effect on host fitness, which did not change over the course of experiments. As one might expect, in the majority of experiments TEs were either purged from the genome or drove the host population to extinction. However, in an intriguing handful of cases, TEs co-existed with hosts and accumulated to very large numbers. This tended to occur when TEs achieved a stable density relative to non-TE sequences in the genome (as opposed to reaching any particular absolute number). In our model, the only way to maintain a stable density was for TEs to generate new, inactive copies at a rate that balanced with the production of active (replicating) copies. CONCLUSIONS From a TE ecology perspective, we suggest this could be interpreted as a case of ecosystem engineering within the genome, where TEs persist by creating their own "habitat".
Collapse
Affiliation(s)
- Stefan C Kremer
- School of Computer Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Stefan Linquist
- Department of Philosophy, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brent Saylor
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tyler A Elliott
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - T Ryan Gregory
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Karl Cottenie
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
31
|
Georgakopoulos-Soares I, Koh G, Momen SE, Jiricny J, Hemberg M, Nik-Zainal S. Transcription-coupled repair and mismatch repair contribute towards preserving genome integrity at mononucleotide repeat tracts. Nat Commun 2020; 11:1980. [PMID: 32332764 PMCID: PMC7181645 DOI: 10.1038/s41467-020-15901-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/27/2020] [Indexed: 01/07/2023] Open
Abstract
The mechanisms that underpin how insertions or deletions (indels) become fixed in DNA have primarily been ascribed to replication-related and/or double-strand break (DSB)-related processes. Here, we introduce a method to evaluate indels, orientating them relative to gene transcription. In so doing, we reveal a number of surprising findings: First, there is a transcriptional strand asymmetry in the distribution of mononucleotide repeat tracts in the reference human genome. Second, there is a strong transcriptional strand asymmetry of indels across 2,575 whole genome sequenced human cancers. We suggest that this is due to the activity of transcription-coupled nucleotide excision repair (TC-NER). Furthermore, TC-NER interacts with mismatch repair (MMR) under physiological conditions to produce strand bias. Finally, we show how insertions and deletions differ in their dependencies on these repair pathways. Our analytical approach reveals insights into the contribution of DNA repair towards indel mutagenesis in human cells.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Gene Koh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Academic Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, CB2 0QQ, UK
- MRC Cancer Unit, The Clinical School, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Sophie E Momen
- Academic Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, CB2 0QQ, UK
- MRC Cancer Unit, The Clinical School, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Josef Jiricny
- Institute of Molecular Life Sciences, University of Zurich and Institute of Biochemistry, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, CB2 0QQ, UK.
- MRC Cancer Unit, The Clinical School, University of Cambridge, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
32
|
Gardner JD, Laurin M, Organ CL. The relationship between genome size and metabolic rate in extant vertebrates. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190146. [PMID: 31928192 PMCID: PMC7017434 DOI: 10.1098/rstb.2019.0146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Genome size has long been hypothesized to affect the metabolic rate in various groups of animals. The mechanism behind this proposed association is the nucleotypic effect, in which large nucleus and cell sizes influence cellular metabolism through surface area-to-volume ratios. Here, we provide a review of the recent literature on the relationship between genome size and metabolic rate. We also conduct an analysis using phylogenetic comparative methods and a large sample of extant vertebrates. We find no evidence that the effect of genome size improves upon models in explaining metabolic rate variation. Not surprisingly, our results show a strong positive relationship between metabolic rate and body mass, as well as a substantial difference in metabolic rate between endothermic and ectothermic vertebrates, controlling for body mass. The presence of endothermy can also explain elevated rate shifts in metabolic rate whereas genome size cannot. We further find no evidence for a punctuated model of evolution for metabolic rate. Our results do not rule out the possibility that genome size affects cellular physiology in some tissues, but they are consistent with previous research suggesting little support for a direct functional connection between genome size and basal metabolic rate in extant vertebrates. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Jacob D. Gardner
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Michel Laurin
- Centre de Recherches sur la Paléobiologie et les Paléoenvironnements (CR2P), Centre National de la Recherche Scientifique (CNRS)/Muséum National d'Histoire Naturelle (MNHN)/Sorbonne Université, Paris, France
| | - Chris L. Organ
- Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
33
|
Ho EKH, Macrae F, Latta LC, Benner MJ, Sun C, Ebert D, Schaack S. Intraspecific Variation in Microsatellite Mutation Profiles in Daphnia magna. Mol Biol Evol 2020; 36:1942-1954. [PMID: 31077327 PMCID: PMC6934441 DOI: 10.1093/molbev/msz118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microsatellite loci (tandem repeats of short nucleotide motifs) are highly abundant in eukaryotic genomes and often used as genetic markers because they can exhibit variation both within and between populations. Although widely recognized for their mutability and utility, the mutation rates of microsatellites have only been empirically estimated in a few species, and have rarely been compared across genotypes and populations within a species. Here, we investigate the dynamics of microsatellite mutation over long- and short-time periods by quantifying the starting abundance and mutation rates for microsatellites for six different genotypes of Daphnia magna, an aquatic microcrustacean, collected from three populations (Finland, Germany, and Israel). Using whole-genome sequences of these six starting genotypes, descendent mutation accumulation (MA) lines, and large population controls (non-MA lines), we find each genotype exhibits a distinctive initial microsatellite profile which clusters according to the population-of-origin. During the period of MA, we observe motif-specific, highly variable, and rapid microsatellite mutation rates across genotypes of D. magna, the average of which is order of magnitude greater than the recently reported rate observed in a single genotype of the congener, Daphnia pulex. In our experiment, genotypes with more microsatellites starting out exhibit greater losses and those with fewer microsatellites starting out exhibit greater gains—a context-dependent mutation bias that has not been reported previously. We discuss how genotype-specific mutation rates and spectra, in conjunction with evolutionary forces, can shape both the differential accumulation of repeat content in the genome and the evolution of mutation rates.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Biology, Reed College, Portland, OR
| | | | - Leigh C Latta
- Department of Biology, Reed College, Portland, OR
- Division of Natural Sciences and Mathematics, Lewis-Clark State College, Lewiston, ID
| | | | - Cheng Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR
- Corresponding author: E-mail:
| |
Collapse
|
34
|
Stelzer CP, Pichler M, Stadler P, Hatheuer A, Riss S. Within-Population Genome Size Variation is Mediated by Multiple Genomic Elements That Segregate Independently during Meiosis. Genome Biol Evol 2019; 11:3424-3435. [PMID: 31742335 PMCID: PMC7145553 DOI: 10.1093/gbe/evz253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 01/14/2023] Open
Abstract
Within-species variation in genome size has been documented in many animals and plants. Despite its importance for understanding eukaryotic genome diversity, there is only sparse knowledge about how individual-level processes mediate genome size variation in populations. Here, we study a natural population of the rotifer Brachionus asplanchnoidis whose members differ up to 1.9-fold in diploid genome size, but were still able to interbreed and produce viable offspring. We show that genome size is highly heritable and can be artificially selected up or down, but not below a certain basal diploid genome size for this species. Analyses of segregation patterns in haploid males reveal that large genomic elements (several megabases in size) provide the substrate of genome size variation. These elements, and their segregation patterns, explain the generation of new genome size variants, the short-term evolutionary potential of genome size change in populations, and some seemingly paradoxical patterns, like an increase in genome size variation among highly inbred lines. Our study suggests that a conceptual model involving only two variables, 1) a basal genome size of the population, and 2) a vector containing information on additional elements that may increase genome size in this population (size, number, and meiotic segregation behavior), can effectively address most scenarios of short-term evolutionary change of genome size in a population.
Collapse
Affiliation(s)
- Claus-Peter Stelzer
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Maria Pichler
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Peter Stadler
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Anita Hatheuer
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Simone Riss
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
35
|
Barton HJ, Zeng K. The Impact of Natural Selection on Short Insertion and Deletion Variation in the Great Tit Genome. Genome Biol Evol 2019; 11:1514-1524. [PMID: 30924871 PMCID: PMC6543879 DOI: 10.1093/gbe/evz068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Insertions and deletions (INDELs) remain understudied, despite being the most common form of genetic variation after single nucleotide polymorphisms. This stems partly from the challenge of correctly identifying the ancestral state of an INDEL and thus identifying it as an insertion or a deletion. Erroneously assigned ancestral states can skew the site frequency spectrum, leading to artificial signals of selection. Consequently, the selective pressures acting on INDELs are, at present, poorly resolved. To tackle this issue, we have recently published a maximum likelihood approach to estimate the mutation rate and the distribution of fitness effects for INDELs. Our approach estimates and controls for the rate of ancestral state misidentification, overcoming issues plaguing previous INDEL studies. Here, we apply the method to INDEL polymorphism data from ten high coverage (∼44×) European great tit (Parus major) genomes. We demonstrate that coding INDELs are under strong purifying selection with a small proportion making it into the population (∼4%). However, among fixed coding INDELs, 71% of insertions and 86% of deletions are fixed by positive selection. In noncoding regions, we estimate ∼80% of insertions and ∼52% of deletions are effectively neutral, the remainder show signatures of purifying selection. Additionally, we see evidence of linked selection reducing INDEL diversity below background levels, both in proximity to exons and in areas of low recombination.
Collapse
Affiliation(s)
- Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| |
Collapse
|
36
|
Hjelmen CE, Blackmon H, Holmes VR, Burrus CG, Johnston JS. Genome Size Evolution Differs Between Drosophila Subgenera with Striking Differences in Male and Female Genome Size in Sophophora. G3 (BETHESDA, MD.) 2019; 9:3167-3179. [PMID: 31358560 PMCID: PMC6778784 DOI: 10.1534/g3.119.400560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
Genome size varies across the tree of life, with no clear correlation to organismal complexity or coding sequence, but with differences in non-coding regions. Phylogenetic methods have recently been incorporated to further disentangle this enigma, yet most of these studies have focused on widely diverged species. Few have compared patterns of genome size change in closely related species with known structural differences in the genome. As a consequence, the relationship between genome size and differences in chromosome number or inter-sexual differences attributed to XY systems are largely unstudied. We hypothesize that structural differences associated with chromosome number and X-Y chromosome differentiation, should result in differing rates and patterns of genome size change. In this study, we utilize the subgenera within the Drosophila to ask if patterns and rates of genome size change differ between closely related species with differences in chromosome numbers and states of the XY system. Genome sizes for males and females of 152 species are used to answer these questions (with 92 newly added or updated estimates). While we find no relationship between chromosome number and genome size or chromosome number and inter-sexual differences in genome size, we find evidence for differing patterns of genome size change between the subgenera, and increasing rates of change throughout time. Estimated shifts in rates of change in sex differences in genome size occur more often in Sophophora and correspond to known neo-sex events.
Collapse
Affiliation(s)
- Carl E Hjelmen
- Department of Biology and
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Heath Blackmon
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | | - Crystal G Burrus
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | |
Collapse
|
37
|
He Y, Tian S, Tian P. Fundamental asymmetry of insertions and deletions in genomes size evolution. J Theor Biol 2019; 482:109983. [PMID: 31445016 DOI: 10.1016/j.jtbi.2019.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 12/01/2022]
Abstract
The origin of large genomes that underlies the long standing "C-value enigma" is only partially explained by selfish DNA. We investigated insertions and deletions (indels) of nucleotides and discussed their relevance in size evolution of random biological sequences (RBS) and genomes. By developing a probabilistic model of RBS based on size evolution of expandable sites in a thought perfect genome, it was found that insertion bias engenders exponential increase of average RBS sizes. When combined with existing large segments of genome that are not subject to selection pressure (e.g. selfish DNA), such insertion bias results in explosive expansion of genomes, and therefore helps explain the "C value enigma" besides selfish DNA. Such increase of RBS size is caused by the fundamental asymmetry of indels, with insertions result in more available sites and deletions result in less deletable nucleotides. In qualitative agreement with the size distribution of known genomes, tails of RBS size distributions exhibit exponential decay with probabilities of larger RBS segments being smaller. Unsurprisingly, a slight deletion bias (higher deletions probabilities) results in a slow decrease of average RBS size and may lead to their eventual vanishing. Contrary to intuition, strictly balanced insertion and deletion results in linearly increasing instead of completely fixed RBS size. Nonetheless, such slow linear increase of average RBS sizes with time are small in magnitude and are consequently not influential on genome size evolution, and certainly not a major contributor for the "C-value enigma". Our model suggested that insertion bias of nucleotides may provide complementary explanation for large genomes besides selfish DNA. The fundamental indel asymmetry is applicable for all forms of genomic insertions and deletions. Long-lasting exponential increase of genome size present energy and material requirement that is impossible to sustain. We therefore concluded that if there were explosively accelerating expansion caused by significant effective insertion bias for any survival species, it must have occurred sporadically. Our model also provided an explanation for the observed proportional evolution of genome size.
Collapse
Affiliation(s)
- Yang He
- School of Life Sciences, Jilin University Changchun, 2699 Qianjin Street, China 130012
| | - Suyan Tian
- Division of Clinical Epidemiology, First Hospital of The Jilin University, 71 Xinmin Street, Changchun, China, 130021.
| | - Pu Tian
- School of Life Sciences and MOE Key laboratory of Molecular Enzymology and Engineering, Jilin University 2699 Qianjin Street, Changchun, China 130012.
| |
Collapse
|
38
|
Phylogeny and Evolution of RNA 3'-Nucleotidyltransferases in Bacteria. J Mol Evol 2019; 87:254-270. [PMID: 31435688 DOI: 10.1007/s00239-019-09907-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
The tRNA nucleotidyltransferases and poly(A) polymerases belong to a superfamily of nucleotidyltransferases. The amino acid sequences of a number of bacterial tRNA nucleotidyltransferases and poly(A) polymerases have been used to construct a rooted, neighbor-joining phylogenetic tree. Using information gleaned from that analysis, along with data from the rRNA-based phylogenetic tree, structural data available on a number of members of the superfamily and other biochemical information on the superfamily, it is possible to suggest a scheme for the evolution of the bacterial tRNA nucleotidyltransferases and poly(A) polymerases from ancestral species. Elements of that scheme are discussed along with questions arising from the scheme which can be explored experimentally.
Collapse
|
39
|
Long H, Miller SF, Williams E, Lynch M. Specificity of the DNA Mismatch Repair System (MMR) and Mutagenesis Bias in Bacteria. Mol Biol Evol 2019; 35:2414-2421. [PMID: 29939310 DOI: 10.1093/molbev/msy134] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mutation rate of an organism is influenced by the interaction of evolutionary forces such as natural selection and genetic drift. However, the mutation spectrum (i.e., the frequency distribution of different types of mutations) can be heavily influenced by DNA repair. Using mutation-accumulation lines of the extremophile bacterium Deinococcus radiodurans ΔmutS1 and the model soil bacterium Pseudomonas fluorescens wild-type and MMR- (Methyl-dependent Mismatch Repair-deficient) strains, we report the mutational features of these two important bacteria. We find that P. fluorescens has one of the highest MMR repair efficiencies among tested bacteria. We also discover that MMR of D. radiodurans preferentially repairs deletions, contrary to all other bacteria examined. We then, for the first time, quantify genome-wide efficiency and specificity of MMR in repairing different genomic regions and mutation types, by evaluating the P. fluorescens and D. radiodurans mutation data sets, along with previously reported ones of Bacillus subtilis subsp. subtilis, Escherichia coli, Vibrio cholerae, and V. fischeri. MMR in all six bacteria shares two general features: 1) repair efficiency is influenced by the neighboring base composition for both transitions and transversions, not limited to transversions as previously reported; and 2) MMR only recognizes indels <4 bp in length. This study demonstrates the power of mutation accumulation lines in quantifying DNA repair and mutagenesis patterns.
Collapse
Affiliation(s)
- Hongan Long
- Institute of Evolution & Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Samuel F Miller
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Emily Williams
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ
| |
Collapse
|
40
|
Affiliation(s)
| | - Elizabeth L Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
41
|
Hjelmen CE, Garrett MA, Holmes VR, Mynes M, Piron E, Johnston JS. Genome Size Evolution within and between the Sexes. J Hered 2019; 110:219-228. [PMID: 30476187 DOI: 10.1093/jhered/esy063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/21/2018] [Indexed: 02/02/2023] Open
Abstract
Genome sizes are known to vary between closely related species, but the patterns behind this variation have yet to be fully understood. Although this variation has been evaluated between species and within sexes, unknown is the extent to which this variation is driven by differentiation in sex chromosomes. To address this longstanding question, we examine the mode and tempo of genome size evolution for a total of 87 species of Drosophilidae, estimating and updating male genome size values for 44 of these species. We compare the evolution of genome size within each sex to the evolution of the differences between the sexes. Utilizing comparative phylogenetic methods, we find that male and female genome size evolution is largely a neutral process, reflective of phylogenetic relatedness between species, which supports the newly proposed accordion model for genome size change. When similarly analyzed, the difference between the sexes due to heteromorphic sex chromosomes is a dynamic process; the male-female genome size difference increases with time with or without known neo-Y events or complete loss of the Y. Observed instances of rapid change match theoretical expectations and known neo-Y and Y loss events in individual species.
Collapse
Affiliation(s)
- Carl E Hjelmen
- Department of Entomology, Texas A&M University, College Station, TX
| | - Margaret A Garrett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
| | - V Renee Holmes
- Department of Entomology, Texas A&M University, College Station, TX
| | - Melissa Mynes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
| | - Elizabeth Piron
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
| | | |
Collapse
|
42
|
Bhattachan P, Dong B. Multivariate analysis of genomic variables, effective population size, and mutation rate. BMC Res Notes 2019; 12:60. [PMID: 30683153 PMCID: PMC6347809 DOI: 10.1186/s13104-019-4097-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/19/2019] [Indexed: 11/26/2022] Open
Abstract
Objective The relationship between genomic variables (genome size, gene number, intron size, and intron number) and evolutionary forces has two implications. First, they help to unravel the mechanism underlying genome evolution. Second, they provide a solution to the debate over discrepancy between genome size variation and organismal complexity. Previously, a clear correlation between genomic variables and effective population size and mutation rate (Neu) led to an important hypothesis to consider random genetic drift as a major evolutionary force during evolution of genome size and complexity. But recent reports also support natural selection as the leading evolutionary force. As such, the debate remains unresolved. Results Here, we used a multivariate method to explore the relationship between genomic variables and Neu in order to understand the evolution of genome. Previously reported patterns between genomic variables and Neu were not observed in our multivariate study. We found only one association between intron number and Neu, but no relationships were observed between genome size, intron size, gene number, and Neu, suggesting that Neu of the organisms solely does not influence genome evolution. We, therefore, concluded that Neu influences intron evolution, while it may not be the only force that provides mechanistic insights into genome evolution and complexity. Electronic supplementary material The online version of this article (10.1186/s13104-019-4097-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Punit Bhattachan
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Bo Dong
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. .,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
43
|
Effect of Hybridization on Somatic Mutations and Genomic Rearrangements in Plants. Int J Mol Sci 2018; 19:ijms19123758. [PMID: 30486351 PMCID: PMC6320998 DOI: 10.3390/ijms19123758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
Hybridization has been routinely practiced in agriculture to enhance the crop yield. Principally, it can cause hybrid vigor where hybrid plants display increased size, biomass, fertility, and resistance to diseases, when compared to their parents. During hybridization, hybrid offspring receive a genomic shock due to mixing of distant parental genomes, which triggers a myriad of genomic rearrangements, e.g., transpositions, genome size changes, chromosomal rearrangements, and other effects on the chromatin. Recently, it has been reported that, besides genomic rearrangements, hybridization can also alter the somatic mutation rates in plants. In this review, we provide in-depth insights about hybridization triggered genomic rearrangements and somatic mutations in plants.
Collapse
|
44
|
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. Ten things you should know about transposable elements. Genome Biol 2018; 19:199. [PMID: 30454069 PMCID: PMC6240941 DOI: 10.1186/s13059-018-1577-z] [Citation(s) in RCA: 708] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes. However, the extent of their impact on genome evolution, function, and disease remain a matter of intense interrogation. The rise of genomics and large-scale functional assays has shed new light on the multi-faceted activities of TEs and implies that they should no longer be marginalized. Here, we introduce the fundamental properties of TEs and their complex interactions with their cellular environment, which are crucial to understanding their impact and manifold consequences for organismal biology. While we draw examples primarily from mammalian systems, the core concepts outlined here are relevant to a broad range of organisms.
Collapse
Affiliation(s)
- Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, Québec, H3A 0G1, Canada.
- Canadian Center for Computational Genomics, McGill University, Montréal, Québec, H3A 0G1, Canada.
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Michaël Imbeault
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Henry L Levin
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of BC, Vancouver, BC, V5Z1L3, Canada
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
45
|
Malmstrøm M, Britz R, Matschiner M, Tørresen OK, Hadiaty RK, Yaakob N, Tan HH, Jakobsen KS, Salzburger W, Rüber L. The Most Developmentally Truncated Fishes Show Extensive Hox Gene Loss and Miniaturized Genomes. Genome Biol Evol 2018; 10:1088-1103. [PMID: 29684203 PMCID: PMC5906920 DOI: 10.1093/gbe/evy058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
The world’s smallest fishes belong to the genus Paedocypris. These miniature fishes are endemic to an extreme habitat: the peat swamp forests in Southeast Asia, characterized by highly acidic blackwater. This threatened habitat is home to a large array of fishes, including a number of miniaturized but also developmentally truncated species. Especially the genus Paedocypris is characterized by profound, organism-wide developmental truncation, resulting in sexually mature individuals of <8 mm in length with a larval phenotype. Here, we report on evolutionary simplification in the genomes of two species of the dwarf minnow genus Paedocypris using whole-genome sequencing. The two species feature unprecedented Hox gene loss and genome reduction in association with their massive developmental truncation. We also show how other genes involved in the development of musculature, nervous system, and skeleton have been lost in Paedocypris, mirroring its highly progenetic phenotype. Further, our analyses suggest two mechanisms responsible for the genome streamlining in Paedocypris in relation to other Cypriniformes: severe intron shortening and reduced repeat content. As the first report on the genomic sequence of a vertebrate species with organism-wide developmental truncation, the results of our work enhance our understanding of genome evolution and how genotypes are translated to phenotypes. In addition, as a naturally simplified system closely related to zebrafish, Paedocypris provides novel insights into vertebrate development.
Collapse
Affiliation(s)
- Martin Malmstrøm
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway.,Zoological Institute, University of Basel, Switzerland
| | - Ralf Britz
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Michael Matschiner
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway.,Zoological Institute, University of Basel, Switzerland
| | - Ole K Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway
| | - Renny Kurnia Hadiaty
- Ichthyology Laboratory, Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Norsham Yaakob
- Forest Research Institute Malaysia (FRIM), Kepong, Selangor Darul Ehsan, Malaysia
| | - Heok Hui Tan
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| | - Kjetill Sigurd Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway
| | - Walter Salzburger
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Norway.,Zoological Institute, University of Basel, Switzerland
| | - Lukas Rüber
- Naturhistorisches Museum Bern, Switzerland.,Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Switzerland
| |
Collapse
|
46
|
Banuelos M, Sindi S. Modeling transposable element dynamics with fragmentation equations. Math Biosci 2018; 302:46-66. [DOI: 10.1016/j.mbs.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/02/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022]
|
47
|
Pasquesi GIM, Adams RH, Card DC, Schield DR, Corbin AB, Perry BW, Reyes-Velasco J, Ruggiero RP, Vandewege MW, Shortt JA, Castoe TA. Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat Commun 2018; 9:2774. [PMID: 30018307 PMCID: PMC6050309 DOI: 10.1038/s41467-018-05279-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Broad paradigms of vertebrate genomic repeat element evolution have been largely shaped by analyses of mammalian and avian genomes. Here, based on analyses of genomes sequenced from over 60 squamate reptiles (lizards and snakes), we show that patterns of genomic repeat landscape evolution in squamates challenge such paradigms. Despite low variance in genome size, squamate genomes exhibit surprisingly high variation among species in abundance (ca. 25–73% of the genome) and composition of identifiable repeat elements. We also demonstrate that snake genomes have experienced microsatellite seeding by transposable elements at a scale unparalleled among eukaryotes, leading to some snake genomes containing the highest microsatellite content of any known eukaryote. Our analyses of transposable element evolution across squamates also suggest that lineage-specific variation in mechanisms of transposable element activity and silencing, rather than variation in species-specific demography, may play a dominant role in driving variation in repeat element landscapes across squamate phylogeny. Large-scale patterns of genomic repeat element evolution have been studied mainly in birds and mammals. Here, the authors analyze the genomes of over 60 squamate reptiles and show high variation in repeat elements compared to mammals and birds, and particularly high microsatellite seeding in snakes.
Collapse
Affiliation(s)
- Giulia I M Pasquesi
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Richard H Adams
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Andrew B Corbin
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Jacobo Reyes-Velasco
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA.,Department of Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Robert P Ruggiero
- Department of Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Michael W Vandewege
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, 19122, USA
| | - Jonathan A Shortt
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, 501S. Nedderman Drive, Arlington, TX, 76019, USA.
| |
Collapse
|
48
|
Serrato-Capuchina A, Matute DR. The Role of Transposable Elements in Speciation. Genes (Basel) 2018; 9:E254. [PMID: 29762547 PMCID: PMC5977194 DOI: 10.3390/genes9050254] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
49
|
Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN, Lorant A, Quezada J, Swarts K, Yang J, Ross-Ibarra J. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genet 2018; 14:e1007162. [PMID: 29746459 PMCID: PMC5944917 DOI: 10.1371/journal.pgen.1007162] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/20/2017] [Indexed: 12/03/2022] Open
Abstract
While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes. Genome size in plants can vary by orders of magnitude, but this variation has long been considered to be of little functional consequence. Studying three independent adaptations to high altitude in Zea mays, we find that genome size experiences parallel pressures from natural selection, causing a reduction in genome size with increasing altitude. Though reductions in overall repetitive content are responsible for the genome size change, we find that only those individual loci contributing most to the variation in genome size are individually targeted by selection. To identify the phenotype influenced by genome size, we study how variation in genome size within a single wild population impacts leaf growth and cell division. We find that genome size variation correlates negatively with the rate of cell division, suggesting that individuals with larger genomes require longer to complete a mitotic cycle. Finally, we reanalyze data from maize inbreds to show that faster cell division is correlated with earlier flowering, connecting observed variation in genome size to an important adaptive phenotype.
Collapse
Affiliation(s)
- Paul Bilinski
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
- * E-mail: (PB); (JRI)
| | - Patrice S. Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jeremy J. Berg
- Center for Population Biology, University of California, Davis, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Mark N. Grote
- Department of Anthropology, University of California, Davis, Davis, California, United States of America
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Juvenal Quezada
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Kelly Swarts
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Jinliang Yang
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
- Center for Population Biology, University of California, Davis, Davis, California, United States of America
- Genome Center, University of California, Davis, Davis, California, United States of America
- * E-mail: (PB); (JRI)
| |
Collapse
|
50
|
Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN, Lorant A, Quezada J, Swarts K, Yang J, Ross-Ibarra J. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genet 2018; 14:e1007162. [PMID: 29746459 DOI: 10.1371/journal.pgen.1007162.g001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/20/2017] [Indexed: 05/23/2023] Open
Abstract
While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes.
Collapse
Affiliation(s)
- Paul Bilinski
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jeremy J Berg
- Center for Population Biology, University of California, Davis, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Mark N Grote
- Department of Anthropology, University of California, Davis, Davis, California, United States of America
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Juvenal Quezada
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Kelly Swarts
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Jinliang Yang
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
- Center for Population Biology, University of California, Davis, Davis, California, United States of America
- Genome Center, University of California, Davis, Davis, California, United States of America
| |
Collapse
|