1
|
Edwards, III DF, Pereira EA, Castro-Jorge LA, Nevarez JM, Foreman O, Spindler KR. Role of mouse adenovirus type 1 E4orf6-induced degradation of protein kinase R in pathogenesis. J Virol 2025; 99:e0154524. [PMID: 39745442 PMCID: PMC11852748 DOI: 10.1128/jvi.01545-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/17/2024] [Indexed: 02/26/2025] Open
Abstract
Protein kinase R (PKR) is an interferon-induced antiviral protein activated by autophosphorylation in response to double strand DNA (dsRNA) and other stimuli. Activated PKR causes translation inhibition and apoptosis, and it contributes to proinflammatory responses, cell growth, and differentiation. Mouse adenovirus type 1 (MAV-1) counteracts PKR by causing its degradation via a viral protein, early region 4 open reading frame 6 (E4orf6). Degradation is dependent on E4orf6 binding to Cullin 2, a component of the MAV-1 E4orf6 ubiquitin ligase. We investigated the importance of E4orf6 for induction of PKR degradation by exploiting the ability to infect the natural host with the adenovirus MAV-1. First, we used a new PKR-deficient mouse strain, PKR-TKO. PKR-TKO mouse embryo fibroblasts (MEFs) produced higher levels of MAV-1 upon infection than did wild-type (WT) MEFs. PKR-TKO mice had significantly reduced survival, and MAV-1 had a lower LD50 than in WT control mice. However, virus loads in brains and spleens, key organs infected by MAV-1, were similar between PKR-TKO and WT mice. Second, we constructed a virus, E4orf6TMC2, that has three amino acid changes in the E4orf6 domain involved in Cullin 2 binding. In cell culture infection, compared to WT virus, E4orf6TMC2 resulted in reduced PKR degradation, but its growth was equivalent to WT virus. However, E4orf6TMC2 was avirulent in three mouse strains, including the PKR-TKO mice. The results indicate that PKR is an essential antiviral protein that protects against MAV-1 infection. We confirmed that the viral E4orf6 protein is a virulence protein important for PKR degradation during virus infection, and our results suggest its function is not limited to PKR degradation.IMPORTANCEProtein kinase R (PKR) is a host protein that is central to many aspects of the cellular stress response. PKR protects against viral infection by inhibiting viral and host protein synthesis. Most animal viruses have developed ways to circumvent PKR effects by at least one of a variety of means, including inducing its degradation. A new mouse strain knocked out for PKR expression has enabled us to show the importance of PKR for protection from mouse adenovirus type 1 infection in the natural host, which is not possible for human adenoviruses. Mouse adenovirus type 1 induces degradation of PKR through an interaction with host protein Cullin 2. We generated a mutant virus that is defective in its ability to interact with Cullin 2 and showed that the virus does not cause pathogenesis in mice. This work provides critical evidence from mouse studies supporting the importance of PKR for adenovirus pathogenesis.
Collapse
Affiliation(s)
- Daniel F. Edwards, III
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Estela A. Pereira
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Luiza A. Castro-Jorge
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan M. Nevarez
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., South San Francisco, California, USA
| | - Katherine R. Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Ramnani B, Devale T, Manivannan P, Haridas A, Malathi K. DHX15 and Rig-I Coordinate Apoptosis and Innate Immune Signaling by Antiviral RNase L. Viruses 2024; 16:1913. [PMID: 39772220 PMCID: PMC11680366 DOI: 10.3390/v16121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis. In RNase L-activated cells, DHX15 interacts with Rig-I and MAVS, and cells lacking MAVS expression were resistant to apoptosis. RL RNAs induced the transcription of genes for IFN and proinflammatory cytokines by interferon regulatory factor 3 (IRF-3) and nuclear factor kB (NF-kB), while cells lacking both DHX15 and Rig-I showed a reduced induction of cytokines. However, apoptotic cell death is independent of both IRF-3 and NF-kB, suggesting that cytokine and cell death induction by RL RNAs are uncoupled. The RNA binding of both DHX15 and Rig-I is required for apoptosis induction, and the expression of both single proteins in cells lacking both DHX15 and Rig-I is insufficient to promote cell death by RL RNAs. Cell death induced by RL RNAs suppressed Coxsackievirus B3 (CVB3) replication, and inhibiting caspase-3 activity or cells lacking IRF-3 showed that the induction of apoptosis directly resulted in the CVB3 antiviral effect, and the effects were independent of the role of IRF-3.
Collapse
Affiliation(s)
- Barkha Ramnani
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; (B.R.); (T.D.); (P.M.); (A.H.)
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trupti Devale
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; (B.R.); (T.D.); (P.M.); (A.H.)
| | - Praveen Manivannan
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; (B.R.); (T.D.); (P.M.); (A.H.)
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Aiswarya Haridas
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; (B.R.); (T.D.); (P.M.); (A.H.)
| | - Krishnamurthy Malathi
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA; (B.R.); (T.D.); (P.M.); (A.H.)
| |
Collapse
|
3
|
Li MM, Tao CB, Li MF, Wu CX, Yu TT, Feng ZQ, Qing-Zhang, Jiang ZY, Mao HL, Wang SH, Xu XW, Hu CY. A molecular mechanism underlies grass carp (Ctenopharyngodon idella) TARBP2 regulating PKR-mediated cell apoptosis. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109906. [PMID: 39278379 DOI: 10.1016/j.fsi.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms in the innate immune system. The activated PKR performs its antiviral function by inhibiting protein translation and inducing apoptosis. In our previous study, we identified grass carp TARBP2 as an inhibitor of PKR activity, thereby suppressing cell apoptosis. This study aimed to explore the effects of grass carp TARBP2 on PKR activity and cell apoptosis. Grass carp TARBP2 comprises two N-terminal dsRBDs and a C-terminal C4 domain. Subcellular localization analysis conducted in CIK cells revealed that TARBP2-FL (full-length TARBP2), TARBP2-Δ1 (lack of the first dsRBD), and TARBP2-Δ2 (lack of the second dsRBD) are predominantly located in the cytoplasm, while TARBP2-Δ3 (lack of the two dsRBDs) is distributed both in the nucleus and cytoplasm. Colocalization and immunoprecipitation assays confirmed the interaction of TARBP2-FL, TARBP2-Δ1, and TARBP2-Δ2 with PKR, while TARBP2-Δ3 showed no binding. Furthermore, our findings suggested that the inhibitory effect of TARBP2-Δ1 or TARBP2-Δ2 on the PKR-eIF2α pathway is depressed compared to TARBP2-FL. In cell apoptosis assays, it was observed that TARBP2-FL inhibits PKR-mediated cell apoptosis. TARBP2-Δ1 or TARBP2-Δ2 exhibits decreased inhibition to PKR-mediated cell apoptosis, whereas TARBP2-Δ3 nearly completely loses this inhibitory effect. These findings highlight the critical importance of two dsRBDs of TARBP2 in interaction with PKR, as well as in the inhibition of PKR activity, resulting in the suppression of cell apoptosis triggered by prolonged PKR activation.
Collapse
Affiliation(s)
- Miao-Miao Li
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Chang-Bai Tao
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Mei-Feng Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chu-Xin Wu
- Yuzhang Normal University, Nanchang, 330103, China
| | - Ting-Ting Yu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Zhi-Qing Feng
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Qing-Zhang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Ze-Yin Jiang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Hui-Ling Mao
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Shang-Hong Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiao-Wen Xu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Cheng-Yu Hu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Chaumont L, Peruzzi M, Huetz F, Raffy C, Le Hir J, Minke J, Boudinot P, Collet B. Salmonid Double-stranded RNA-Dependent Protein Kinase Activates Apoptosis and Inhibits Protein Synthesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:700-717. [PMID: 39058317 DOI: 10.4049/jimmunol.2400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
dsRNA-dependent protein kinase R (PKR) is a key factor of innate immunity. It is involved in translation inhibition, apoptosis, and enhancement of the proinflammatory and IFN responses. However, how these antiviral functions are conserved during evolution remains largely unknown. Overexpression and knockout studies in a Chinook salmon (Oncorhynchus tshawytscha) cell line were conducted to assess the role of salmonid PKR in the antiviral response. Three distinct mRNA isoforms from a unique pkr gene, named pkr-fl (full length), pkr-ml (medium length) and pkr-sl (short length), were cloned and a pkr-/- clonal fish cell line was developed using CRISPR/Cas9 genome editing. PKR-FL includes an N-terminal dsRNA-binding domain and a C-terminal kinase domain, whereas PKR-ML and PKR-SL display a truncated or absent kinase domain, respectively. PKR-FL is induced during IFNA2 stimulation but not during viral hemorrhagic septicemia virus (VHSV) infection. Overexpression experiments showed that only PKR-FL possesses antiviral functions, including activation of apoptosis and inhibition of de novo protein synthesis. Knockout experiments confirmed that PKR is involved in apoptosis activation during the late stage of VHSV infection. Endogenous PKR also plays a critical role in translation inhibition upon poly(I:C) transfection after IFNA2 treatment. It is, however, not involved in translational arrest during VHSV infection. Extra- and intracellular titrations showed that endogenous PKR does not directly inhibit viral replication but apparently favors virion release into the supernatant, likely by triggering late apoptosis. Altogether, our data confirm that salmonid PKR has conserved molecular functions that VHSV appears to bypass with subversion strategies.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Mathilde Peruzzi
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - François Huetz
- Unit of Antibodies in Therapy and Pathology, UMR 1222 INSERM, Institut Pasteur, Paris, France
| | | | | | | | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
5
|
Holicek P, Guilbaud E, Klapp V, Truxova I, Spisek R, Galluzzi L, Fucikova J. Type I interferon and cancer. Immunol Rev 2024; 321:115-127. [PMID: 37667466 DOI: 10.1111/imr.13272] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Type I interferon (IFN) is a class of proinflammatory cytokines with a dual role on malignant transformation, tumor progression, and response to therapy. On the one hand, robust, acute, and resolving type I IFN responses have been shown to mediate prominent anticancer effects, reflecting not only their direct cytostatic/cytotoxic activity on (at least some) malignant cells, but also their pronounced immunostimulatory functions. In line with this notion, type I IFN signaling has been implicated in the antineoplastic effects of various immunogenic therapeutics, including (but not limited to) immunogenic cell death (ICD)-inducing agents and immune checkpoint inhibitors (ICIs). On the other hand, weak, indolent, and non-resolving type I IFN responses have been demonstrated to support tumor progression and resistance to therapy, reflecting the ability of suboptimal type I IFN signaling to mediate cytoprotective activity, promote stemness, favor tolerance to chromosomal instability, and facilitate the establishment of an immunologically exhausted tumor microenvironment. Here, we review fundamental aspects of type I IFN signaling and their context-dependent impact on malignant transformation, tumor progression, and response to therapy.
Collapse
Affiliation(s)
- Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Vanessa Klapp
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
- Sandra and Edward Meyer Cancer Center, New York, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York, USA
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
6
|
Chaumont L, Collet B, Boudinot P. Double-stranded RNA-dependent protein kinase (PKR) in antiviral defence in fish and mammals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104732. [PMID: 37172664 DOI: 10.1016/j.dci.2023.104732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms of the innate immune system. Upon binding of viral double stranded RNA, a viral Pattern Associated Molecular Pattern (PAMP), PKR gets activated and phosphorylates the eukaryotic translation initiation factor 2α (eIF2α) resulting in a protein shut-down that limits viral replication. Since its discovery in the mid-seventies, PKR has been shown to be involved in multiple important cellular processes including apoptosis, proinflammatory and innate immune responses. Viral subversion mechanisms of PKR underline its importance in the antiviral response of the host. PKR activation pathways and its mechanisms of action were previously identified and characterised mostly in mammalian models. However, fish Pkr and fish-specific paralogue Z-DNA-dependent protein kinase (Pkz) also play key role in antiviral defence. This review gives an update on the current knowledge on fish Pkr/Pkz, their conditions of activation and their implication in the immune responses to viruses, in comparison to their mammalian counterparts.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, 78350, France.
| |
Collapse
|
7
|
LeBlanc K, Lynch J, Layne C, Vendramelli R, Sloan A, Tailor N, Deschambault Y, Zhang F, Kobasa D, Safronetz D, Xiang Y, Cao J. The Nucleocapsid Proteins of SARS-CoV-2 and Its Close Relative Bat Coronavirus RaTG13 Are Capable of Inhibiting PKR- and RNase L-Mediated Antiviral Pathways. Microbiol Spectr 2023; 11:e0099423. [PMID: 37154717 PMCID: PMC10269842 DOI: 10.1128/spectrum.00994-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Coronaviruses (CoVs), including severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and SARS-CoV-2, produce double-stranded RNA (dsRNA) that activates antiviral pathways such as PKR and OAS/RNase L. To successfully replicate in hosts, viruses must evade such antiviral pathways. Currently, the mechanism of how SARS-CoV-2 antagonizes dsRNA-activated antiviral pathways is unknown. In this study, we demonstrate that the SARS-CoV-2 nucleocapsid (N) protein, the most abundant viral structural protein, is capable of binding to dsRNA and phosphorylated PKR, inhibiting both the PKR and OAS/RNase L pathways. The N protein of the bat coronavirus (bat-CoV) RaTG13, the closest relative of SARS-CoV-2, has a similar ability to inhibit the human PKR and RNase L antiviral pathways. Via mutagenic analysis, we found that the C-terminal domain (CTD) of the N protein is sufficient for binding dsRNA and inhibiting RNase L activity. Interestingly, while the CTD is also sufficient for binding phosphorylated PKR, the inhibition of PKR antiviral activity requires not only the CTD but also the central linker region (LKR). Thus, our findings demonstrate that the SARS-CoV-2 N protein is capable of antagonizing the two critical antiviral pathways activated by viral dsRNA and that its inhibition of PKR activities requires more than dsRNA binding mediated by the CTD. IMPORTANCE The high transmissibility of SARS-CoV-2 is an important viral factor defining the coronavirus disease 2019 (COVID-19) pandemic. To transmit efficiently, SARS-CoV-2 must be capable of disarming the innate immune response of its host efficiently. Here, we describe that the nucleocapsid protein of SARS-CoV-2 is capable of inhibiting two critical innate antiviral pathways, PKR and OAS/RNase L. Moreover, the counterpart of the closest animal coronavirus relative of SARS-CoV-2, bat-CoV RaTG13, can also inhibit human PKR and OAS/RNase L antiviral activities. Thus, the importance of our discovery for understanding the COVID-19 pandemic is 2-fold. First, the ability of SARS-CoV-2 N to inhibit innate antiviral activity is likely a factor contributing to the transmissibility and pathogenicity of the virus. Second, the bat relative of SARS-CoV-2 has the capacity to inhibit human innate immunity, which thus likely contributed to the establishment of infection in humans. The findings described in this study are valuable for developing novel antivirals and vaccines.
Collapse
Affiliation(s)
- Kyle LeBlanc
- Poxviruses and Vaccine Design, Division of Viral Diseases, Directorate of Science Reference and Surveillance, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Jessie Lynch
- Poxviruses and Vaccine Design, Division of Viral Diseases, Directorate of Science Reference and Surveillance, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Christine Layne
- Poxviruses and Vaccine Design, Division of Viral Diseases, Directorate of Science Reference and Surveillance, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Robert Vendramelli
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Angela Sloan
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nikesh Tailor
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yvon Deschambault
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Fushun Zhang
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Darwyn Kobasa
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - David Safronetz
- Special Pathogens, Division of Health Security and Response, Directorate of Scientific Operations and Response, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yan Xiang
- Department of Microbiology and Immunology, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jingxin Cao
- Poxviruses and Vaccine Design, Division of Viral Diseases, Directorate of Science Reference and Surveillance, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Ma B, Luo Y, Xu W, Han L, Liu W, Liao T, Yang Y, Wang Y. LINC00886 Negatively Regulates Malignancy in Anaplastic Thyroid Cancer. Endocrinology 2023; 164:7023373. [PMID: 36726346 DOI: 10.1210/endocr/bqac204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 02/03/2023]
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive type of thyroid cancer. This study aimed to identify specific long noncoding RNAs (lncRNAs) associated with ATC, and further investigated their biological functions and molecular mechanism underlying regulation of malignancy in ATC. We searched for lncRNAs associated with dedifferentiation and screened out specific lncRNAs significantly deregulated in ATC by using transcriptome data of dedifferentiation cancers from Fudan University Shanghai Cancer Center (FUSCC) and the Gene Expression Omnibus (GEO) database. The above lncRNAs were analyzed to identify a potential biomarker in thyroid cancer patients from the FUSCC, GEO, and The Cancer Genome Atlas, which was then investigated for its functional roles and molecular mechanism in ATC in vitro. The clinicopathological association analyses revealed that LINC00886 expression was significantly correlated with dedifferentiation and suppressed in ATC. In vitro, LINC00886 was confirmed to negatively regulate cell proliferation, and cell migration and invasion of ATC. LINC00886 physically interacted with protein kinase R (PKR) and affected its stability through the ubiquitin/proteasome-dependent degradation pathway in the ATC cell. Decreased PKR caused by downregulation of LINC00886 enhanced the activity of eukaryotic initiation factor 2α (eIF2α) via reducing phosphorylation of eIF2α and thus promoted protein synthesis to maintain ATC malignancy. Our findings identify LINC00886 as a novel biomarker of thyroid cancer and suggest that LINC00886/PKR/eIF2α signaling is a potential therapeutic target in ATC.
Collapse
Affiliation(s)
- Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Yi Luo
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Litao Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Wanlin Liu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Yichen Yang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
9
|
Abstract
Poxviruses have been long regarded as potent inhibitors of apoptotic cell death. More recently, they have been shown to inhibit necroptotic cell death through two distinct strategies. These strategies involve either blocking virus sensing by the host pattern recognition receptor, ZBP1 (also called DAI) or by influencing receptor interacting protein kinase (RIPK)3 signal transduction by inhibition of activation of the executioner of necroptosis, mixed lineage kinase-like protein (MLKL). Vaccinia virus E3 specifically blocks ZBP1 → RIPK3 → MLKL necroptosis, leaving virus-infected cells susceptible to the TNF death-receptor signaling (e.g., TNFR1 → FADD → RIPK1 → RIPK3 → MLKL), and, potentially, TLR3 → TRIF → RIPK3 → MLKL necroptosis. While E3 restriction of necroptosis appears to be common to many poxviruses that infect vertebrate hosts, another modulatory strategy not observed in vaccinia or variola virus manifests through subversion of MLKL activation. Recently described viral mimics of MLKL in other chordopoxviruses inhibit all three modes of necroptotic cell death. As with inhibition of apoptosis, the evolution of potentially redundant viral mechanisms to inhibit programmed necroptotic cell death emphasizes the importance of this pathway in the arms race between pathogens and their hosts.
Collapse
Affiliation(s)
- Heather S Koehler
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Vaccine Center, Atlanta, GA, 30322, USA
| | - Bertram L Jacobs
- Arizona State University, Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Tempe, AZ, 85287, USA.
| |
Collapse
|
10
|
Interferon-gamma modulates articular chondrocyte and osteoblast metabolism through protein kinase R-independent and dependent mechanisms. Biochem Biophys Rep 2022; 32:101323. [PMID: 36105611 PMCID: PMC9464860 DOI: 10.1016/j.bbrep.2022.101323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Osteoarthritis (OA) affects multiple tissues of the synovial joint and is characterised by articular cartilage degeneration and bone remodelling. Interferon-γ (IFN-γ) is implicated in osteoarthritis pathology exerting its biological effects via various mechanisms including activation of protein kinase R (PKR), which has been implicated in inflammation and arthritis. This study investigated whether treatment of articular cartilage chondrocytes and osteoblasts with IFN-γ could induce a degradative phenotype that was mediated through the PKR signalling pathway. IFN-γ treatment of chondrocytes increased transcription of key inflammatory mediators (TNF-α, IL-6), matrix degrading enzymes (MMP-13), the transcription factor STAT1, and PKR. Activation of PKR was involved in the regulation of TNF-α, IL-6, and STAT1. In osteoblasts, IFN-γ increased human and mouse STAT1, and human IL-6 through a mechanism involving PKR. ALP, COL1A1 (human and mouse), RUNX2 (mouse), and PHOSPHO1 (mouse) were decreased by IFN-γ. The number of PKR positive cells were increased in post-traumatic OA (PTOA). This study has revealed that IFN-γ propagates inflammatory and degenerative events in articular chondrocytes and osteoblasts via PKR activation. Since IFN-γ and PKR signalling are both activated in early PTOA, these mechanisms are likely to contribute to joint degeneration after injury and might offer attractive targets for therapeutic intervention. •IFN-γ treatment of chondrocytes increased transcription of TNF-α, IL-6, and STAT1 via PKR activation. •In osteoblasts, IFN-γ increased STAT1 and IL-6 via PKR activation. •The number of PKR positive cells were increased in post-traumatic OA (PTOA). •IFN-γ propagates inflammatory and degenerative events in articular chondrocytes and osteoblasts via PKR activation. •IFN-γ and PKR signalling are both activated in early PTOA and are likely to contribute to joint degeneration after injury.
Collapse
|
11
|
Phenotypic and Transcriptional Changes of Pulmonary Immune Responses in Dogs Following Canine Distemper Virus Infection. Int J Mol Sci 2022; 23:ijms231710019. [PMID: 36077417 PMCID: PMC9456005 DOI: 10.3390/ijms231710019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Canine distemper virus (CDV), a morbillivirus within the family Paramyxoviridae, is a highly contagious infectious agent causing a multisystemic, devastating disease in a broad range of host species, characterized by severe immunosuppression, encephalitis and pneumonia. The present study aimed at investigating pulmonary immune responses of CDV-infected dogs in situ using immunohistochemistry and whole transcriptome analyses by bulk RNA sequencing. Spatiotemporal analysis of phenotypic changes revealed pulmonary immune responses primarily driven by MHC-II+, Iba-1+ and CD204+ innate immune cells during acute and subacute infection phases, which paralleled pathologic lesion development and coincided with high viral loads in CDV-infected lungs. CD20+ B cell numbers initially declined, followed by lymphoid repopulation in the advanced disease phase. Transcriptome analysis demonstrated an increased expression of transcripts related to innate immunity, antiviral defense mechanisms, type I interferon responses and regulation of cell death in the lung of CDV-infected dogs. Molecular analyses also revealed disturbed cytokine responses with a pro-inflammatory M1 macrophage polarization and impaired mucociliary defense in CDV-infected lungs. The exploratory study provides detailed data on CDV-related pulmonary immune responses, expanding the list of immunologic parameters potentially leading to viral elimination and virus-induced pulmonary immunopathology in canine distemper.
Collapse
|
12
|
Crocodilepox Virus Protein 157 Is an Independently Evolved Inhibitor of Protein Kinase R. Viruses 2022; 14:v14071564. [PMID: 35891544 PMCID: PMC9318007 DOI: 10.3390/v14071564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Crocodilepox virus (CRV) belongs to the Poxviridae family and mainly infects hatchling and juvenile Nile crocodiles. Most poxviruses encode inhibitors of the host antiviral protein kinase R (PKR), which is activated by viral double-stranded (ds) RNA formed during virus replication, resulting in the phosphorylation of eIF2α and the subsequent shutdown of general mRNA translation. Because CRV lacks orthologs of known poxviral PKR inhibitors, we experimentally characterized one candidate (CRV157), which contains a predicted dsRNA-binding domain. Bioinformatic analyses indicated that CRV157 evolved independently from other poxvirus PKR inhibitors. CRV157 bound to dsRNA, co-localized with PKR in the cytosol, and inhibited PKR from various species. To analyze whether CRV157 could inhibit PKR in the context of a poxvirus infection, we constructed recombinant vaccinia virus strains that contain either CRV157, or a mutant CRV157 deficient in dsRNA binding in a strain that lacks PKR inhibitors. The presence of wild-type CRV157 rescued vaccinia virus replication, while the CRV157 mutant did not. The ability of CRV157 to inhibit PKR correlated with virus replication and eIF2α phosphorylation. The independent evolution of CRV157 demonstrates that poxvirus PKR inhibitors evolved from a diverse set of ancestral genes in an example of convergent evolution.
Collapse
|
13
|
Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, Christgen S, Zheng M, Wang Y, Samir P, Neale G, Vogel P, Kanneganti TD. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep 2021; 37:109858. [PMID: 34686350 PMCID: PMC8853634 DOI: 10.1016/j.celrep.2021.109858] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Cell death provides host defense and maintains homeostasis. Zα-containing molecules are essential for these processes. Z-DNA binding protein 1 (ZBP1) activates inflammatory cell death, PANoptosis, whereas adenosine deaminase acting on RNA 1 (ADAR1) serves as an RNA editor to maintain homeostasis. Here, we identify and characterize ADAR1's interaction with ZBP1, defining its role in cell death regulation and tumorigenesis. Combining interferons (IFNs) and nuclear export inhibitors (NEIs) activates ZBP1-dependent PANoptosis. ADAR1 suppresses this PANoptosis by interacting with the Zα2 domain of ZBP1 to limit ZBP1 and RIPK3 interactions. Adar1fl/flLysMcre mice are resistant to development of colorectal cancer and melanoma, but deletion of the ZBP1 Zα2 domain restores tumorigenesis in these mice. In addition, treating wild-type mice with IFN-γ and the NEI KPT-330 regresses melanoma in a ZBP1-dependent manner. Our findings suggest that ADAR1 suppresses ZBP1-mediated PANoptosis, promoting tumorigenesis. Defining the functions of ADAR1 and ZBP1 in cell death is fundamental to informing therapeutic strategies for cancer and other diseases.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Death
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/enzymology
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Hydrazines/pharmacology
- Interferon-gamma/pharmacology
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Necroptosis
- Pyroptosis
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/enzymology
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Triazoles/pharmacology
- Mice
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - SangJoon Lee
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Lam Nhat Nguyen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shelbi Christgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Min Zheng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yaqiu Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
14
|
Silva VAO, André ND, E Sousa TA, Alves VM, Do Carmo Kettelhut I, De Lucca FL. Nuclear PKR in retinal neurons in the early stage of diabetic retinopathy in streptozotocin‑induced diabetic rats. Mol Med Rep 2021; 24:614. [PMID: 34184090 PMCID: PMC8258468 DOI: 10.3892/mmr.2021.12253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
Retinal neuron apoptosis is a key component of diabetic retinopathy (DR), one of the most common complications of diabetes. Stress due to persistent hyperglycaemia and corresponding glucotoxicity represents one of the primary pathogenic mechanisms of diabetes and its complications. Apoptosis of retinal neurons serves a critical role in the pathogenesis of DR observed in patients with diabetes and streptozotocin (STZ)‑induced diabetic rats. Retinal neuron apoptosis occurs one month after STZ injection, which is considered the early stage of DR. The molecular mechanism involved in the suppression of retinal neuron apoptosis during the early stage of DR remains unclear. RNA‑dependent protein kinase (PKR) is a stress‑sensitive pro‑apoptotic kinase. Our previous study indicated that PKR‑associated protein X, a stress‑sensitive activator of PKR, is upregulated in the early stage of STZ‑induced diabetes. In order to assess the role of PKR in DR prior to apoptosis of retinal neurons, immunofluorescence and western blotting were performed to investigate the cellular localization and expression of PKR in the retina in the early stage of STZ‑induced diabetes in rats. PKR activity was indirectly assessed by expression levels of phosphorylated eukaryotic translation initiation factor 2α (p‑eIF2‑α) and the presence of apoptotic cells in the retina was investigated by TUNEL assay. The findings revealed that PKR was localized in the nucleus of retinal ganglion and inner nuclear layer cells from normal and diabetic rats. To the best of our knowledge, the present study is the first to demonstrate nuclear localization of PKR in retinal neurons. Immunofluorescence analysis demonstrated that PKR was expressed in the nuclei of retinal neurons at 3 and 6 days and its expression was decreased at 15 days after STZ treatment. In addition, p‑eIF2‑α expression and cellular localization followed the trend of PKR, suggesting that this pro‑apoptotic kinase was active in the nuclei of retinal neurons. These findings are consistent with the hypothesis that nuclear translocation of PKR may be a mechanism to sequester active PKR, thus preventing upregulation of cytosolic signalling pathways that induce apoptosis in retinal neurons. Apoptotic cells were not detected in the retina in the early stage of DR. A model was proposed to explain the mechanism by which apoptosis of retinal neurons by PKR is suppressed in the early stage of DR. The possible role of mitochondrial RNA (mtRNA) and Alu RNA in this phenomenon is also discussed since it was demonstrated that the cellular stress due to prolonged hyperglycaemia induces the release of mtRNA and transcription of Alu RNA. Moreover, it mtRNA activates PKR, whereas Alu RNA inhibits the activation of this protein kinase.
Collapse
Affiliation(s)
| | | | - Thaís Amaral E Sousa
- Federal Institute of Education, Science and Technology of Goiás, Formosa, Goiás 73813-816, Brazil
| | - Vâni Maria Alves
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Isis Do Carmo Kettelhut
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fernando Luiz De Lucca
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| |
Collapse
|
15
|
Smyth R, Sun J. Protein Kinase R in Bacterial Infections: Friend or Foe? Front Immunol 2021; 12:702142. [PMID: 34305942 PMCID: PMC8297547 DOI: 10.3389/fimmu.2021.702142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
The global antimicrobial resistance crisis poses a significant threat to humankind in the coming decades. Challenges associated with the development of novel antibiotics underscore the urgent need to develop alternative treatment strategies to combat bacterial infections. Host-directed therapy is a promising new therapeutic strategy that aims to boost the host immune response to bacteria rather than target the pathogen itself, thereby circumventing the development of antibiotic resistance. However, host-directed therapy depends on the identification of druggable host targets or proteins with key functions in antibacterial defense. Protein Kinase R (PKR) is a well-characterized human kinase with established roles in cancer, metabolic disorders, neurodegeneration, and antiviral defense. However, its role in antibacterial defense has been surprisingly underappreciated. Although the canonical role of PKR is to inhibit protein translation during viral infection, this kinase senses and responds to multiple types of cellular stress by regulating cell-signaling pathways involved in inflammation, cell death, and autophagy - mechanisms that are all critical for a protective host response against bacterial pathogens. Indeed, there is accumulating evidence to demonstrate that PKR contributes significantly to the immune response to a variety of bacterial pathogens. Importantly, there are existing pharmacological modulators of PKR that are well-tolerated in animals, indicating that PKR is a feasible target for host-directed therapy. In this review, we provide an overview of immune cell functions regulated by PKR and summarize the current knowledge on the role and functions of PKR in bacterial infections. We also review the non-canonical activators of PKR and speculate on the potential mechanisms that trigger activation of PKR during bacterial infection. Finally, we provide an overview of existing pharmacological modulators of PKR that could be explored as novel treatment strategies for bacterial infections.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Cesaro T, Hayashi Y, Borghese F, Vertommen D, Wavreil F, Michiels T. PKR activity modulation by phosphomimetic mutations of serine residues located three aminoacids upstream of double-stranded RNA binding motifs. Sci Rep 2021; 11:9188. [PMID: 33911136 PMCID: PMC8080564 DOI: 10.1038/s41598-021-88610-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
Eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2), better known as PKR, plays a key role in the response to viral infections and cellular homeostasis by regulating mRNA translation. Upon binding dsRNA, PKR is activated through homodimerization and subsequent autophosphorylation on residues Thr446 and Thr451. In this study, we identified a novel PKR phosphorylation site, Ser6, located 3 amino acids upstream of the first double-stranded RNA binding motif (DRBM1). Another Ser residue occurs in PKR at position 97, the very same position relative to the DRBM2. Ser or Thr residues also occur 3 amino acids upstream DRBMs of other proteins such as ADAR1 or DICER. Phosphoinhibiting mutations (Ser-to-Ala) introduced at Ser6 and Ser97 spontaneously activated PKR. In contrast, phosphomimetic mutations (Ser-to-Asp) inhibited PKR activation following either poly (I:C) transfection or virus infection. These mutations moderately affected dsRNA binding or dimerization, suggesting a model where negative charges occurring at position 6 and 97 tighten the interaction of DRBMs with the kinase domain, thus keeping PKR in an inactive closed conformation even in the presence of dsRNA. This study provides new insights on PKR regulation mechanisms and identifies Ser6 and Ser97 as potential targets to modulate PKR activity for therapeutic purposes.
Collapse
Affiliation(s)
- Teresa Cesaro
- de Duve Institute, Université Catholique de Louvain, VIRO B1.74.07, 74, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Yohei Hayashi
- de Duve Institute, Université Catholique de Louvain, VIRO B1.74.07, 74, Avenue Hippocrate, 1200, Brussels, Belgium.,Frontier Sciences Unit, Department of Medical Innovations, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Fabian Borghese
- de Duve Institute, Université Catholique de Louvain, VIRO B1.74.07, 74, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Didier Vertommen
- PHOS Unit and MASSPROT Platform, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Fanny Wavreil
- de Duve Institute, Université Catholique de Louvain, VIRO B1.74.07, 74, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Thomas Michiels
- de Duve Institute, Université Catholique de Louvain, VIRO B1.74.07, 74, Avenue Hippocrate, 1200, Brussels, Belgium.
| |
Collapse
|
17
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
18
|
Myint O, Suwanruengsri M, Araki K, Izzati UZ, Pornthummawat A, Nueangphuet P, Fuke N, Hirai T, Jackwood DJ, Yamaguchi R. Bursa atrophy at 28 days old caused by variant infectious bursal disease virus has a negative economic impact on broiler farms in Japan. Avian Pathol 2020; 50:6-17. [PMID: 32954830 DOI: 10.1080/03079457.2020.1822989] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Infectious bursal disease (IBD), caused by IBD virus (IBDV), is highly contagious, immunosuppressive and causes a negative economic impact on poultry industry. IBDV-vaccinated broiler farms at south Kyushu, Japan had a bursa-to-bodyweight ratio (BB ratio) reduction at 28 days (d) old, followed by high mortality 30 d later. We analysed the influence of the IBDV on atrophy of the bursa of fabricius (BF) and the subsequent mortality after 30 d. Ten broilers were sampled at each timepoint from the farm with high mortality at 21, 25, 28 and 35 d. A second flock from the same farm was sampled at 14, 21, 25, 28, 35 and 42 d. IBDV was detected in BF samples at 25, 28 and 35 d and at 21, 25, 28 and 35 d in the first and second flocks, respectively, using immunohistochemical staining and RT-PCR. IBDV isolates from both flocks were closely related to the China KM523643 strain. Histopathology and TUNEL assay indicated apoptosis, severe lymphoid depletion, vacuoles within follicles, lymphoid follicle atrophy and fibrosis in the BF. We observed 75% of the polyserositis and 10% of the airsacculitis at 30 D in dead broilers. The antigenic variant IBDV infection was appeared to be the main influencing factor on BF atrophy and BB ratio reduction in the broilers. High mortality in the broilers after 30 d could be due to secondary infection. The disease caused by IBDV had a negative economic impact in the farm. RESEARCH HIGHLIGHTS New variant IBDV caused bursa atrophy and reduced BB ratio in 28-day-old broilers. After vIBDV had infected broilers, at 21 days old they became immunosuppressed. High mortality at 30 days old in broilers was due to secondary infection. New vIBDV has a negative economic impact on broiler farms in Japan.
Collapse
Affiliation(s)
- Ohnmar Myint
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mathurot Suwanruengsri
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Kenji Araki
- Boehringer Ingelheim Animal Health Co. Ltd, Tokyo, Japan
| | - Uda Zahli Izzati
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Apisit Pornthummawat
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Phawut Nueangphuet
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Naoyuki Fuke
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Takuya Hirai
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Daral J Jackwood
- Food Animal Health Research Program, The Ohio State University/OARDC, Wooster, OH, USA
| | - Ryoji Yamaguchi
- Department of Veterinary Pathology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
19
|
García-Murria MJ, Duart G, Grau B, Diaz-Beneitez E, Rodríguez D, Mingarro I, Martínez-Gil L. Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis. Nat Commun 2020; 11:6056. [PMID: 33247105 PMCID: PMC7695858 DOI: 10.1038/s41467-020-19881-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Viral control of programmed cell death relies in part on the expression of viral analogs of the B-cell lymphoma 2 (Bcl2) protein known as viral Bcl2s (vBcl2s). vBcl2s control apoptosis by interacting with host pro- and anti-apoptotic members of the Bcl2 family. Here, we show that the carboxyl-terminal hydrophobic region of herpesviral and poxviral vBcl2s can operate as transmembrane domains (TMDs) and participate in their homo-oligomerization. Additionally, we show that the viral TMDs mediate interactions with cellular pro- and anti-apoptotic Bcl2 TMDs within the membrane. Furthermore, these intra-membrane interactions among viral and cellular proteins are necessary to control cell death upon an apoptotic stimulus. Therefore, their inhibition represents a new potential therapy against viral infections, which are characterized by short- and long-term deregulation of programmed cell death.
Collapse
Affiliation(s)
- Maria Jesús García-Murria
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Gerard Duart
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Brayan Grau
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Elisabet Diaz-Beneitez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049, Madrid, Spain
| | - Ismael Mingarro
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain
| | - Luis Martínez-Gil
- Department of Biochemistry and Molecular Biology, Institut de Biotecnologia i Biomedicina, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
20
|
Abram QH, Vo NTK, Kellendonk C, Bols NC, Katzenback BA, Dixon B. Regulation of endogenous antigen presentation in response to suboptimal temperatures in a walleye skin fibroblast cell line. FISH & SHELLFISH IMMUNOLOGY 2020; 98:788-799. [PMID: 31740400 DOI: 10.1016/j.fsi.2019.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
A skin fibroblast cell line WE-skin11f from walleye (Sander vitreus) was used to study the impact of temperature (26 °C, 20 °C, 14 °C, or 4 °C) on the transcript levels of genes involved in the endogenous antigen processing and presentation pathway (EAPP), which is an important antiviral pathway of vertebrates. Partial coding sequences were found for 4 previously unidentified walleye EAPP members, calreticulin, calnexin, erp57, and tapasin, and the constitutive transcript levels of these genes in WE-skin11f was unchanged by culture incubation temperature. The viral mimic poly (I:C) and viral haemorrhagic septicaemia virus (VHSV) IVb were used to study possible induction of EAPP transcripts (b2m, mhIa, and tapasin). The walleye cells were exquisitely sensitive to poly (I:C), losing adherence and viability at concentrations greater than 100 ng/mL, particularly at suboptimal temperatures. VHSV IVb viral particles were produced from infected WE-skin11f cells at 20 °C, 14 °C, and 4 °C but with much lower production at 4 °C. Under conditions where their impact on the viability of WE-skin11f cultures was slight, poly (I:C) and VHSV IVb were shown to induce b2m, mhIa, and tapasin transcript°s at 26 °C and 20 °C respectively. However, at 4 °C, the up-regulation of EAPP transcript levels was either delayed or completely impaired when compared to the 26 °C and 20 °C control temperatures of the respective experiments. These in vitro results suggest that suboptimal temperatures may be capable of modulating the regulation of the EAPP in walleye cells during viral infection.
Collapse
Affiliation(s)
- Quinn H Abram
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Calvin Kellendonk
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
21
|
PKR Promotes Oxidative Stress and Apoptosis of Human Articular Chondrocytes by Causing Mitochondrial Dysfunction through p38 MAPK Activation-PKR Activation Causes Apoptosis in Human Chondrocytes. ANTIOXIDANTS (BASEL, SWITZERLAND) 2019. [PMID: 31484360 DOI: 10.3390/antiox8090370.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Osteoarthritis (OA) is one of the most common types of arthritis in the elderly people. It has been known that chondrocyte apoptosis occurs in OA cartilage; however, the detailed molecular mechanism remains unclear. In the current study, we aimed to elucidate the role of double-stranded RNA-dependent protein kinase R (PKR) in the TNF-α-caused apoptosis in chondrocytes. Human articular chondrocytes were digested from cartilages of OA subjects who accepted arthroplastic knee surgery. Our results showed that phosphorylation of p38 MAPK was increased after TNF-α stimulation or PKR activation using poly (I:C), and TNF-α-induced p38 MAPK upregulation was inhibited by PKR inhibition, suggesting phosphor-p38 MAPK was regulated by PKR. Moreover, we found that PKR participated in the p53-dependent destruction of AKT following activation of p38 MAPK. The inhibition of AKT led to the reduced expression of PGC-1α, which resulted in mitochondrial dysfunction and increased oxidative stress. We showed that the reduction of oxidative stress using antioxidant Mito TEMPO lowered the TNF-α-induced caspase-3 activation and TUNEL-positive apoptotic cells. The diminished apoptotic response was also observed after repression of PKR/p38 MAPK/p53/AKT/PGC-1α signaling. Taken together, we demonstrated that the aberrant mitochondrial biogenesis and increased oxidative stress in chondrocytes after TNF-α stimulation were mediated by PKR, which may contribute to the chondrocyte apoptosis and cartilage degeneration in OA.
Collapse
|
22
|
PKR Promotes Oxidative Stress and Apoptosis of Human Articular Chondrocytes by Causing Mitochondrial Dysfunction through p38 MAPK Activation-PKR Activation Causes Apoptosis in Human Chondrocytes. Antioxidants (Basel) 2019; 8:antiox8090370. [PMID: 31484360 PMCID: PMC6769915 DOI: 10.3390/antiox8090370] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/14/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common types of arthritis in the elderly people. It has been known that chondrocyte apoptosis occurs in OA cartilage; however, the detailed molecular mechanism remains unclear. In the current study, we aimed to elucidate the role of double-stranded RNA-dependent protein kinase R (PKR) in the TNF-α-caused apoptosis in chondrocytes. Human articular chondrocytes were digested from cartilages of OA subjects who accepted arthroplastic knee surgery. Our results showed that phosphorylation of p38 MAPK was increased after TNF-α stimulation or PKR activation using poly (I:C), and TNF-α-induced p38 MAPK upregulation was inhibited by PKR inhibition, suggesting phosphor-p38 MAPK was regulated by PKR. Moreover, we found that PKR participated in the p53-dependent destruction of AKT following activation of p38 MAPK. The inhibition of AKT led to the reduced expression of PGC-1α, which resulted in mitochondrial dysfunction and increased oxidative stress. We showed that the reduction of oxidative stress using antioxidant Mito TEMPO lowered the TNF-α-induced caspase-3 activation and TUNEL-positive apoptotic cells. The diminished apoptotic response was also observed after repression of PKR/p38 MAPK/p53/AKT/PGC-1α signaling. Taken together, we demonstrated that the aberrant mitochondrial biogenesis and increased oxidative stress in chondrocytes after TNF-α stimulation were mediated by PKR, which may contribute to the chondrocyte apoptosis and cartilage degeneration in OA.
Collapse
|
23
|
Potent Anti-hepatitis C Virus (HCV) T Cell Immune Responses Induced in Mice Vaccinated with DNA-Launched RNA Replicons and Modified Vaccinia Virus Ankara-HCV. J Virol 2019; 93:JVI.00055-19. [PMID: 30674625 DOI: 10.1128/jvi.00055-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C is a liver disease caused by the hepatitis C virus (HCV) affecting 71 million people worldwide with no licensed vaccines that prevent infection. Here, we have generated four novel alphavirus-based DNA-launched self-amplifying RNA replicon (DREP) vaccines expressing either structural core-E1-E2 or nonstructural p7-NS2-NS3 HCV proteins of genotype 1a placed under the control of an alphavirus promoter, with or without an alphaviral translational enhancer (grouped as DREP-HCV or DREP-e-HCV, respectively). DREP vectors are known to induce cross-priming and further stimulation of immune responses through apoptosis, and here we demonstrate that they efficiently trigger apoptosis-related proteins in transfected cells. Immunization of mice with the DREP vaccines as the priming immunization followed by a heterologous boost with a recombinant modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV (MVA-HCV) induced potent and long-lasting HCV-specific CD4+ and CD8+ T cell immune responses that were significantly stronger than those of a homologous MVA-HCV prime/boost immunization, with the DREP-e-HCV/MVA-HCV combination the most immunogenic regimen. HCV-specific CD4+ and CD8+ T cell responses were highly polyfunctional, had an effector memory phenotype, and were mainly directed against E1-E2 and NS2-NS3, respectively. Additionally, DREP/MVA-HCV immunization regimens induced higher antibody levels against HCV E2 protein than homologous MVA-HCV immunization. Collectively, these results provided an immunization protocol against HCV by inducing high levels of HCV-specific T cell responses as well as humoral responses. These findings reinforce the combined use of DREP-based vectors and MVA-HCV as promising prophylactic and therapeutic vaccines against HCV.IMPORTANCE HCV represents a global health problem as more than 71 million people are chronically infected worldwide. Direct-acting antiviral agents can cure HCV infection in most patients, but due to the high cost of these agents and the emergence of resistant mutants, they do not represent a feasible and affordable strategy to eradicate the virus. Therefore, a vaccine is an urgent goal that requires efforts to understand the correlates of protection for HCV clearance. Here, we describe for the first time the generation of novel vaccines against HCV based on alphavirus DNA replicons expressing HCV antigens. We demonstrate that potent T cell immune responses, as well as humoral immune responses, against HCV can be achieved in mice by using a combined heterologous prime/boost immunization protocol consisting of the administration of alphavirus replicon DNA vectors as the priming immunization followed by a boost with a recombinant modified vaccinia virus Ankara vector expressing HCV antigens.
Collapse
|
24
|
Udumula MP, Bhat A, Mangali S, Kalra J, Dhar I, Sriram D, Dhar A. Pharmacological evaluation of novel PKR inhibitor indirubin-3-hydrazone in-vitro in cardiac myocytes and in-vivo in wistar rats. Life Sci 2018; 209:85-96. [PMID: 30076923 DOI: 10.1016/j.lfs.2018.07.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
AIMS Double stranded protein kinase R cellular response is associated with various stress signals such as nutrients, endoplasmic stress, cytokines and mechanical stress. Increased PKR activity has been observed under diabetic and cardiovascular disease conditions. Most of the currently available PKR inhibitors are non-specific and have other effects as well. Thus, the aim of the present study was to examine the effect of novel PKR inhibitor indirubin-3-hydrazone (IHZ) in cultured rat H9C2 cardiomyocytes and wistar rats. MATERIALS AND METHODS PKR expression was determined by Q-PCR, immunofluorescence and immunoblotting. The expression of different gene markers for apoptosis was measured by RT-PCR. Apoptosis and oxidative stress were determined by flow cytometry. KEY FINDINGS High glucose (HG) treated H9C2 cardiomyocytes and high fructose (HF) treated wistar rats developed a significant increase in PKR expression. A significant increase in apoptosis and generation of reactive oxygen species was also observed in HG treated H9C2 cells and HF treated rats. Reduced vacuole formation and prominent nuclei were also observed in high glucose treated cells. Cardiac hypertrophy and increased fibrosis were observed in HF treated rats. All these effects of HG and HF were attenuated by novel PKR inhibitor, indirubin-3-hydrazone. SIGNIFICANCE Our results indicate IHZ as an effective inhibitor of PKR in vitro and in-vivo, thus it may prove very useful in blocking the multiple harmful effects of PKR.
Collapse
Affiliation(s)
- Mary Priyanka Udumula
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| | - Audesh Bhat
- Department of Molecular Biology, Central University of Jammu, India
| | - Sureshbabu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| | - Jaspreet Kalra
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| | - Indu Dhar
- Department of Clinical Sciences, University of Bergen, Norway
| | - Dharamrajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India..
| |
Collapse
|
25
|
Nichols DB, De Martini W, Cottrell J. Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis. Viruses 2017; 9:v9080215. [PMID: 28786952 PMCID: PMC5580472 DOI: 10.3390/v9080215] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence.
Collapse
Affiliation(s)
- Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - William De Martini
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| |
Collapse
|
26
|
Clinical and therapeutic potential of protein kinase PKR in cancer and metabolism. Expert Rev Mol Med 2017; 19:e9. [PMID: 28724458 DOI: 10.1017/erm.2017.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein kinase R (PKR, also called EIF2AK2) is an interferon-inducible double-stranded RNA protein kinase with multiple effects on cells that plays an active part in the cellular response to numerous types of stress. PKR has been extensively studied and documented for its relevance as an antiviral agent and a cell growth regulator. Recently, the role of PKR related to metabolism, inflammatory processes, cancer and neurodegenerative diseases has gained interest. In this review, we summarise and discuss the involvement of PKR in several cancer signalling pathways and the dual role that this kinase plays in cancer disease. We emphasise the importance of PKR as a molecular target for both conventional chemotherapeutics and emerging treatments based on novel drugs, and its potential as a biomarker and therapeutic target for several pathologies. Finally, we discuss the impact that the recent knowledge regarding PKR involvement in metabolism has in our understanding of the complex processes of cancer and metabolism pathologies, highlighting the translational research establishing the clinical and therapeutic potential of this pleiotropic kinase.
Collapse
|
27
|
Hu CW, Yin GF, Wang XR, Ren BW, Zhang WG, Bai QL, Lv YM, Li WL, Zhao WQ. IL-24 Induces Apoptosis via Upregulation of RNA-Activated Protein Kinase and Enhances Temozolomide-Induced Apoptosis in Glioma Cells. Oncol Res 2016; 22:159-65. [PMID: 26168134 PMCID: PMC7838440 DOI: 10.3727/096504015x14298122915628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human interleukin-24 (IL-24) has been found recently to play a tumor-suppressor role in a variety of tumors, including gliomas. However, the exact mechanism of glioma tumor suppression by IL-24 remains unclear. We collected by surgery 30 gliomas at different grades and evaluated IL-24 and double-stranded RNA-activated protein kinase (PKR) expression using fluorescence quantitative real-time PCR and immunohistochemical techniques. Two human glioma cell lines, U87 and U251, were transfected with Ad5F35-IL24 via recombinant adenovirus-mediated gene transfer and apoptosis, as well as PKR and eIF-2α expression analyzed. The results showed that IL-24 and PKR expression decreased with increasing tumor grade. Compared with cells of the control groups, Ad5F35-IL24-infected U87 and U251 cells exhibited a significantly increased apoptosis and elevated PKR, eIF-2α, p-PKR, and p-eIF-2α levels, while the expression of Bcl-2 was decreased. Finally, IL-24 also sensitized apoptosis of glioma cells to temozolomide (TMZ). This study indicates that IL-24 upregulates expression and activation of PKR, further increasing expression and activation of eIF-2α, and decreasing Bcl-2 to promote apoptosis. IL-24 also increases chemosensitivity of glioma cells to TMZ.
Collapse
Affiliation(s)
- Chang-Wei Hu
- Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The kinase activity of PKR represses inflammasome activity. Cell Res 2016; 26:367-79. [PMID: 26794869 DOI: 10.1038/cr.2016.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/24/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
The protein kinase R (PKR) functions in the antiviral response by controlling protein translation and inflammatory cell signaling pathways. We generated a transgenic, knock-in mouse in which the endogenous PKR is expressed with a point mutation that ablates its kinase activity. This novel animal allows us to probe the kinase-dependent and -independent functions of PKR. We used this animal together with a previously generated transgenic mouse that is ablated for PKR expression to determine the role of PKR in regulating the activity of the cryopyrin inflammasome. Our data demonstrate that, in contradiction to earlier reports, PKR represses cryopyrin inflammasome activity. We demonstrate that this control is mediated through the established function of PKR to inhibit protein translation of constituents of the inflammasome to prevent initial priming during innate immune signaling. These findings identify an important role for PKR to dampen inflammation during the innate immune response and caution against the previously proposed therapeutic strategy to inhibit PKR to treat inflammation.
Collapse
|
29
|
Paquet C, Dumurgier J, Hugon J. Pro-Apoptotic Kinase Levels in Cerebrospinal Fluid as Potential Future Biomarkers in Alzheimer's Disease. Front Neurol 2015; 6:168. [PMID: 26300842 PMCID: PMC4523792 DOI: 10.3389/fneur.2015.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of Aβ peptides, hyperphosphorylated tau proteins, and neuronal loss in the brain of affected patients. The causes of neurodegeneration in AD are not clear, but apoptosis could be one of the cell death mechanisms. According to the amyloid hypothesis, abnormal aggregation of Aβ leads to altered kinase activities inducing tau phosphorylation and neuronal degeneration. Several studies have shown that pro-apoptotic kinases could be a link between Aβ and tau anomalies. Here, we present recent evidences from AD experimental models and human studies that three pro-apoptotic kinases (double-stranded RNA kinase (PKR), glycogen synthase kinase-3β, and C-Jun terminal kinase (JNK) could be implicated in AD physiopathology. These kinases are detectable in human fluids and the analysis of their levels could be used as potential surrogate markers to evaluate cell death and clinical prognosis. In addition to current biomarkers (Aβ1–42, tau, and phosphorylated tau), these new evaluations could bring about valuable information on potential innovative therapeutic targets to alter the clinical evolution.
Collapse
Affiliation(s)
- Claire Paquet
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| | - Julien Dumurgier
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| | - Jacques Hugon
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| |
Collapse
|
30
|
Mutational analysis of vaccinia virus E3 protein: the biological functions do not correlate with its biochemical capacity to bind double-stranded RNA. J Virol 2015; 89:5382-94. [PMID: 25740987 DOI: 10.1128/jvi.03288-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/23/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Vaccinia E3 protein has the biochemical capacity of binding to double-stranded RNA (dsRNA). The best characterized biological functions of the E3 protein include its host range function, suppression of cytokine expression, and inhibition of interferon (IFN)-induced antiviral activity. Currently, the role of the dsRNA binding capacity in the biological functions of the E3 protein is not clear. To further understand the mechanism of the E3 protein biological functions, we performed alanine scanning of the entire dsRNA binding domain of the E3 protein to examine the link between its biochemical capacity of dsRNA binding and biological functions. Of the 115 mutants examined, 20 were defective in dsRNA binding. Although the majority of the mutants defective in dsRNA binding also showed defective replication in HeLa cells, nine mutants (I105A, Y125A, E138A, F148A, F159A, K171A, L182A, L183A, and I187/188A) retained the host range function to various degrees. Further examination of a set of representative E3L mutants showed that residues essential for dsRNA binding are not essential for the biological functions of E3 protein, such as inhibition of protein kinase R (PKR) activation, suppression of cytokine expression, and apoptosis. Thus, data described in this communication strongly indicate the E3 protein performs its biological functions via a novel mechanism which does not correlate with its dsRNA binding activity. IMPORTANCE dsRNAs produced during virus replication are important pathogen-associated molecular patterns (PAMPs) for inducing antiviral immune responses. One of the strategies used by many viruses to counteract such antiviral immune responses is achieved by producing dsRNA binding proteins, such as poxvirus E3 family proteins, influenza virus NS1, and Ebola virus V35 proteins. The most widely accepted model for the biological functions of this class of viral dsRNA binding proteins is that they bind to and sequester viral dsRNA PAMPs; thus, they suppress the related antiviral immune responses. However, no direct experimental data confirm such a model. In this study of vaccinia E3 protein, we found that the biological functions of the E3 protein are not necessarily linked to its biochemical capacity of dsRNA binding. Thus, our data strongly point to a new concept of virus modulation of cellular antiviral responses triggered by dsRNA PAMPs.
Collapse
|
31
|
Recombinant modified vaccinia virus Ankara generating excess early double-stranded RNA transiently activates protein kinase R and triggers enhanced innate immune responses. J Virol 2014; 88:14396-411. [PMID: 25297997 DOI: 10.1128/jvi.02082-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Double-stranded RNA (dsRNA) is an important molecular pattern associated with viral infection and is detected by various extra- and intracellular recognition molecules. Poxviruses have evolved to avoid producing dsRNA early in infection but generate significant amounts of dsRNA late in infection due to convergent transcription of late genes. Protein kinase R (PKR) is activated by dsRNA and triggers major cellular defenses against viral infection, including protein synthesis shutdown, apoptosis, and type I interferon (IFN-I) production. The poxviral E3 protein binds and sequesters viral dsRNA and is a major antagonist of the PKR pathway. We found that the highly replication-restricted modified vaccinia virus Ankara (MVA) engineered to produce excess amounts of dsRNA early in infection showed enhanced induction of IFN-β in murine and human cells in the presence of an intact E3L gene. IFN-β induction required a minimum overlap length of 300 bp between early complementary transcripts and was strongly PKR dependent. Excess early dsRNA produced by MVA activated PKR early but transiently in murine cells and induced enhanced systemic levels of IFN-α, IFN-γ, and other cytokines and chemokines in mice in a largely PKR-dependent manner. Replication-competent chorioallantois vaccinia virus Ankara (CVA) generating excess early dsRNA also enhanced IFN-I production and was apathogenic in mice even at very high doses but showed no in vitro host range defect. Thus, genetically adjuvanting MVA and CVA to generate excess early dsRNA is an effective method to enhance innate immune stimulation by orthopoxvirus vectors and to attenuate replicating vaccinia virus in vivo. IMPORTANCE Efficient cellular sensing of pathogen-specific components, including double-stranded RNA (dsRNA), is an important prerequisite of an effective antiviral immune response. The prototype poxvirus vaccinia virus (VACV) and its derivative modified vaccinia virus Ankara (MVA) produce dsRNA as a by-product of viral transcription. We found that inhibition of cellular dsRNA recognition established by the virus-encoded proteins E3 and K3 can be overcome by directing viral overexpression of dsRNA early in infection without compromising replication of MVA in permissive cells. Early dsRNA induced transient activation of the cellular dsRNA sensor protein kinase R (PKR), resulting in enhanced production of interferons and cytokines in cells and mice. Enhancing the capacity of MVA to activate the innate immune system is an important approach to further improve the immunogenicity of this promising vaccine vector.
Collapse
|
32
|
de la Cruz-Herrera CF, Campagna M, García MA, Marcos-Villar L, Lang V, Baz-Martínez M, Gutiérrez S, Vidal A, Rodríguez MS, Esteban M, Rivas C. Activation of the double-stranded RNA-dependent protein kinase PKR by small ubiquitin-like modifier (SUMO). J Biol Chem 2014; 289:26357-26367. [PMID: 25074923 PMCID: PMC4176227 DOI: 10.1074/jbc.m114.560961] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/11/2014] [Indexed: 01/07/2023] Open
Abstract
The dsRNA-dependent kinase PKR is an interferon-inducible protein with ability to phosphorylate the α subunit of the eukaryotic initiation factor (eIF)-2 complex, resulting in a shut-off of general translation, induction of apoptosis, and inhibition of virus replication. Here we analyzed the modification of PKR by the small ubiquitin-like modifiers SUMO1 and SUMO2 and evaluated the consequences of PKR SUMOylation. Our results indicate that PKR is modified by both SUMO1 and SUMO2, in vitro and in vivo. We identified lysine residues Lys-60, Lys-150, and Lys-440 as SUMOylation sites in PKR. We show that SUMO is required for efficient PKR-dsRNA binding, PKR dimerization, and eIF2α phosphorylation. Furthermore, we demonstrate that SUMO potentiates the inhibition of protein synthesis induced by PKR in response to dsRNA, whereas a PKR SUMOylation mutant is impaired in its ability to inhibit protein synthesis and shows reduced capability to control vesicular stomatitis virus replication and to induce apoptosis in response to vesicular stomatitis virus infection. In summary, our data demonstrate the important role of SUMO in processes mediated by the activation of PKR.
Collapse
Affiliation(s)
- Carlos F de la Cruz-Herrera
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Michela Campagna
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Maria A García
- Unidad de Investigación, Hospital Universitario Virgen de las Nieves, 18014 Granada
| | - Laura Marcos-Villar
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Valerie Lang
- Ubiquitylation and Cancer Molecular Biology Laboratory, Inbiomed, San Sebastian-Donostia, 20009 Gipuzkoa, Spain
| | - Maite Baz-Martínez
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782
| | - Sylvia Gutiérrez
- Confocal Service of Centro Nacional de Biotecnología-CSIC, Darwin 3, Madrid 28049, and
| | - Anxo Vidal
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782, Spain
| | - Manuel S Rodríguez
- Ubiquitylation and Cancer Molecular Biology Laboratory, Inbiomed, San Sebastian-Donostia, 20009 Gipuzkoa, Spain
| | - Mariano Esteban
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Carmen Rivas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049,; Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782,.
| |
Collapse
|
33
|
MicroRNA-645, up-regulated in human adencarcinoma of gastric esophageal junction, inhibits apoptosis by targeting tumor suppressor IFIT2. BMC Cancer 2014; 14:633. [PMID: 25174799 PMCID: PMC4161885 DOI: 10.1186/1471-2407-14-633] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 08/21/2014] [Indexed: 12/19/2022] Open
Abstract
Background An increasing body of evidence indicates that miRNAs have a critical role in carcinogenesis and cancer progression; however, the role of miRNAs in the tumorigenesis of adencarcinoma of gastric esophageal junction (AGEJ) remains largely unclear. Methods The SGC7901 and BGC-823 gastric cancer cell lines were used. The expressions of miR-645 and IFIT2 (Interferon-induced protein with tetratricopeptide repeats 2) were examined by qRT-PCR, The expressions of IFIT2 was examined by western blotting and immunohistochemistry assay. The cell apoptosis was determined by FACS. MiR-645 inhibitor, mimics and plasmid-IFIT2 transfections were performed to study the loss- and gain-function. Caspase-3/7 activity was examined by caspase-3/7 assay. Results In the present study, we have reported an increased expression of miR-645 in AGEJ clinical specimens compared with paired non-cancerous tissues. We also observed a significant miR-645 up-regulation in two gastric cancer (GC) cell lines, SGC7901 and BGC-823, which were used as cell models because there was no available AGEJ cell lines established to date. We found that inhibition of miR-645 could sensitize dramatically SGC7901 and BGC-823 cells to both serum starvation– and chemotherapeutic drug–induced apoptosis by up-regulating IFIT2, a mediator of apoptosis via a mitochondrial pathway, with a potential binding site for miR-645 in its mRNA’s 3′UTR. Further investigation exhibited that IFIT2 expression decreases in SGC7901 and BGC-823 cells and AGEJ tissues. IFIT2 ectopic expression leads to promotion of cell apoptosis, indicating that IFIT2 may function as a suppressor in the development of AGEJ. Furthermore, inhibition of miR-645 induces up-regulation of IFIT2 and increased caspase-3/7 activity compared with control groups. Conclusions Our data suggest that miR-645 functions as an oncogene in human AGEJ by, at least partially through, targeting IFIT2. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-633) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Veyer DL, Maluquer de Motes C, Sumner RP, Ludwig L, Johnson BF, Smith GL. Analysis of the anti-apoptotic activity of four vaccinia virus proteins demonstrates that B13 is the most potent inhibitor in isolation and during viral infection. J Gen Virol 2014; 95:2757-2768. [PMID: 25090990 PMCID: PMC4233632 DOI: 10.1099/vir.0.068833-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vaccinia virus (VACV) is a large dsDNA virus encoding ~200 proteins, several of which inhibit apoptosis. Here, a comparative study of anti-apoptotic proteins N1, F1, B13 and Golgi anti-apoptotic protein (GAAP) in isolation and during viral infection is presented. VACVs strains engineered to lack each gene separately still blocked apoptosis to some degree because of functional redundancy provided by the other anti-apoptotic proteins. To overcome this redundancy, we inserted each gene separately into a VACV strain (vv811) that lacked all these anti-apoptotic proteins and that induced apoptosis efficiently during infection. Each protein was also expressed in cells using lentivirus vectors. In isolation, each VACV protein showed anti-apoptotic activity in response to specific stimuli, as measured by immunoblotting for cleaved poly(ADP ribose) polymerase-1 and caspase-3 activation. Of the proteins tested, B13 was the most potent inhibitor, blocking both intrinsic and extrinsic stimuli, whilst the activity of the other proteins was largely restricted to inhibition of intrinsic stimuli. In addition, B13 and F1 were effective blockers of apoptosis induced by vv811 infection. Finally, whilst differences in induction of apoptosis were barely detectable during infection with VACV strain Western Reserve compared with derivative viruses lacking individual anti-apoptotic genes, several of these proteins reduced activation of caspase-3 during infection by vv811 strains expressing these proteins. These results illustrated that vv811 was a useful tool to determine the role of VACV proteins during infection and that whilst all of these proteins have some anti-apoptotic activity, B13 was the most potent.
Collapse
Affiliation(s)
- David L Veyer
- Virology Laboratory, Pontchaillou University Hospital, Rennes 35033, France.,Equipe Microbiologie, EA 1254, SFR BIOSIT, Université Européenne de Bretagne, Rennes, France.,Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Carlos Maluquer de Motes
- Department of Virology, Imperial College London, London W2 1PG, UK.,Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Rebecca P Sumner
- Department of Virology, Imperial College London, London W2 1PG, UK.,Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Louisa Ludwig
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | - Geoffrey L Smith
- Department of Virology, Imperial College London, London W2 1PG, UK.,Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
35
|
Affiliation(s)
- Justin M. Pare
- The University of Texas at Austin, Molecular Biosciences, Austin, Texas, United States of America
| | - Christopher S. Sullivan
- The University of Texas at Austin, Molecular Biosciences, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
El Maadidi S, Faletti L, Berg B, Wenzl C, Wieland K, Chen ZJ, Maurer U, Borner C. A novel mitochondrial MAVS/Caspase-8 platform links RNA virus-induced innate antiviral signaling to Bax/Bak-independent apoptosis. THE JOURNAL OF IMMUNOLOGY 2014; 192:1171-83. [PMID: 24391214 DOI: 10.4049/jimmunol.1300842] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Semliki Forest virus (SFV) requires RNA replication and Bax/Bak for efficient apoptosis induction. However, cells lacking Bax/Bak continue to die in a caspase-dependent manner. In this study, we show in both mouse and human cells that this Bax/Bak-independent pathway involves dsRNA-induced innate immune signaling via mitochondrial antiviral signaling (MAVS) and caspase-8. Bax/Bak-deficient or Bcl-2- or Bcl-xL-overexpressing cells lacking MAVS or caspase-8 expression are resistant to SFV-induced apoptosis. The signaling pathway triggered by SFV does neither involve death receptors nor the classical MAVS effectors TNFR-associated factor-2, IRF-3/7, or IFN-β but the physical interaction of MAVS with caspase-8 on mitochondria in a FADD-independent manner. Consistently, caspase-8 and -3 activation are reduced in MAVS-deficient cells. Thus, after RNA virus infection MAVS does not only elicit a type I antiviral response but also recruits caspase-8 to mitochondria to mediate caspase-3 activation and apoptosis in a Bax/Bak-independent manner.
Collapse
Affiliation(s)
- Souhayla El Maadidi
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
The protein kinase double-stranded RNA-dependent (PKR) enhances protection against disease cause by a non-viral pathogen. PLoS Pathog 2013; 9:e1003557. [PMID: 23990781 PMCID: PMC3749959 DOI: 10.1371/journal.ppat.1003557] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 07/01/2013] [Indexed: 01/08/2023] Open
Abstract
PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR(-/-) mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti-T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway.
Collapse
|
38
|
Bierle CJ, Semmens KM, Geballe AP. Double-stranded RNA binding by the human cytomegalovirus PKR antagonist TRS1. Virology 2013; 442:28-37. [PMID: 23601785 DOI: 10.1016/j.virol.2013.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/15/2013] [Accepted: 03/25/2013] [Indexed: 02/02/2023]
Abstract
Protein Kinase R (PKR) inhibits translation initiation following double-stranded RNA (dsRNA) binding and thereby represses viral replication. Human cytomegalovirus (HCMV) encodes two noncanonical dsRNA binding proteins, IRS1 and TRS1, and the expression of at least one of these PKR antagonists is essential for HCMV replication. In this study, we investigated the role of dsRNA binding by TRS1 in PKR inhibition. We found that purified TRS1 binds specifically to dsRNA with an affinity lower than that of PKR. Point mutants in the TRS1 dsRNA binding domain that were deficient in rescuing the replication of vaccinia virus lacking its PKR antagonist E3L were unable to bind to dsRNA but retained the ability bind to PKR. Thus TRS1 binding to dsRNA and to PKR are separable. Overall, our results are most consistent with a model in which TRS1 binds simultaneously to both dsRNA and PKR to inhibit PKR activation.
Collapse
Affiliation(s)
- Craig J Bierle
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98115, United States.
| | | | | |
Collapse
|
39
|
Changes in translational control after pro-apoptotic stress. Int J Mol Sci 2012; 14:177-90. [PMID: 23344027 PMCID: PMC3565257 DOI: 10.3390/ijms14010177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/06/2012] [Accepted: 12/10/2012] [Indexed: 01/17/2023] Open
Abstract
In stressed cells, a general decrease in the rate of protein synthesis occurs due to modifications in the activity of translation initiation factors. Compelling data now indicate that these changes also permit a selective post-transcriptional expression of proteins necessary for either cell survival or completion of apoptosis when cells are exposed to severe or prolonged stress. In this review, we summarize the modifications that inhibit the activity of the main canonical translation initiation factors, and the data explaining how certain mRNAs encoding proteins involved in either cell survival or apoptosis can be selectively translated.
Collapse
|
40
|
Ludigs K, Parfenov V, Du Pasquier RA, Guarda G. Type I IFN-mediated regulation of IL-1 production in inflammatory disorders. Cell Mol Life Sci 2012; 69:3395-418. [PMID: 22527721 PMCID: PMC11115130 DOI: 10.1007/s00018-012-0989-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/14/2012] [Accepted: 04/03/2012] [Indexed: 02/07/2023]
Abstract
Although contributing to inflammatory responses and to the development of certain autoimmune pathologies, type I interferons (IFNs) are used for the treatment of viral, malignant, and even inflammatory diseases. Interleukin-1 (IL-1) is a strongly pyrogenic cytokine and its importance in the development of several inflammatory diseases is clearly established. While the therapeutic use of IL-1 blocking agents is particularly successful in the treatment of innate-driven inflammatory disorders, IFN treatment has mostly been appreciated in the management of multiple sclerosis. Interestingly, type I IFNs exert multifaceted immunomodulatory effects, including the reduction of IL-1 production, an outcome that could contribute to its efficacy in the treatment of inflammatory diseases. In this review, we summarize the current knowledge on IL-1 and IFN effects in different inflammatory disorders, the influence of IFNs on IL-1 production, and discuss possible therapeutic avenues based on these observations.
Collapse
Affiliation(s)
- Kristina Ludigs
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | | | | | | |
Collapse
|
41
|
Bleiblo F, Michael P, Brabant D, Ramana CV, Tai T, Saleh M, Parrillo JE, Kumar A, Kumar A. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR. J Thorac Dis 2012; 4:114-25. [PMID: 22833816 DOI: 10.3978/j.issn.2072-1439.2012.01.07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/19/2012] [Indexed: 12/25/2022]
Abstract
Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology.
Collapse
|
42
|
González-Santamaría J, Campagna M, García MA, Marcos-Villar L, González D, Gallego P, Lopitz-Otsoa F, Guerra S, Rodríguez MS, Esteban M, Rivas C. Regulation of vaccinia virus E3 protein by small ubiquitin-like modifier proteins. J Virol 2011; 85:12890-900. [PMID: 21957283 PMCID: PMC3233166 DOI: 10.1128/jvi.05628-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/21/2011] [Indexed: 12/19/2022] Open
Abstract
The vaccinia virus (VACV) E3 protein is essential for virulence and has antiapoptotic activity and the ability to impair the host innate immune response. Here we demonstrate that E3 interacts with SUMO1 through a small ubiquitin-like modifier (SUMO)-interacting motif (SIM). SIM integrity is required for maintaining the stability of the viral protein and for the covalent conjugation of E3 to SUMO1 or SUMO2, a modification that has a negative effect on the E3 transcriptional transactivation of the p53-upregulated modulator of apoptosis (PUMA) and APAF-1 genes. We also demonstrate that E3 is ubiquitinated, a modification that does not destabilize the wild-type protein but triggers the degradation of an E3-ΔSIM mutant. This report constitutes the first demonstration of the important roles that both SUMO and ubiquitin play in the regulation of the VACV protein E3.
Collapse
Affiliation(s)
- José González-Santamaría
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Michela Campagna
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Angel García
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Unidad de Investigación, Hospital Virgen de las Nieves, Azpitarte 4, Granada 18012, Spain
| | - Laura Marcos-Villar
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Dolores González
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pedro Gallego
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Proteomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Susana Guerra
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Preventive Medicine and Public Health, Universidad Autónoma, Madrid, Spain
| | - Manuel S. Rodríguez
- Proteomics Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- Department of Biochemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
| | - Mariano Esteban
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carmen Rivas
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
43
|
Comparative analysis of poxvirus orthologues of the vaccinia virus E3 protein: modulation of protein kinase R activity, cytokine responses, and virus pathogenicity. J Virol 2011; 85:12280-91. [PMID: 21917954 DOI: 10.1128/jvi.05505-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Poxviruses are important human and animal pathogens that have evolved elaborate strategies for antagonizing host innate and adaptive immunity. The E3 protein of vaccinia virus, the prototypic member of the orthopoxviruses, functions as an inhibitor of innate immune signaling and is essential for vaccinia virus replication in vivo and in many human cell culture systems. However, the function of orthologues of E3 expressed by poxviruses of other genera with different host specificity remains largely unknown. In the present study, we characterized the E3 orthologues from sheeppox virus, yaba monkey tumor virus, swinepox virus, and myxoma virus for their ability to modulate protein kinase R (PKR) function, cytokine responses and virus pathogenicity. We found that the E3 orthologues of myxoma virus and swinepox virus could suppress PKR activation and interferon (IFN)-induced antiviral activities and restore the host range function of E3 in HeLa cells. In contrast, the E3 orthologues from sheeppox virus and yaba monkey tumor virus were unable to inhibit PKR activation. While the sheeppox orthologue was unable to restore the host range function of E3, the yaba monkey tumor virus orthologue partially restored E3-deficient vaccinia virus replication in HeLa cells, correlated with its ability to suppress IFN-induced antiviral activities. Moreover, poxvirus E3 orthologues show varying ability to inhibit the induction of antiviral and proinflammatory cytokines. Despite these in vitro results, none of the E3 orthologues tested was capable of restoring pathogenicity to E3-deficient vaccinia virus in vivo.
Collapse
|
44
|
Ill-Raga G, Palomer E, Wozniak MA, Ramos-Fernández E, Bosch-Morató M, Tajes M, Guix FX, Galán JJ, Clarimón J, Antúnez C, Real LM, Boada M, Itzhaki RF, Fandos C, Muñoz FJ. Activation of PKR causes amyloid ß-peptide accumulation via de-repression of BACE1 expression. PLoS One 2011; 6:e21456. [PMID: 21738672 PMCID: PMC3125189 DOI: 10.1371/journal.pone.0021456] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 06/02/2011] [Indexed: 12/13/2022] Open
Abstract
BACE1 is a key enzyme involved in the production of amyloid ß-peptide (Aß) in Alzheimer's disease (AD) brains. Normally, its expression is constitutively inhibited due to the presence of the 5′untranslated region (5′UTR) in the BACE1 promoter. BACE1 expression is activated by phosphorylation of the eukaryotic initiation factor (eIF)2-alpha, which reverses the inhibitory effect exerted by BACE1 5′UTR. There are four kinases associated with different types of stress that could phosphorylate eIF2-alpha. Here we focus on the double-stranded (ds) RNA-activated protein kinase (PKR). PKR is activated during viral infection, including that of herpes simplex virus type 1 (HSV1), a virus suggested to be implicated in the development of AD, acting when present in brains of carriers of the type 4 allele of the apolipoprotein E gene. HSV1 is a dsDNA virus but it has genes on both strands of the genome, and from these genes complementary RNA molecules are transcribed. These could activate BACE1 expression by the PKR pathway. Here we demonstrate in HSV1-infected neuroblastoma cells, and in peripheral nervous tissue from HSV1-infected mice, that HSV1 activates PKR. Cloning BACE1 5′UTR upstream of a luciferase (luc) gene confirmed its inhibitory effect, which can be prevented by salubrinal, an inhibitor of the eIF2-alpha phosphatase PP1c. Treatment with the dsRNA analog poly (I∶C) mimicked the stimulatory effect exerted by salubrinal over BACE1 translation in the 5′UTR-luc construct and increased Aß production in HEK-APPsw cells. Summarizing, our data suggest that PKR activated in brain by HSV1 could play an important role in the development of AD.
Collapse
Affiliation(s)
- Gerard Ill-Raga
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Maestre AM, Garzón A, Rodríguez D. Equine torovirus (BEV) induces caspase-mediated apoptosis in infected cells. PLoS One 2011; 6:e20972. [PMID: 21698249 PMCID: PMC3115971 DOI: 10.1371/journal.pone.0020972] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 05/16/2011] [Indexed: 12/26/2022] Open
Abstract
Toroviruses are gastroenteritis causing agents that infect different animal species and humans. To date, very little is known about how toroviruses cause disease. Here, we describe for the first time that the prototype member of this genus, the equine torovirus Berne virus (BEV), induces apoptosis in infected cells at late times postinfection. Observation of BEV infected cells by electron microscopy revealed that by 24 hours postinfection some cells exhibited morphological characteristics of apoptotic cells. Based on this finding, we analyzed several apoptotic markers, and observed protein synthesis inhibition, rRNA and DNA degradation, nuclear fragmentation, caspase-mediated cleavage of PARP and eIF4GI, and PKR and eIF2α phosphorylation, all these processes taking place after peak virus production. We also determined that both cell death receptor and mitochondrial pathways are involved in the apoptosis process induced by BEV. BEV-induced apoptosis at late times postinfection, once viral progeny are produced, could facilitate viral dissemination in vivo and contribute to viral pathogenesis.
Collapse
Affiliation(s)
- Ana M. Maestre
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Ana Garzón
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
46
|
Goodman AG, Tanner BCW, Chang ST, Esteban M, Katze MG. Virus infection rapidly activates the P58(IPK) pathway, delaying peak kinase activation to enhance viral replication. Virology 2011; 417:27-36. [PMID: 21612809 DOI: 10.1016/j.virol.2011.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 04/27/2011] [Indexed: 01/06/2023]
Abstract
Previously we showed that the cellular protein P58(IPK) contributes to viral protein synthesis by decreasing the activity of the anti-viral protein, PKR. Here, we constructed a mathematical model to examine the P58(IPK) pathway and investigated temporal behavior of this biological system. We find that influenza virus infection results in the rapid activation of P58(IPK) which delays and reduces maximal PKR and eIF2α phosphorylation, leading to increased viral protein levels. We confirmed that the model could accurately predict viral and host protein levels at extended time points by testing it against experimental data. Sensitivity analysis of relative reaction rates describing P58(IPK) activity and the downstream proteins through which it functions helped identify processes that may be the most beneficial targets to thwart virus replication. Together, our study demonstrates how computational modeling can guide experimental design to further understand a specific metabolic signaling pathway during viral infection in a mammalian system.
Collapse
Affiliation(s)
- Alan G Goodman
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| | | | | | | | | |
Collapse
|
47
|
Liskova J, Knitlova J, Honner R, Melkova Z. Apoptosis and necrosis in vaccinia virus-infected HeLa G and BSC-40 cells. Virus Res 2011; 160:40-50. [PMID: 21605605 DOI: 10.1016/j.virusres.2011.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 11/15/2022]
Abstract
In most cells, vaccinia virus (VACV) infection is considered to cause a lytic cell death, an equivalent of necrosis. However, upon infection of the epithelial cell lines HeLa G and BSC-40 with VACV strain Western Reserve (WR), we have previously observed an increased activation of and activity attributable to caspases, a typical sign of apoptosis. In this paper, we have further analyzed the type of cell death in VACV-infected cells HeLa G and BSC-40. In a cell-based flow cytometric assay, we showed a specific activation of caspase-2 and 4 in HeLa G and BSC-40 cells infected with VACV, strain WR, while we did not find any effects of inhibitors of calpain and cathepsin D and E. The actual activity of the two caspases, but also of caspase-3, was then confirmed in lysates of infected HeLa G, but not in BSC-40 cells. Accordingly, poly(ADP)-ribose polymerase (PARP) cleavage was found increased only in infected HeLa G cells. Consequently, we have determined morphological features of apoptosis and/or activity of the executioner caspase-3 in infected HeLa G cells in situ, while only a background apoptosis was observed in infected BSC-40 cells. Finally, vaccination strains Dryvax and Praha were found to induce apoptosis in both HeLa G and BSC-40 cells, as characterized morphologically and by PARP cleavage. These findings may be important for understanding the differences in VACV-host interactions and post-vaccination complications in different individuals.
Collapse
Affiliation(s)
- Jana Liskova
- Department of Immunology and Microbiology, 1st Medical Faculty, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic
| | | | | | | |
Collapse
|
48
|
Myskiw C, Arsenio J, Booy EP, Hammett C, Deschambault Y, Gibson SB, Cao J. RNA species generated in vaccinia virus infected cells activate cell type-specific MDA5 or RIG-I dependent interferon gene transcription and PKR dependent apoptosis. Virology 2011; 413:183-93. [PMID: 21354589 DOI: 10.1016/j.virol.2011.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/08/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
RNA species produced during virus replication are pathogen-associated molecular patterns (PAMPs) triggering cellular innate immune responses including induction of type I interferon expression and apoptosis. Pattern recognition receptors (PRRs) for these RNAs include the retinoic acid-inducible gene I (RIG-I) like receptors (RLRs) RIG-I and melanoma differentiation associated gene 5 (MDA5) and the dsRNA dependent protein kinase (PKR). Currently, poxvirus PAMPs and their associated PRRs are not well characterized. We report that RNA species generated in vaccinia infected cells can activate MDA5 or RIG-I dependent interferon-β (IFN-β) gene transcription in a cell type-specific manner. These RNA species also induce the activation of apoptosis in a PKR dependent, but MDA5 and RIG-I independent, manner. Collectively our results demonstrate that RNA species generated during vaccinia virus replication are major PAMPs activating apoptosis and IFN-β gene transcription. Moreover, our results delineate the signaling pathways involved in the recognition of RNA-based poxvirus PAMPs.
Collapse
Affiliation(s)
- Chad Myskiw
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada R3T 2N2
| | | | | | | | | | | | | |
Collapse
|
49
|
Belguendouz H, Messaoudène D, Lahmar K, Ahmedi L, Medjeber O, Hartani D, Lahlou-Boukoffa O, Touil-Boukoffa C. Interferon-γ and nitric oxide production during Behçet uveitis: immunomodulatory effect of interleukin-10. J Interferon Cytokine Res 2011; 31:643-51. [PMID: 21510811 DOI: 10.1089/jir.2010.0148] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Uveitis is one of the major manifestations of Behçet Disease, a systemic inflammatory vasculitis. Our aim is to investigate in vivo and in vitro production of interferon (IFN)-γ and nitric oxide (NO) during Behçet uveitis (BU). Moreover, we evaluated the implication of IFN-γ and interleukin (IL)-10 in the regulation of NO production in vitro. Cytokines' concentrations were measured by ELISA, and NO levels were assessed by modified Griess's method. Our results showed that patients with active disease had significant elevation of IFN-γ and NO concentrations in both plasma and peripheral blood mononuclear cell culture supernatants compared with controls (P<0.01) or to patients with inactive disease (P<0.05). Further, IFN-γ induced significantly higher production of NO in cell culture supernatants, whereas IL-10 significantly reduced it (P<0.05). In conclusion, the elevated levels of IFN-γ in vivo and in vitro in patients with BU reflect the implication of this cytokine in the disease physiopathology. These results suggest that IFN-γ, through the induction of NO synthase 2 and the production of NO, is implicated in the genesis of the inflammatory process during active BU; whereas IL-10 seems to have protective properties.
Collapse
Affiliation(s)
- Houda Belguendouz
- Laboratoire de Biologie Cellulaire et Moléculaire, FSB-USTHB, Université Bab-Ezzouar, Algiers, Algeria
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cho H, Mukherjee S, Palasuberniam P, Pillow L, Bilgin B, Nezich C, Walton SP, Feig M, Chan C. Molecular mechanism by which palmitate inhibits PKR autophosphorylation. Biochemistry 2011; 50:1110-9. [PMID: 21192654 DOI: 10.1021/bi101923r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PKR (double-stranded RNA-activated protein kinase) is an important component of the innate immunity, antiviral, and apoptotic pathways. Recently, our group found that palmitate, a saturated fatty acid, is involved in apoptosis by reducing the autophosphorylation of PKR at the Thr451 residue; however, the molecular mechanism by which palmitate reduces PKR autophosphorylation is not known. Thus, we investigated how palmitate affects the phosphorylation of the PKR protein at the molecular and biophysical levels. Biochemical and computational studies show that palmitate binds to PKR, near the ATP-binding site, thereby inhibiting its autophosphorylation at Thr451 and Thr446. Mutation studies suggest that Lys296 and Asp432 in the ATP-binding site on the PKR protein are important for palmitate binding. We further confirmed that palmitate also interacts with other kinases, due to the conserved ATP-binding site. A better understanding of how palmitate interacts with the PKR protein, as well as other kinases, could shed light onto possible mechanisms by which palmitate mediates kinase signaling pathways that could have implications on the efficacy of current drug therapies that target kinases.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | | | | | | | | | | | | |
Collapse
|