1
|
Ristanović ES, Kokoškov NS, Crozier I, Kuhn JH, Gligić AS. A Forgotten Episode of Marburg Virus Disease: Belgrade, Yugoslavia, 1967. Microbiol Mol Biol Rev 2020; 84:e00095-19. [PMID: 32404328 PMCID: PMC7233485 DOI: 10.1128/mmbr.00095-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In 1967, several workers involved in poliomyelitis vaccine development and production fell ill at three different locations in Europe with a severe and often lethal novel disease associated with grivets (Chlorocebus aethiops) imported from Uganda. This disease was named Marburg virus disease (MVD) after the West German town of Marburg an der Lahn, where most human infections and deaths had been recorded. Consequently, the Marburg episode received the most scientific and media attention. Cases that occurred in Frankfurt am Main, West Germany, were also described in commonly accessible scientific literature, although they were less frequently cited than those pertaining to the Marburg infections. However, two infections occurring in a third location, in Belgrade, Yugoslavia, have seemingly been all but forgotten. Due in part to their absence in commonly used databases and in part to the fact that they were written in languages other than English, the important articles describing this part of the outbreak are very rarely cited. Here, we summarize this literature and correct published inaccuracies to remind a younger generation of scientists focusing on Marburg virus and its closest filoviral relatives of this important historical context. Importantly, and unfortunately, the three episodes of infection of 1967 still represent the best in-depth clinical look at MVD in general and in the context of "modern" medicine (fully resourced versus less-resourced capacity) in particular. Hence, each individual case of these episodes holds crucial information for health care providers who may be confronted with MVD today.
Collapse
Affiliation(s)
| | | | - Ian Crozier
- Integrated Research Facility at Fort Detrick, Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research supported by the National Cancer Institute, Frederick, Maryland, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Ana S Gligić
- Institute of Virology, Vaccines and Sera "Torlak," Belgrade, Serbia
| |
Collapse
|
2
|
DeWald LE, Dyall J, Sword JM, Torzewski L, Zhou H, Postnikova E, Kollins E, Alexander I, Gross R, Cong Y, Gerhardt DM, Johnson RF, Olinger GG, Holbrook MR, Hensley LE, Jahrling PB. The Calcium Channel Blocker Bepridil Demonstrates Efficacy in the Murine Model of Marburg Virus Disease. J Infect Dis 2018; 218:S588-S591. [PMID: 29982632 PMCID: PMC6249584 DOI: 10.1093/infdis/jiy332] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/27/2018] [Indexed: 11/14/2022] Open
Abstract
No therapeutics are approved for the treatment of filovirus infections. Bepridil, a calcium channel blocker developed for treating angina, was identified as a potent inhibitor of filoviruses in vitro, including Ebola and Marburg viruses, and Ebola virus in vivo. We evaluated the efficacy of bepridil in a lethal mouse model of Marburg virus disease. A dose of 12 mg/kg bepridil once or twice daily resulted in 80% or 90% survival, respectively. These data confirm bepridil's broad-spectrum anti-filovirus activity warranting further investigation of bepridil, or improved compounds with a similar mechanism, as a pan-filovirus therapeutic agent.
Collapse
Affiliation(s)
- Lisa Evans DeWald
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Julie Dyall
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Jennifer M Sword
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Lisa Torzewski
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Huanying Zhou
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Elena Postnikova
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Erin Kollins
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Isis Alexander
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Robin Gross
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Dawn M Gerhardt
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Gene G Olinger
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Lisa E Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Peter B Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
3
|
Babirye P, Musubika C, Kirimunda S, Downing R, Lutwama JJ, Mbidde EK, Weyer J, Paweska JT, Joloba ML, Wayengera M. Identity and validity of conserved B cell epitopes of filovirus glycoprotein: towards rapid diagnostic testing for Ebola and possibly Marburg virus disease. BMC Infect Dis 2018; 18:498. [PMID: 30285648 PMCID: PMC6171133 DOI: 10.1186/s12879-018-3409-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/23/2018] [Indexed: 11/13/2022] Open
Abstract
Background Ebolavirus and Marburgvirus are genera of the virus family Filoviridae. Filoviruses cause rare but fatal viral hemorrhagic fevers (VHFs) in remote villages of equatorial Africa with potential for regional and international spread. Point-of-care (POC) rapid diagnostic tests (RDTs) are critical for early epidemic detection, reponse and control. There are 2 RDTs for Zaire ebolavirus (EBOV), but not other Ebolavirus spp. or Marburg marburgvirus (MARV). We validate 3 conserved B cell epitopes of filovirus glycoprotein (GP) using ebola virus diseases (EVD) survivor samples, towards devising pan-filovirus RDTs. Methods In-silico Immuno-informatics:- (a) multiple and basic local alignments of amino-acid sequences of filovirus (4 Ebolavirus spp. & MARV) Gp1, 2 and epitope prediction and conservation analyses within context of ClusterW, BLAST-P and the immune epitope database analysis resource (IEDB-AR); alongside (b) in-vitro enzyme immuno-assays (EIAs) for SUDV Gp1, 2 antigen and host-specific antibodies (IgM and IgG) among 94 gamma irradiated EVD survivor serum and 9 negative controls. Results Linear B cell epitopes were present across the entire length of all Gp1, 2, most lying in the region between amino acids positioned 350 and 500. Three seperate epitopes 97/80_GAFFLYDRLAST, 39_YEAGEWAENCY and 500_CGLRQLANETTQALQLFLRATTELR (designated UG-Filo-Peptide− 1, 2 and 3 respectively) were conserved within all studied filovirus species Gp1, 2. Gp1, 2 host specific IgM levels were comparably low (av. ODs < 0.04 [95% CI: 0.02837 to 0.04033]) among the 9 negative controls and 57 survivor samples analyzed. Host specific IgG levels, on the other hand, were elevated (av. ODs > 1.7525 [95% CI: 0.3010 to 3.1352]) among the 92 survivor samples relative to the 9 negative controls (av. ODs < 0.2.321 [95% CI: -0.7596 to 0.5372]). Filovirus Gp1, 2 antigen was not detected [av. ODs < 0.20] within EVD survivor serum relative to recombinant protein positive controls [av. ODs = 0.50]. Conclusions These conserved B cell epitopes of filovirus Gp1, 2 and their derivative antibodies are promising for research and development of RDTs for EVD, with potential for extension to detect MVD. Electronic supplementary material The online version of this article (10.1186/s12879-018-3409-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peace Babirye
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P o Box 7072, Kampala, Uganda
| | - Carol Musubika
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P o Box 7072, Kampala, Uganda
| | - Samuel Kirimunda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P o Box 7072, Kampala, Uganda
| | - Robert Downing
- Arbovirology and Filovirology Laboratories/Centers for Disease Control-CDC, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Julian J Lutwama
- Arbovirology and Filovirology Laboratories/Centers for Disease Control-CDC, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Edward K Mbidde
- Arbovirology and Filovirology Laboratories/Centers for Disease Control-CDC, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
| | - Jacqueline Weyer
- Center for Emerging Zoonotic Diseases, National Institute for Communicable Diseases, Johanesburg, South Africa
| | - Janusz T Paweska
- Center for Emerging Zoonotic Diseases, National Institute for Communicable Diseases, Johanesburg, South Africa
| | - Moses L Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P o Box 7072, Kampala, Uganda
| | - Misaki Wayengera
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P o Box 7072, Kampala, Uganda. .,Unit of Genetics & Genomics & Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P o Box 7072, Kampala, Uganda.
| |
Collapse
|
4
|
Ueda MT, Kurosaki Y, Izumi T, Nakano Y, Oloniniyi OK, Yasuda J, Koyanagi Y, Sato K, Nakagawa S. Functional mutations in spike glycoprotein of Zaire ebolavirus associated with an increase in infection efficiency. Genes Cells 2017; 22:148-159. [PMID: 28084671 DOI: 10.1111/gtc.12463] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/29/2016] [Indexed: 01/23/2023]
Abstract
Ebola virus (EBOV) is extremely virulent, and its glycoprotein is necessary for viral entry. EBOV may adapt to its new host humans during outbreaks by acquiring mutations especially in glycoprotein, which allows EBOV to spread more efficiently. To identify these evolutionary selected mutations and examine their effects on viral infectivity, we used experimental-phylogenetic-structural interdisciplinary approaches. In evolutionary analysis of all available Zaire ebolavirus glycoprotein sequences, we detected two codon sites under positive selection, which are located near/within the region critical for the host-viral membrane fusion, namely alanine-to-valine and threonine-to-isoleucine mutations at 82 (A82V) and 544 (T544I), respectively. The fine-scale transmission dynamics of EBOV Makona variants that caused the 2014-2015 outbreak showed that A82V mutant was fixed in the population, whereas T544I was not. Furthermore, pseudotype assays for the Makona glycoprotein showed that the A82V mutation caused a small increase in viral infectivity compared with the T544I mutation. These findings suggest that mutation fixation in EBOV glycoprotein may be associated with their increased infectivity levels; the mutant with a moderate increase in infectivity will fix. Our findings showed that a driving force for Ebola virus evolution via glycoprotein may be a balance between costs and benefits of its virulence.
Collapse
Affiliation(s)
- Mahoko Takahashi Ueda
- Micro/Nano Technology Center, Tokai University, 411 Kitakaname, Hiratsuka, Kanagawa, 259-1193, Japan
| | - Yohei Kurosaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Taisuke Izumi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,CREST, Japan Science and Technology Agency, Saitama, 322-0012, Japan
| | - Yusuke Nakano
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Olamide K Oloniniyi
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Graduate School of Biomedical Sciences and Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Graduate School of Biomedical Sciences and Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,CREST, Japan Science and Technology Agency, Saitama, 322-0012, Japan
| | - So Nakagawa
- Micro/Nano Technology Center, Tokai University, 411 Kitakaname, Hiratsuka, Kanagawa, 259-1193, Japan.,Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
5
|
Hashiguchi T. [Molecular basis for negative-strand RNA virus entry and neutralization by antibodies]. Uirusu 2017; 67:69-78. [PMID: 29593155 DOI: 10.2222/jsv.67.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mononegaviruses are non-segmented negative-strand RNA viruses, and include measles, mumps, Marburg, and Ebola viruses. Measles virus and mumps virus, members of the family Paramyxoviridae, are immunotropic and neurotropic, respectively. Marburg virus and Ebola virus, members of the family Filoviridae, cause highly lethal hemorrhagic fever. In this paper, I summarize the recent structural and functional studies on the viral glycoproteins (GPs) of these viruses, which have shed light on virus entry and the humoral response. The structural and functional analyses of the interaction between viral GPs and receptors/antibodies also illuminate directions toward therapeutics against the viruses.
Collapse
Affiliation(s)
- Takao Hashiguchi
- Affiliation; Department of Virology, Faculty of medicine, Kyushu University
| |
Collapse
|
6
|
Park DJ, Dudas G, Wohl S, Goba A, Whitmer SLM, Andersen KG, Sealfon RS, Ladner JT, Kugelman JR, Matranga CB, Winnicki SM, Qu J, Gire SK, Gladden-Young A, Jalloh S, Nosamiefan D, Yozwiak NL, Moses LM, Jiang PP, Lin AE, Schaffner SF, Bird B, Towner J, Mamoh M, Gbakie M, Kanneh L, Kargbo D, Massally JLB, Kamara FK, Konuwa E, Sellu J, Jalloh AA, Mustapha I, Foday M, Yillah M, Erickson BR, Sealy T, Blau D, Paddock C, Brault A, Amman B, Basile J, Bearden S, Belser J, Bergeron E, Campbell S, Chakrabarti A, Dodd K, Flint M, Gibbons A, Goodman C, Klena J, McMullan L, Morgan L, Russell B, Salzer J, Sanchez A, Wang D, Jungreis I, Tomkins-Tinch C, Kislyuk A, Lin MF, Chapman S, MacInnis B, Matthews A, Bochicchio J, Hensley LE, Kuhn JH, Nusbaum C, Schieffelin JS, Birren BW, Forget M, Nichol ST, Palacios GF, Ndiaye D, Happi C, Gevao SM, Vandi MA, Kargbo B, Holmes EC, Bedford T, Gnirke A, Ströher U, Rambaut A, Garry RF, Sabeti PC. Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone. Cell 2015; 161:1516-26. [PMID: 26091036 PMCID: PMC4503805 DOI: 10.1016/j.cell.2015.06.007] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 11/29/2022]
Abstract
The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.
Collapse
Affiliation(s)
- Daniel J Park
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA.
| | - Gytis Dudas
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Shirlee Wohl
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | - Shannon L M Whitmer
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Kristian G Andersen
- Scripps Translational Science Institute, The Scripps Research Institute, 3344 N Torrey Pines Court, La Jolla, CA 92037, USA
| | - Rachel S Sealfon
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jason T Ladner
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Jeffrey R Kugelman
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | | | - Sarah M Winnicki
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - James Qu
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Stephen K Gire
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | | | - Dolo Nosamiefan
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Nathan L Yozwiak
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Lina M Moses
- Tulane University, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | - Pan-Pan Jiang
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Aaron E Lin
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Stephen F Schaffner
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Brian Bird
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Jonathan Towner
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Mambu Mamoh
- Kenema Government Hospital, Kenema, Sierra Leone
| | | | | | - David Kargbo
- Kenema Government Hospital, Kenema, Sierra Leone
| | | | | | - Edwin Konuwa
- Kenema Government Hospital, Kenema, Sierra Leone
| | | | | | | | - Momoh Foday
- Kenema Government Hospital, Kenema, Sierra Leone
| | | | - Bobbie R Erickson
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Tara Sealy
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Dianna Blau
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Christopher Paddock
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Aaron Brault
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Brian Amman
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Jane Basile
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Scott Bearden
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Jessica Belser
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Eric Bergeron
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Shelley Campbell
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Ayan Chakrabarti
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Kimberly Dodd
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Mike Flint
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Aridth Gibbons
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Christin Goodman
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - John Klena
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Laura McMullan
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Laura Morgan
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Brandy Russell
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Johanna Salzer
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Angela Sanchez
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - David Wang
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Irwin Jungreis
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | - Andrey Kislyuk
- DNAnexus, 1975 West El Camino Real, Suite 101, Mountain View, CA 94040, USA
| | - Michael F Lin
- DNAnexus, 1975 West El Camino Real, Suite 101, Mountain View, CA 94040, USA
| | - Sinead Chapman
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Bronwyn MacInnis
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Ashley Matthews
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - James Bochicchio
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Chad Nusbaum
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - John S Schieffelin
- Tulane University, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | - Bruce W Birren
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Marc Forget
- Médecins Sans Frontières, Rue de l'Arbre Bénit 46, 1050 Bruxelles, Belgium
| | - Stuart T Nichol
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Gustavo F Palacios
- US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Daouda Ndiaye
- Université Cheikh Anta Diop, BP 5005, Dakar, Sénégal
| | - Christian Happi
- Redeemers University Nigeria, KM 46 Lagos-Ibadan Expressway, Redemption City, Ogun State, Nigeria
| | - Sahr M Gevao
- University of Sierra Leone, A.J. Momoh St, Tower Hill, Freetown, Sierra Leone
| | - Mohamed A Vandi
- Sierra Leone Ministry of Health and Sanitation, Youyi Building, Freetown, Sierra Leone
| | - Brima Kargbo
- Sierra Leone Ministry of Health and Sanitation, Youyi Building, Freetown, Sierra Leone
| | - Edward C Holmes
- University of Sydney, Johns Hopkins Drive, Camperdown NSW 2050, Australia
| | - Trevor Bedford
- Fred Hutchinson Cancer Research Center, 110 Fairview Avenue North, Seattle, WA 98109, USA
| | - Andreas Gnirke
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - Ute Ströher
- National Center for Emerging and Zoonotic Infectious Diseases and National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop-G14, Atlanta, GA 30333, USA
| | - Andrew Rambaut
- Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK; Centre for Immunology, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK; Fogarty International Center, National Institutes of Health, 31 Center Drive, MSC 2220 Bethesda, MD 20892, USA.
| | - Robert F Garry
- Tulane University, 1430 Tulane Avenue, SL-38, New Orleans, LA 70112, USA
| | - Pardis C Sabeti
- Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA; Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
The crux and crust of ebolavirus: Analysis of genome sequences and glycoprotein gene. Biochem Biophys Res Commun 2015; 463:756-61. [PMID: 26051281 DOI: 10.1016/j.bbrc.2015.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/02/2015] [Indexed: 01/07/2023]
Abstract
The recent 2013-15 epidemic of Ebola virus disease (EVD) has initiated extensive sequencing and analysis of ebolavirus genomes. All ebolavirus genomes available until December 2014 have been collated and analyzed in this study to obtain phylogenetic relationship and uncover the variations amongst them. The terminal 'leader' and 'trailer' nucleotide sequences of the genomes were omitted and analysis of the intermediate region accommodating the sole seven genes (hepta-CDS region) of the virus showed relative stability of the genome, including the ones isolated from the current epidemic. The genome information was scrutinized to detect the variation in the surface glycoprotein gene and annotate its three protein products, resulting from its atypical transcription. This study will make an easy understanding of the genomes for those who desire to exploit the genome sequences for different investigations in EVD.
Collapse
|
8
|
Elshabrawy HA, Erickson TB, Prabhakar BS. Ebola virus outbreak, updates on current therapeutic strategies. Rev Med Virol 2015; 25:241-53. [PMID: 25962887 PMCID: PMC7169053 DOI: 10.1002/rmv.1841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/26/2022]
Abstract
Filoviruses are enveloped negative‐sense single‐stranded RNA viruses, which include Ebola and Marburg viruses, known to cause hemorrhagic fever in humans with a case fatality of up to 90%. There have been several Ebola virus outbreaks since the first outbreak in the Democratic Republic of Congo in 1976 of which, the recent 2013–2015 epidemic in Guinea, Liberia, and Sierra Leone is the largest in recorded history. Within a few months of the start of the outbreak in December 2013, thousands of infected cases were reported with a significant number of deaths. As of March 2015, according to the Centers for Disease Control and Prevention, there have been nearly 25 000 suspected cases, with 15 000 confirmed by laboratory testing, and over 10 000 deaths. The large number of cases and the high mortality rate, combined with the lack of effective Food and Drug Administration‐approved treatments, necessitate the development of potent and safe therapeutic measures to combat the current and future outbreaks. Since the beginning of the outbreak, there have been considerable efforts to develop and characterize protective measures including vaccines and antiviral small molecules, and some have proven effective in vitro and in animal models. Most recently, a cocktail of monoclonal antibodies has been shown to be highly effective in protecting non‐human primates from Ebola virus infection. In this review, we will discuss what is known about the nature of the virus, phylogenetic classification, genomic organization and replication, disease transmission, and viral entry and highlight the current approaches and efforts, in the development of therapeutics, to control the outbreak. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hatem A Elshabrawy
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA.,Department of Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Timothy B Erickson
- Department of Emergency Medicine, University of Illinois College of Medicine, Chicago, IL, USA.,Center for Global Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA.,Center for Global Health, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Song J, Wolinsky M, Wren M, Burr T, Li PE, Doggett N. Forensic signatures for Marburgviruses. Forensic Sci Int 2013; 233:338-47. [PMID: 24314539 DOI: 10.1016/j.forsciint.2013.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/30/2013] [Indexed: 11/30/2022]
Abstract
Marburgvirus is one of the most important hemorrhagic fever viruses with extremely high infectivity and fatality rate (~90%). It is transmitted easily in human populations through a respiratory route and therefore considered as a major biothreat agent. Although detection assays have been developed, no assay is available for forensic analysis. Here we report development of forensic assays for Marburgvirus. We performed detailed phylogenetic analysis of strains and isolates from all known Marburg virus outbreaks as well as from several laboratory strains and identified canonical SNPs for all major clades (outbreaks) and strains. TaqMan-MGB allelic discrimination assays targeting these SNPs were designed and experimentally screened against synthetic RNA templates and genomic RNAs. A total of 45 assays were validated to provide 100% coverage of the clades (outbreaks) and 91% at the strain level (21 out of the 23 targeted Marburgvirus strains) with built-in redundancy for increased robustness. Using these validated assays, we were able to provide accurate forensic analysis on 3 "unknown" Marburgviruses. These high-resolution forensic assays allow rapid and accurate genotyping of Marburgviruses for forensic investigations.
Collapse
Affiliation(s)
- Jian Song
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | | | | | | | | | | |
Collapse
|
10
|
Cellular factors implicated in filovirus entry. Adv Virol 2013; 2013:487585. [PMID: 23365575 PMCID: PMC3556833 DOI: 10.1155/2013/487585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022] Open
Abstract
Although filoviral infections are still occurring in different parts of the world, there are no effective preventive or treatment strategies currently available against them. Not only do filoviruses cause a deadly infection, but they also have the potential of being used as biological weapons. This makes it imperative to comprehensively study these viruses in order to devise effective strategies to prevent the occurrence of these infections. Entry is the foremost step in the filoviral replication cycle and different studies have reported the involvement of a myriad of cellular factors including plasma membrane components, cytoskeletal proteins, endosomal components, and cytosolic factors in this process. Signaling molecules such as the TAM family of receptor tyrosine kinases comprising of Tyro3, Axl, and Mer have also been implicated as putative entry factors. Additionally, filoviruses are suggested to bind to a common receptor and recent studies have proposed T-cell immunoglobulin and mucin domain 1 (TIM-1) and Niemann-Pick C1 (NPC1) as potential receptor candidates. This paper summarizes the existing literature on filoviral entry with a special focus on cellular factors involved in this process and also highlights some fundamental questions. Future research aimed at answering these questions could be very useful in designing novel antiviral therapeutics.
Collapse
|
11
|
Peterson AT, Holder MT. Phylogenetic assessment of filoviruses: how many lineages of Marburg virus? Ecol Evol 2012; 2:1826-33. [PMID: 22957185 PMCID: PMC3433987 DOI: 10.1002/ece3.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 11/14/2022] Open
Abstract
Filoviruses have to date been considered as consisting of one diverse genus (Ebola viruses) and one undifferentiated genus (Marburg virus). We reconsider this idea by means of detailed phylogenetic analyses of sequence data available for the Filoviridae: using coalescent simulations, we ascertain that two Marburg isolates (termed the "RAVN" strain) represent a quite-distinct lineage that should be considered in studies of biogeography and host associations, and may merit recognition at the level of species. In contrast, filovirus isolates recently obtained from bat tissues are not distinct from previously known strains, and should be considered as drawn from the same population. Implications for understanding the transmission geography and host associations of these viruses are discussed.
Collapse
Affiliation(s)
- A Townsend Peterson
- Department of Ecology and Evolutionary Biology, The University of Kansas Lawrence, Kansas, 66045
| | | |
Collapse
|
12
|
Takada A. Filovirus tropism: cellular molecules for viral entry. Front Microbiol 2012; 3:34. [PMID: 22363323 PMCID: PMC3277274 DOI: 10.3389/fmicb.2012.00034] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 01/19/2012] [Indexed: 11/13/2022] Open
Abstract
In human and non-human primates, filoviruses (Ebola and Marburg viruses) cause severe hemorrhagic fever. Recently, other animals such as pigs and some species of fruit bats have also been shown to be susceptible to these viruses. While having a preference for some cell types such as hepatocytes, endothelial cells, dendritic cells, monocytes, and macrophages, filoviruses are known to be pantropic in infection of primates. The envelope glycoprotein (GP) is responsible for both receptor binding and fusion of the virus envelope with the host cell membrane. It has been demonstrated that filovirus GP interacts with multiple molecules for entry into host cells, whereas none of the cellular molecules so far identified as a receptor/co-receptor fully explains filovirus tissue tropism and host range. Available data suggest that the mucin-like region (MLR) on GP plays an important role in attachment to the preferred target cells, whose infection is likely involved in filovirus pathogenesis, whereas the MLR is not essential for the fundamental function of the GP in viral entry into cells in vitro. Further studies elucidating the mechanisms of cellular entry of filoviruses may shed light on the development of strategies for prophylaxis and treatment of Ebola and Marburg hemorrhagic fevers.
Collapse
Affiliation(s)
- Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University Sapporo, Japan
| |
Collapse
|
13
|
Nakayama E, Tomabechi D, Matsuno K, Kishida N, Yoshida R, Feldmann H, Takada A. Antibody-dependent enhancement of Marburg virus infection. J Infect Dis 2011; 204 Suppl 3:S978-85. [PMID: 21987779 DOI: 10.1093/infdis/jir334] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Marburg virus (MARV) and Ebola virus (EBOV) cause severe hemorrhagic fever in primates. Earlier studies demonstrated that antibodies to particular epitopes on the glycoprotein (GP) of EBOV enhanced virus infectivity in vitro. METHODS To investigate this antibody-dependent enhancement (ADE) in MARV infection, we produced mouse antisera and monoclonal antibodies (mAbs) to the GPs of MARV strains Angola and Musoke. RESULTS The infectivity of vesicular stomatitis virus pseudotyped with Angola GP in K562 cells was significantly enhanced in the presence of Angola GP antisera, whereas only minimal ADE activity was seen with Musoke GP antisera. This difference correlated with the percentage of hybridoma clones producing infectivity-enhancing mAbs. Using mAbs to MARV GP, we identified 3 distinct ADE epitopes in the mucinlike region on Angola GP. Interestingly, some of these antibodies bound to both Angola and Musoke GPs but showed significantly higher ADE activity for strain Angola. ADE activity depended on epitopes in the mucinlike region and glycine at amino acid position 547, present in the Angola but absent in the Musoke GP. CONCLUSIONS These results suggest a possible link between ADE and MARV pathogenicity and provide new insights into the mechanisms underlying ADE entry of filoviruses.
Collapse
Affiliation(s)
- Eri Nakayama
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Characterization of the receptor-binding domain of Ebola glycoprotein in viral entry. Virol Sin 2011; 26:156-70. [PMID: 21667336 PMCID: PMC7091247 DOI: 10.1007/s12250-011-3194-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/25/2011] [Indexed: 11/23/2022] Open
Abstract
Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality. Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells, followed by fusion of virus-cell membrane also mediated by GP. Using an human immunodeficiency virus (HIV)-based pseudotyping system, the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions. We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry. An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry. It was found that R64 and K95 are involved in receptor binding. In contrast, some residues such as I170 are important for viral entry, but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data, suggesting that these residues are involved in post-binding steps of viral entry. Furthermore, our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.
Collapse
|
15
|
Abstract
Marburgviruses are zoonotic pathogens that cause lethal hemorrhagic fever in humans and nonhuman primates. However, they do not cause lethal disease in immunocompetent mice unless they are adapted to this species. The adaptation process can therefore provide insight into the specific virus-host interactions that determine virulence. In primate cells, the Lake Victoria marburgvirus Musoke strain (MARV) VP40 matrix protein antagonizes alpha/beta interferon (IFN-α/β) and IFN-γ signaling by inhibiting the activation of the cellular tyrosine kinase Jak1. Here, VP40 from the Ravn strain (RAVV VP40)-from a distinct Marburg virus clade-is demonstrated to also inhibit IFN signaling in human cells. However, neither MARV nor RAVV VP40 effectively inhibited IFN-signaling in mouse cells, as assessed by assays of the antiviral effects of IFN-α/β and the IFN-α/β-induced phosphorylation of Jak1, STAT1, and STAT2. In contrast, the VP40 from a mouse-adapted RAVV (maRAVV) did inhibit IFN signaling. Effective Jak1 inhibition correlated with the species from which the cells were derived and did not depend upon whether Jak1 was of human or mouse origin. Of the seven amino acid changes that accumulated in VP40 during mouse adaptation, two (V57A and T165A) are sufficient to allow efficient IFN signaling antagonism by RAVV VP40 in mouse cells. The same two changes also confer efficient IFN antagonist function upon MARV VP40 in mouse cells. The mouse-adaptive changes did not affect the budding of RAVV VP40 in mouse cells, suggesting that this second major function of VP40 did not undergo adaptation. These data identify an apparent determinant of RAVV host range and virulence and define specific genetic determinants of this function.
Collapse
|
16
|
Enzyme-linked immunosorbent assay for detection of filovirus species-specific antibodies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1723-8. [PMID: 20861331 DOI: 10.1128/cvi.00170-10] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several enzyme-linked immunosorbent assays (ELISAs) for the detection of filovirus-specific antibodies have been developed. However, diagnostic methods to distinguish antibodies specific to the respective species of filoviruses, which provide the basis for serological classification, are not readily available. We established an ELISA using His-tagged secreted forms of the transmembrane glycoproteins (GPs) of five different Ebola virus (EBOV) species and one Marburg virus (MARV) strain as antigens for the detection of filovirus species-specific antibodies. The GP-based ELISA was evaluated by testing antisera collected from mice immunized with virus-like particles as well as from humans and nonhuman primates infected with EBOV or MARV. In our ELISA, little cross-reactivity of IgG antibodies was observed in most of the mouse antisera. Although sera and plasma from some patients and monkeys showed notable cross-reactivity with the GPs from multiple filovirus species, the highest reactions of IgG were uniformly detected against the GP antigen homologous to the virus species that infected individuals. We further confirmed that MARV-specific IgM antibodies were specifically detected in specimens collected from patients during the acute phase of infection. These results demonstrate the usefulness of our ELISA for diagnostics as well as ecological and serosurvey studies.
Collapse
|
17
|
Development and evaluation of a simple assay for Marburg virus detection using a reverse transcription-loop-mediated isothermal amplification method. J Clin Microbiol 2010; 48:2330-6. [PMID: 20421440 DOI: 10.1128/jcm.01224-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marburg virus (MARV) causes a severe hemorrhagic fever in humans with a high mortality rate. The rapid and accurate identification of the virus is required to appropriately provide infection control and outbreak management. Here, we developed and evaluated a one-step reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the rapid and simple detection of MARV. By combining two sets of primers specific for the Musoke and Ravn genetic lineages, a multiple RT-LAMP assay detected MARV strains of both lineages, and no cross-reactivity with other hemorrhagic fever viruses (Ebola virus and Lassa virus) was observed. The assay could detect 10(2) copies of the viral RNA per tube within 40 min by real-time monitoring of the turbidities of the reaction mixtures. The assay was further evaluated using viral RNA extracted from clinical specimens collected in the 2005 Marburg hemorrhagic fever outbreak in Angola and yielded positive results for samples containing MARV at greater than 10(4) 50% tissue culture infective doses/ml, exhibiting 78% (14 of 18 samples positive) consistency with the results of a reverse transcription-PCR assay carried out in the field laboratory. The results obtained by both agarose gel electrophoresis and naked-eye judgment indicated that the RT-LAMP assay developed in this study is an effective tool for the molecular detection of MARV. Furthermore, it seems suitable for use for field diagnostics or in laboratories in areas where MARV is endemic.
Collapse
|
18
|
Abstract
The glycoprotein (GP) of Ebola is the sole structural protein that forms the spikes on the viral envelope. The GP contains two subunits, GP1 and GP2, linked by a disulfide bond, which are responsible for receptor binding and membrane fusion, respectively. In this study, the full length of GP gene of Ebola Zaire species, 2028 base pairs in length, was synthesized using 38 overlapping oligonucleotides by multiple rounds of polymerase chain reaction (PCR). The synthesized GP gene was shown to be efficiently expressed in mammalian cells. Furthermore, an efficient HIV-based pseudotyping system was developed using the synthetic GP gene, providing a safe approach to dissecting the entry mechanism of Ebola viruses. Using this pseudotyping system and mutational analysis, the role of the charged residues in the GP2 helical regions was examined. It was found that substitutions of the most charged residues in the regions did not adversely affect GP expression, processing, or viral incorporation, however, most of the mutations greatly impaired the ability of GP to mediate efficient viral infection. These results demonstrate that these charged residues of GP2 play an important role in GP-mediated Ebola entry into its host cells. We propose that these charged residues are involved in forming the intermediate conformation(s) of GP in membrane fusion and Ebola entry.
Collapse
|
19
|
Abstract
Mucin-like regions contribute to pathogenicity in a variety of negative-stranded RNA viruses. These regions are characterized by a preponderance of O-linked glycosylation. They evolve exceptionally rapidly yet maintain their function as pathogenicity factors. Two hypotheses have been proposed to explain this evolutionary conundrum of phenotypic stability in the face of extreme genetic divergence: strong positive selection and relaxation of purifying selection. We determined the strength and direction of selection codon by codon across genes containing these regions and found that purifying selection is relaxed over the mucin-like regions relative to the genes in which they are found. This suggests that so long as these regions maintain sufficient O-linked glycosylation, they are free to evolve rapidly without loss of function as pathogenicity factors.
Collapse
|
20
|
Hughes AL. Micro-scale signature of purifying selection in Marburg virus genomes. Gene 2007; 392:266-72. [PMID: 17306473 DOI: 10.1016/j.gene.2006.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 11/27/2022]
Abstract
In the seven protein-coding genes in the Marburg virus (MARV) genome, the synonymous nucleotide diversity substantially exceeded the nonsynonymous nucleotide diversity, indicating strong purifying selection. Likewise, there was evidence of purifying selection on 5'UTR and 3'UTR, where nucleotide diversity (pi) was significantly less than piS in the coding regions. Nonsynonymous polymorphic sites showed significantly reduced mean gene diversity in comparison to other polymorphic sites, indicating that purifying selection at certain slightly deleterious nonsynonymous polymorphisms is ongoing. Moreover, nonsynonymous polymorphic sites showed significantly reduced gene diversity in comparison to adjacent synonymous sites, even though the vast majority of such adjacent synonymous sites were in the same codon or an adjacent codon. Thus purifying selection, in conjunction with recombination and/or backward mutation, can act to break up linkage relationships at a micro-scale in the MARV genome. The ability of purifying selection to break up linkage between synonymous and nonsynonymous polymorphisms on such a fine scale has not been reported in any other genome.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Bldg., 700 Sumter St., Columbia, SC 29208, USA.
| |
Collapse
|
21
|
Abstract
Marburg (MARV) and Ebola viruses (EBOV) emerged from the rainforests of Central Africa more than 30 years ago causing outbreaks of severe and, usually, fatal hemorrhagic fever. EBOV has garnered the lion's share of the attention, fueled by the higher frequency of EBOV outbreaks, high mortality rates and importation into the USA, documented in such popular works as the best-selling novel 'The Hot Zone'. However, recent large outbreaks of hundreds of cases of MARV infection in the Democratic Republic of the Congo and Angola with case fatalities approaching 90% dramatically highlight its lethal potential. Although no vaccines or antiviral drugs for MARV are currently available, remarkable progress has been made over the last few years in developing potential countermeasures against MARV in nonhuman primate models. In particular, a vaccine based on attenuated recombinant vesicular stomatitis virus was recently shown to have both preventive and postexposure efficacy.
Collapse
Affiliation(s)
- Daniel G Bausch
- Department of Tropical Medicine, SL-17, Tulane School of Public Health and Tropical Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | |
Collapse
|
22
|
Daddario-DiCaprio KM, Geisbert TW, Geisbert JB, Ströher U, Hensley LE, Grolla A, Fritz EA, Feldmann F, Feldmann H, Jones SM. Cross-protection against Marburg virus strains by using a live, attenuated recombinant vaccine. J Virol 2006; 80:9659-66. [PMID: 16973570 PMCID: PMC1617222 DOI: 10.1128/jvi.00959-06] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marburg virus (MARV) has been associated with sporadic episodes of hemorrhagic fever, including a recent highly publicized outbreak in Angola that produced severe disease and significant mortality in infected patients. MARV is also considered to have potential as a biological weapon. Recently, we reported the development of a promising attenuated, replication-competent vaccine against MARV based on recombinant vesicular stomatitis virus (VSV) expressing the glycoprotein of the Musoke strain of MARV (VSVDeltaG/MARVGP-Musoke). We used this vaccine to demonstrate complete protection of cynomolgus monkeys against a homologous MARV challenge. While these results are highly encouraging, an effective vaccine would need to confer protection against all relevant strains of MARV. Here, we evaluated the protective efficacy of the VSVDeltaG/MARVGP-Musoke vaccine against two heterologous MARV strains, the seemingly more pathogenic Angola strain and the more distantly related Ravn strain. In this study, seven cynomolgus monkeys were vaccinated with the VSVDeltaG/MARVGP-Musoke vector. Three of these animals were challenged with the Angola strain, three with the Ravn strain, and a single animal with the Musoke strain of MARV. Two animals served as controls and were each injected with a nonspecific VSV vector; these controls were challenged with the Angola and Ravn strains, respectively. Both controls succumbed to challenge by day 8. However, none of the specifically vaccinated animals showed any evidence of illness either from the vaccination or from the MARV challenges and all of these animals survived. These data suggest that the VSVDeltaG/MARVGP-Musoke vaccine should be sufficient to protect against all known MARV strains.
Collapse
|
23
|
Manicassamy B, Wang J, Rumschlag E, Tymen S, Volchkova V, Volchkov V, Rong L. Characterization of Marburg virus glycoprotein in viral entry. Virology 2006; 358:79-88. [PMID: 16989883 DOI: 10.1016/j.virol.2006.06.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 05/25/2006] [Accepted: 06/01/2006] [Indexed: 11/26/2022]
Abstract
One major determinant of host tropism for filoviruses is viral glycoprotein (GP), which is involved in receptor binding and viral entry. Compared to Ebola GP (EGP), Marburg GP (MGP) is less well characterized in viral entry. In this study, using a human immunodeficiency virus-based pseudotyped virus as a surrogate system, we have characterized the role of MGP in viral entry. We have shown that like EGP, the mucin-like region of MGP (289-501) is not essential for virus entry. We have developed a viral entry interference assay for filoviruses, and using this assay, we have demonstrated that transfection of EGP or MGP in target cells can interfere with EGP/HIV and MGP/HIV pseudotyped virus entry in a dose-dependent manner. These results are consistent with the notion that Ebola and Marburg viruses use the same or a related host molecule(s) for viral entry. Substitutions of the non-conserved residues in MGP1 did not impair MGP-mediated viral entry. Unlike that of EGP1, individual substitutions of many conserved residues of MGP1 exerted severe defects in MGP expression, incorporation to HIV virions, and thus its ability to mediate viral entry. These results indicate that MGP is more sensitive to substitutions of the conserved residues, suggesting that MGP may fold differently from EGP.
Collapse
Affiliation(s)
- Balaji Manicassamy
- Department of Microbiology and Immunology, College of Medicine Research Building, University of Illinois at Chicago, 8133 COMRB, 909 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Towner JS, Khristova ML, Sealy TK, Vincent MJ, Erickson BR, Bawiec DA, Hartman AL, Comer JA, Zaki SR, Ströher U, Gomes da Silva F, del Castillo F, Rollin PE, Ksiazek TG, Nichol ST. Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J Virol 2006; 80:6497-516. [PMID: 16775337 PMCID: PMC1488971 DOI: 10.1128/jvi.00069-06] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In March 2005, the Centers for Disease Control and Prevention (CDC) investigated a large hemorrhagic fever (HF) outbreak in Uige Province in northern Angola, West Africa. In total, 15 initial specimens were sent to CDC, Atlanta, Ga., for testing for viruses associated with viral HFs known to be present in West Africa, including ebolavirus. Marburgvirus was also included despite the fact that the origins of all earlier outbreaks were linked directly to East Africa. Surprisingly, marburgvirus was confirmed (12 of 15 specimens) as the cause of the outbreak. The outbreak likely began in October 2004 and ended in July 2005, and it included 252 cases and 227 (90%) fatalities (report from the Ministry of Health, Republic of Angola, 2005), making it the largest Marburg HF outbreak on record. A real-time quantitative reverse transcription-PCR assay utilized and adapted during the outbreak proved to be highly sensitive and sufficiently robust for field use. Partial marburgvirus RNA sequence analysis revealed up to 21% nucleotide divergence among the previously characterized East African strains, with the most distinct being Ravn from Kenya (1987). The Angolan strain was less different ( approximately 7%) from the main group of East African marburgviruses than one might expect given the large geographic separation. To more precisely analyze the virus genetic differences between outbreaks and among viruses within the Angola outbreak itself, a total of 16 complete virus genomes were determined, including those of the virus isolates Ravn (Kenya, 1987) and 05DRC, 07DRC, and 09DRC (Democratic Republic of Congo, 1998) and the reference Angolan virus isolate (Ang1379v). In addition, complete genome sequences were obtained from RNAs extracted from 10 clinical specimens reflecting various stages of the disease and locations within the Angolan outbreak. While the marburgviruses exhibit high overall genetic diversity (up to 22%), only 6.8% nucleotide difference was found between the West African Angolan viruses and the majority of East African viruses, suggesting that the virus reservoir species in these regions are not substantially distinct. Remarkably few nucleotide differences were found among the Angolan clinical specimens (0 to 0.07%), consistent with an outbreak scenario in which a single (or rare) introduction of virus from the reservoir species into the human population was followed by person-to-person transmission with little accumulation of mutations. This is in contrast to the 1998 to 2000 marburgvirus outbreak, where evidence of several virus genetic lineages (with up to 21% divergence) and multiple virus introductions into the human population was found.
Collapse
Affiliation(s)
- Jonathan S Towner
- Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G14, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang D, Hevey M, Juompan LY, Trubey CM, Raja NU, Deitz SB, Woraratanadharm J, Luo M, Yu H, Swain BM, Moore KM, Dong JY. Complex adenovirus-vectored vaccine protects guinea pigs from three strains of Marburg virus challenges. Virology 2006; 353:324-32. [PMID: 16820184 DOI: 10.1016/j.virol.2006.05.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 04/13/2006] [Accepted: 05/25/2006] [Indexed: 11/27/2022]
Abstract
The Marburg virus (MARV), an African filovirus closely related to the Ebola virus, causes a deadly hemorrhagic fever in humans, with up to 90% mortality. Currently, treatment of disease is only supportive, and no vaccines are available to prevent spread of MARV infections. In order to address this need, we have developed and characterized a novel recombinant vaccine that utilizes a single complex adenovirus-vectored vaccine (cAdVax) to overexpress a MARV glycoprotein (GP) fusion protein derived from the Musoke and Ci67 strains of MARV. Vaccination with the cAdVaxM(fus) vaccine led to efficient production of MARV-specific antibodies in both mice and guinea pigs. Significantly, guinea pigs vaccinated with at least 5 x 10(7) pfu of cAdVaxM(fus) vaccine were 100% protected against lethal challenges by the Musoke, Ci67 and Ravn strains of MARV, making it a vaccine with trivalent protective efficacy. Therefore, the cAdVaxM(fus) vaccine serves as a promising vaccine candidate to prevent and contain multi-strain infections by MARV.
Collapse
Affiliation(s)
- Danher Wang
- Division of Bio-defense Vaccines, GenPhar Inc., 871 Lowcountry Blvd., Mount Pleasant, SC 29464, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sanchez A, Rollin PE. Complete genome sequence of an Ebola virus (Sudan species) responsible for a 2000 outbreak of human disease in Uganda. Virus Res 2005; 113:16-25. [PMID: 16139097 DOI: 10.1016/j.virusres.2005.03.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/16/2005] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
The entire genomic RNA of the Gulu (Uganda 2000) strain of Ebola virus was sequenced and compared to the genomes of other filoviruses. This data represents the first comprehensive genetic analysis for a representative isolate of the Sudan species of Ebola virus. The genome organization of the Sudan species is nearly identical to that of the Zaire species, but the presence of a gene overlap (between GP and VP30 genes) and a longer trailer sequence distinguish it from that of the Reston species. As has been observed with other filoviruses, stemloop structures were predicted to form at the 5' end of Ebola Sudan mRNA molecules, and the genomic RNA termini showed a high degree of sequence complimentarity. Comparisons of the amino acid sequences of encoded gene products shows that there is a comparable level of identity or similarity between Ebola virus species, with Sudan and Zaire actually showing a slightly closer relationship to the Reston species than to one another. These comparisons also indicated that the VP24 is the most conserved Ebola virus protein (followed closely by the VP40 and L proteins), while the GP is the least conserved gene product. The most divergent regions were seen in the C-terminus of GP1 (mucin-like region) and within the C-terminal third of the nucleoprotein sequence.
Collapse
Affiliation(s)
- Anthony Sanchez
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road N.E., Building 15, Atlanta, GA 30333, USA.
| | | |
Collapse
|
27
|
Abstract
Biologic principles and explicit assumptions reduce the range of possibilities in identifying the reservoir of filoviruses Ebola and Marburg viruses are maintained in unknown reservoir species; spillover into human populations results in occasional human cases or epidemics. We attempted to narrow the list of possibilities regarding the identity of those reservoir species. We made a series of explicit assumptions about the reservoir: it is a mammal; it supports persistent, largely asymptomatic filovirus infections; its range subsumes that of its associated filovirus; it has coevolved with the virus; it is of small body size; and it is not a species that is commensal with humans. Under these assumptions, we developed priority lists of mammal clades that coincide distributionally with filovirus outbreak distributions and compared these lists with those mammal taxa that have been tested for filovirus infection in previous epidemiologic studies. Studying the remainder of these taxa may be a fruitful avenue for pursuing the identity of natural reservoirs of filoviruses.
Collapse
|
28
|
Volchkov VE, Volchkova VA, Dolnik O, Feldmann H, Klenk HD. Polymorphism of Filovirus Glycoproteins. Adv Virus Res 2005; 64:359-81. [PMID: 16139600 DOI: 10.1016/s0065-3527(05)64011-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Viktor E Volchkov
- Biologie des Filovirus, Claude Bernard University Lyon, INSERM U412 69365 Lyon, France
| | | | | | | | | |
Collapse
|
29
|
Sorokin AV, Kazachinskaia EI, Ivanova AV, Kachko AV, Netesov SV, Bukreyev AA, Loktev VB, Razumov IA. Mapping of two dominant sites of VP35 of Marburg virus. Viral Immunol 2003; 15:481-92. [PMID: 12479397 DOI: 10.1089/088282402760312359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Five types of anti-VP35 monoclonal antibodies (MAbs), four immune sera against Marburg virus (MBGV), and 11 overlapping recombinant VP35 fragments were used to map the epitopes for VP35 of MBGV. The purified full-size recombinant VP35 was highly immunogenic and retained the B-cell epitopes that were identical to those of the viral VP35. Two major sites on VP35 and a set of truncated VP35 fragments were found by use of an enzyme immunoassay and immunoblot. Site I was located in a region between amino acids 1 and 174 of the VP35 sequence, and only polyclonal antibodies (PAbs) against MBGV recognized epitopes at this site. Site II was mapped by use of anti-VP35 MAbs to the region between amino acid residues 167 and 278 of VP35. Amino acids 252-278 of VP35 might be involved in the formation of the epitopes for MAbs. B-cell epitopes were not found on the C-terminus of VP35 by use of PAbs or MAbs.
Collapse
Affiliation(s)
- A V Sorokin
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk Region, Russia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Guyatt KJ, Twin J, Davis P, Holmes EC, Smith GA, Smith IL, Mackenzie JS, Young PL. A molecular epidemiological study of Australian bat lyssavirus. J Gen Virol 2003; 84:485-496. [PMID: 12560583 DOI: 10.1099/vir.0.18652-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic diversity of Australian bat lyssavirus (ABL) was investigated by comparing 24 ABL isolate glycoprotein (G) gene nucleotide sequences with those of 37 lyssaviruses representing Lyssavirus genotypes 1-6. Phylogenetic analyses indicated that ABL forms a monophyletic group separate from other lyssaviruses. This group differentiates into two clades: one associated with Pteropus (flying fox) species, the other with the insectivorous bat Saccolaimus flaviventris. Calculation of percentage nucleotide identities between isolates of the two clades revealed up to 18.7 % nucleotide sequence divergence between the two ABL variants. These observations suggest that ABL is a separate lyssavirus species with a similar epidemiology to chiropteran rabies virus (RV), where two distinct ABL variants co-exist in Australia in bat species with dissimilar ecology. Analyses of selection pressures in ABL G gene sequences provided some evidence of weak positive selection within the endodomain at amino acids 499 and 501, although in general the dominant evolutionary process observed was purifying selection. This intimates that, in nature, isolates of ABL, like those of RV, are subject to relatively strong selective constraints, suggesting a stability of host species, cell tropisms and ecological conditions.
Collapse
Affiliation(s)
- Kimberley J Guyatt
- Department of Primary Industries, Queensland Agricultural Biotechnology Centre, Level 4, Gehrmann Laboratories, University of Queensland, St Lucia, Queensland, Australia
- Department of Microbiology and Parasitology, University of Queensland, St Lucia, Queensland, Australia
| | - Jimmy Twin
- Department of Microbiology and Parasitology, University of Queensland, St Lucia, Queensland, Australia
| | - Patricia Davis
- Unité de la Rage, Institut Pasteur, Paris Cedex 15, France
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Edward C Holmes
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Greg A Smith
- Public Health Virology, Queensland Health Scientific Services, Coopers Plains, Queensland, Australia
| | - Ina L Smith
- Public Health Virology, Queensland Health Scientific Services, Coopers Plains, Queensland, Australia
| | - John S Mackenzie
- Department of Microbiology and Parasitology, University of Queensland, St Lucia, Queensland, Australia
| | - Peter L Young
- Department of Primary Industries, Queensland Agricultural Biotechnology Centre, Level 4, Gehrmann Laboratories, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
31
|
Abstract
The filoviruses Ebola Zaire virus and Marburg virus are believed to infect target cells through endocytic vesicles, but the details of this pathway are unknown. We used a pseudotyping strategy to investigate the cell biology of filovirus entry. We observed that specific inhibitors of the caveola system, including cholesterol-sequestering drugs and phorbol esters, inhibited the entry of filovirus pseudotypes into human cells. We also measured slower cell entry kinetics for both filovirus pseudotypes than for pseudotypes of vesicular stomatitis virus (VSV), which has been recognized to exploit the clathrin-mediated entry pathway. Finally, visualization by immunofluorescence and confocal microscopy revealed that the filovirus pseudotypes colocalized with the caveola protein marker caveolin-1 but that VSV pseudotypes did not. Collectively, these results provide evidence suggesting that filoviruses use caveolae to gain entry into cells.
Collapse
Affiliation(s)
- Cyril J Empig
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100, USA
| | | |
Collapse
|
32
|
Feldmann H, Volchkov VE, Volchkova VA, Ströher U, Klenk HD. Biosynthesis and role of filoviral glycoproteins. J Gen Virol 2001; 82:2839-2848. [PMID: 11714958 DOI: 10.1099/0022-1317-82-12-2839] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Heinz Feldmann
- Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, Manitoba, CanadaR3E 3R21
| | - Viktor E Volchkov
- Biologie des Filovirus, Claude Bernard University Lyon-1, 46 Allée d'Italie, 69007 Lyon, France2
| | - Valentina A Volchkova
- Biologie des Filovirus, Claude Bernard University Lyon-1, 46 Allée d'Italie, 69007 Lyon, France2
| | - Ute Ströher
- Institut für Virologie, Philipps-Universität, Robert-Koch-Str. 17, D-35037 Marburg, Germany3
| | - Hans-Dieter Klenk
- Institut für Virologie, Philipps-Universität, Robert-Koch-Str. 17, D-35037 Marburg, Germany3
| |
Collapse
|
33
|
Chan SY, Ma MC, Goldsmith MA. Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Gen Virol 2000; 81:2155-2159. [PMID: 10950971 DOI: 10.1099/0022-1317-81-9-2155] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human infection by Marburg (MBG) or Ebola (EBO) virus is associated with fatal haemorrhagic fevers. While these filoviruses may both incite disease as a result of explosive virus replication, we hypothesized that expression of individual viral gene products, such as the envelope glycoprotein (GP), may directly alter target cells and contribute to pathogenesis. We found that expression of EBO GP in 293T cells caused significant levels of cellular detachment in the absence of cell death or virus replication. This detachment was induced most potently by membrane-bound EBO GP, rather than the shed glycoprotein products (sGP or GP1), and was largely attributable to a domain within the extracellular region of GP2. Furthermore, detachment was blocked by the Ser/Thr kinase inhibitor 2-aminopurine, suggesting the importance of a phosphorylation-dependent signalling cascade in inducing detachment. Since MBG GP did not induce similar cellular detachment, MBG and EBO GP interact with target cells by distinct processes to elicit cellular dysregulation.
Collapse
Affiliation(s)
- Stephen Y Chan
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, CA 94141-9100, USA2
- Gladstone Institute of Virology and Immunology, PO Box 419100, San Francisco, CA 94141-9100, USA1
| | - Melissa C Ma
- Gladstone Institute of Virology and Immunology, PO Box 419100, San Francisco, CA 94141-9100, USA1
| | - Mark A Goldsmith
- Department of Medicine, School of Medicine, University of California San Francisco, San Francisco, CA 94141-9100, USA2
- Gladstone Institute of Virology and Immunology, PO Box 419100, San Francisco, CA 94141-9100, USA1
| |
Collapse
|
34
|
Chan SY, Speck RF, Ma MC, Goldsmith MA. Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol 2000; 74:4933-7. [PMID: 10775638 PMCID: PMC112022 DOI: 10.1128/jvi.74.10.4933-4937.2000] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the Marburg (MBG) and Ebola (EBO) viruses have sequence homology and cause similar diseases, we hypothesized that they associate with target cells by similar mechanisms. Pseudotype viruses prepared with a luciferase-containing human immunodeficiency virus type 1 backbone and packaged by the MBG virus or the Zaire subtype EBO virus glycoproteins (GP) mediated infection of a comparable wide range of mammalian cell types, and both were inhibited by ammonium chloride. In contrast, they exhibited differential sensitivities to treatment of target cells with tunicamycin, endoglycosidase H, or protease (pronase). Therefore, while they exhibit certain functional similarities, the MBG and EBO virus GP interact with target cells by distinct processes.
Collapse
Affiliation(s)
- S Y Chan
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141-9100, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Although human epidemics of influenza occur on nearly an annual basis and result in a significant number of "excess deaths," the viruses responsible are not generally considered highly pathogenic. On occasion, however, an outbreak occurs that demonstrates the potential lethality of influenza viruses. The human pandemic of 1918 spread worldwide and killed millions, and the limited human outbreak of highly pathogenic avian viruses in Hong Kong at the end of 1997 is a warning that this could happen again. In avian species such as chickens and turkeys, several outbreaks of highly pathogenic influenza viruses have been documented. Although the reason for the lethality of the human 1918 viruses remains unclear, the pathogenicity of the avian viruses, including those that caused the human 1997 outbreak, relates primarily to properties of the hemagglutinin glycoprotein (HA). Cleavage of the HA precursor molecule HA0 is required to activate virus infectivity, and the distribution of activating proteases in the host is one of the determinants of tropism and, as such, pathogenicity. The HAs of mammalian and nonpathogenic avian viruses are cleaved extracellularly, which limits their spread in hosts to tissues where the appropriate proteases are encountered. On the other hand, the HAs of pathogenic viruses are cleaved intracellularly by ubiquitously occurring proteases and therefore have the capacity to infect various cell types and cause systemic infections. The x-ray crystal structure of HA0 has been solved recently and shows that the cleavage site forms a loop that extends from the surface of the molecule, and it is the composition and structure of the cleavage loop region that dictate the range of proteases that can potentially activate infectivity. Here influenza virus pathogenicity is discussed, with an emphasis on the role of HA0 cleavage as a determining factor.
Collapse
Affiliation(s)
- D A Steinhauer
- National Institute for Medical Research, The Ridgeway, London, Mill Hill, NW7 1AA, United Kingdom.
| |
Collapse
|
36
|
Affiliation(s)
- H Feldmann
- Institut für Virologie, Philipps-Universität, Marburg, Germany
| | | |
Collapse
|
37
|
Weissenhorn W, Carfí A, Lee KH, Skehel JJ, Wiley DC. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol Cell 1998; 2:605-16. [PMID: 9844633 DOI: 10.1016/s1097-2765(00)80159-8] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have determined the structure of GP2 from the Ebola virus membrane fusion glycoprotein by X-ray crystallography. The molecule contains a central triple-stranded coiled coil followed by a disulfide-bonded loop homologous to an immunosuppressive sequence in retroviral glycoproteins, which reverses the chain direction and connects to an alpha helix packed antiparallel to the core helices. The structure suggests that fusion peptides near the N termini form disulfide-bonded loops at one end of the molecule and that the C-terminal membrane anchors are at the same end. In this conformation, GP2 could both bridge two membranes and facilitate their apposition to initiate membrane fusion. We also find a heptad irregularity like that in low-pH-induced influenza HA2 and a solvent ion trapped in a coiled coil like that in retroviral TMs.
Collapse
Affiliation(s)
- W Weissenhorn
- Laboratory of Molecular Medicine, Howard Hughes Medical Institute, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
38
|
Sanchez A, Yang ZY, Xu L, Nabel GJ, Crews T, Peters CJ. Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 1998; 72:6442-7. [PMID: 9658086 PMCID: PMC109803 DOI: 10.1128/jvi.72.8.6442-6447.1998] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/1998] [Accepted: 04/17/1998] [Indexed: 02/08/2023] Open
Abstract
The glycoproteins expressed by a Zaire species of Ebola virus were analyzed for cleavage, oligomerization, and other structural properties to better define their functions. The 50- to 70-kDa secreted and 150-kDa virion/structural glycoproteins (SGP and GP, respectively), which share the 295 N-terminal residues, are cleaved near the N terminus by signalase. A second cleavage event, occurring in GP at a multibasic site (RRTRR downward arrow) that is likely mediated by furin, results in two glycoproteins (GP1 and GP2) linked by disulfide bonding. This furin cleavage site is present in the same position in the GPs of all Ebola viruses (R[R/K]X[R/K]R downward arrow), and one is predicted for Marburg viruses (R[R/K]KR downward arrow), although in a different location. Based on the results of cross-linking studies, we were able to determine that Ebola virion peplomers are composed of trimers of GP1-GP2 heterodimers and that aspects of their structure are similar to those of retroviruses, paramyxoviruses, and influenza viruses. We also determined that SGP is secreted from infected cells almost exclusively in the form of a homodimer that is joined by disulfide bonding.
Collapse
Affiliation(s)
- A Sanchez
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | |
Collapse
|