1
|
Abstract
Most enveloped viruses encode viral fusion proteins to penetrate host cell by membrane fusion. Interestingly, many enveloped viruses can also use viral fusion proteins to induce cell-cell fusion, both in vitro and in vivo, leading to the formation of syncytia or multinucleated giant cells (MGCs). In addition, some non-enveloped viruses encode specialized viral proteins that induce cell-cell fusion to facilitate viral spread. Overall, viruses that can induce cell-cell fusion are nearly ubiquitous in mammals. Virus cell-to-cell spread by inducing cell-cell fusion may overcome entry and post-entry blocks in target cells and allow evasion of neutralizing antibodies. However, molecular mechanisms of virus-induced cell-cell fusion remain largely unknown. Here, I summarize the current understanding of virus-induced cell fusion and syncytia formation.
Collapse
Affiliation(s)
- Maorong Xie
- Division of Infection and Immunity, UCL, London, UK.
| |
Collapse
|
2
|
Yan W, Yang Q, Huang S, Liu S, Wang K, Tang Y, Lei C, Wang H, Yang X. Insights on genetic characterization and pathogenesis of a GI-19 (QX-like) infectious bronchitis virus isolated in China. Poult Sci 2023; 102:102719. [PMID: 37156078 DOI: 10.1016/j.psj.2023.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 05/10/2023] Open
Abstract
Infectious bronchitis virus (IBV) causes respiratory diseases in chickens, incurring great losses to the poultry industry worldwide. In this study, we isolated an IBV strain, designated as AH-2020, from the chickens vaccinated with H120 and 4/91 in Anhui, China. The sequence homology analysis based on the S1 gene revealed that AH-2020 shares low similarities with the 3 vaccine strains, namely, H120, LDT3-A, and 4/91 (78.19, 80.84, and 81.6%, respectively). Phylogenetic analysis based on the S1 gene revealed that AH-2020 clustered with the GI-19 type. Furthermore, protein modeling revealed that the mutations in the amino acids in AH-2020 were mainly located in the N-terminal domain of S1 (S1-NTD), and the pattern of deletion and insertion mutations in the S1 protein may have influenced the structural changes on the surface of S1. Further, approximately 7-day-old SPF chickens were inoculated with AH-2020 at 106.0 EID50. These chickens exhibited clinical signs of the infection such as listlessness, huddling, and head-shaking, accompanied by depression and 40% mortality. Serum antibody test demonstrated that in response to the AH-2020 infection, the antibody level increased the fastest at 7 dpi, with virus shedding rate of cloaca being 100% at 14 dpi. The viral titer in various tissues was detected using hematoxylin and eosin staining and immunohistochemistry, which revealed that AH-2020 infection can damage the kidney, trachea, lung, cecal tonsil, and bursa of Fabricius. Our study provided evidence that the GI-19-type IBV is undergoing more complex mutations, and effective measures are urgently needed to prevent the spread of these variant strains.
Collapse
Affiliation(s)
- Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Qingcheng Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Siyu Huang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Song Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Yizhi Tang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Cangwei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Hongning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Safiriyu AA, Mulchandani V, Anakkacheri MN, Pal D, Das Sarma J. Proline-Proline Dyad in the Fusion Peptide of the Murine β-Coronavirus Spike Protein's S2 Domain Modulates Its Neuroglial Tropism. Viruses 2023; 15:215. [PMID: 36680255 PMCID: PMC9865228 DOI: 10.3390/v15010215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The β-Coronavirus mouse hepatitis virus (MHV-A59)-RSA59 has a patent stretch of fusion peptide (FP) containing two consecutive central prolines (PP) in the S2 domain of the Spike protein. Our previous studies compared the PP-containing fusogenic-demyelinating strain RSA59(PP) to its one proline-deleted mutant strain RSA59(P) and one proline-containing non-fusogenic non-demyelinating parental strain RSMHV2(P) to its one proline inserted mutant strain RSMHV2(PP). These studies highlighted the crucial role of PP in fusogenicity, hepato-neuropathogenesis, and demyelination. Computational studies combined with biophysical data indicate that PP at the center of the FP provides local rigidity while imparting global fluctuation to the Spike protein that enhances the fusogenic properties of RSA59(PP) and RSMHV2(PP). To elaborate on the understanding of the role of PP in the FP of MHV, the differential neuroglial tropism of the PP and P mutant strains was investigated. Comparative studies demonstrated that PP significantly enhances the viral tropism for neurons, microglia, and oligodendrocytes. PP, however, is not essential for viral tropism for either astroglial or oligodendroglial precursors or the infection of meningeal fibroblasts in the blood-brain and blood-CSF barriers. PP in the fusion domain is critical for promoting gliopathy, making it a potential region for designing antivirals for neuro-COVID therapy.
Collapse
Affiliation(s)
- Abass Alao Safiriyu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Vaishali Mulchandani
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Mohammed Nahaf Anakkacheri
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
4
|
Shen H, Zhou Z, Wang H, Chen J, Zhang M, Han M, Shen Y, Shuai D. Photosensitized Electrospun Nanofibrous Filters for Capturing and Killing Airborne Coronaviruses under Visible Light Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4295-4304. [PMID: 35262328 PMCID: PMC8938841 DOI: 10.1021/acs.est.2c00885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 05/11/2023]
Abstract
To address the challenge of the airborne transmission of SARS-CoV-2, photosensitized electrospun nanofibrous membranes were fabricated to effectively capture and inactivate coronavirus aerosols. With an ultrafine fiber diameter (∼200 nm) and a small pore size (∼1.5 μm), optimized membranes caught 99.2% of the aerosols of the murine hepatitis virus A59 (MHV-A59), a coronavirus surrogate for SARS-CoV-2. In addition, rose bengal was used as the photosensitizer for membranes because of its excellent reactivity in generating virucidal singlet oxygen, and the membranes rapidly inactivated 97.1% of MHV-A59 in virus-laden droplets only after 15 min irradiation of simulated reading light. Singlet oxygen damaged the virus genome and impaired virus binding to host cells, which elucidated the mechanism of disinfection at a molecular level. Membrane robustness was also evaluated, and in general, the performance of virus filtration and disinfection was maintained in artificial saliva and for long-term use. Only sunlight exposure photobleached membranes, reduced singlet oxygen production, and compromised the performance of virus disinfection. In summary, photosensitized electrospun nanofibrous membranes have been developed to capture and kill airborne environmental pathogens under ambient conditions, and they hold promise for broad applications as personal protective equipment and indoor air filters.
Collapse
Affiliation(s)
- Hongchen Shen
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Zhe Zhou
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Haihuan Wang
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Jiahao Chen
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Mengyang Zhang
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Minghao Han
- Department of Chemical and Environmental Engineering,
University of California, Riverside, Riverside, California
92521, United States
| | - Yun Shen
- Department of Chemical and Environmental Engineering,
University of California, Riverside, Riverside, California
92521, United States
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| |
Collapse
|
5
|
Saadi F, Pal D, Sarma JD. Spike Glycoprotein Is Central to Coronavirus Pathogenesis-Parallel Between m-CoV and SARS-CoV-2. Ann Neurosci 2021; 28:201-218. [PMID: 35341224 PMCID: PMC8948335 DOI: 10.1177/09727531211023755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Coronaviruses (CoVs) are single-stranded, polyadenylated, enveloped RNA of positive polarity with a unique potential to alter host tropism. This has been exceptionally demonstrated by the emergence of deadly virus outbreaks of the past: Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and Middle East Respiratory Syndrome (MERS-CoV) in 2012. The 2019 outbreak by the new cross-species transmission of SARS-CoV-2 has put the world on alert. CoV infection is triggered by receptor recognition, membrane fusion, and successive viral entry mediated by the surface Spike (S) glycoprotein. S protein is one of the major antigenic determinants and the target for neutralizing antibodies. It is a valuable target in antiviral therapies because of its central role in cell-cell fusion, viral antigen spread, and host immune responses leading to immunopathogenesis. The receptor-binding domain of S protein has received greater attention as it initiates host attachment and contains major antigenic determinants. However, investigating the therapeutic potential of fusion peptide as a part of the fusion core complex assembled by the heptad repeats 1 and 2 (HR1 and HR2) is also warranted. Along with receptor attachment and entry, fusion mechanisms should also be explored for designing inhibitors as a therapeutic intervention. In this article, we review the S protein function and its role in mediating membrane fusion, spread, tropism, and its associated pathogenesis with notable therapeutic strategies focusing on results obtained from studies on a murine β-Coronavirus (m-CoV) and its associated disease process.
Collapse
Affiliation(s)
- Fareeha Saadi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, West Bengal, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Kolkata, West Bengal, India
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Cell Entry of Animal Coronaviruses. Viruses 2021; 13:v13101977. [PMID: 34696406 PMCID: PMC8540712 DOI: 10.3390/v13101977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses (CoVs) are a group of enveloped positive-sense RNA viruses and can cause deadly diseases in animals and humans. Cell entry is the first and essential step of successful virus infection and can be divided into two ongoing steps: cell binding and membrane fusion. Over the past two decades, stimulated by the global outbreak of SARS-CoV and pandemic of SARS-CoV-2, numerous efforts have been made in the CoV research. As a result, significant progress has been achieved in our understanding of the cell entry process. Here, we review the current knowledge of this essential process, including the viral and host components involved in cell binding and membrane fusion, molecular mechanisms of their interactions, and the sites of virus entry. We highlight the recent findings of host restriction factors that inhibit CoVs entry. This knowledge not only enhances our understanding of the cell entry process, pathogenesis, tissue tropism, host range, and interspecies-transmission of CoVs but also provides a theoretical basis to design effective preventive and therapeutic strategies to control CoVs infection.
Collapse
|
7
|
Yan W, Qiu R, Wang F, Fu X, Li H, Cui P, Zhai Y, Li C, Zhang L, Gu K, Zuo L, Lei C, Wang H, Yang X. Genetic and pathogenic characterization of a novel recombinant avian infectious bronchitis virus derived from GI-1, GI-13, GI-28, and GI-19 strains in Southwestern China. Poult Sci 2021; 100:101210. [PMID: 34116353 PMCID: PMC8192866 DOI: 10.1016/j.psj.2021.101210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/19/2022] Open
Abstract
Avian infectious bronchitis (IB), caused by avian infectious bronchitis virus (IBV), is an acute and highly contagious disease that is extremely harmful to the poultry industry throughout the world. The cross-using of different attenuated live vaccine strains has led to the occurrence of diverse IBV serotypes. In this study, we isolated an IBV strain from a chicken farm in southwest China and designated it CK/CH/SCMY/160315. Construction of a phylogenetic tree based on full S1 gene sequence analysis suggested that CK/CH/SCMY/160315 bears similarity to GI-28, and further comparison of S1 amino acid residues revealed that CK/CH/SCMY/160315 showed mutations and deletions in many key positions between LDT3-A and other GI-28 reference strains. Importantly, CK/CH/SCMY/160315 was identified as a novel recombinant virus derived from live attenuated vaccine strains H120 (GI-1), 4/91 (GI-13), LDT3-A (GI-28), and the field strain LJL/08-1 (GI-19), identifying at least 5 recombination sites in both structural and accessory genes. Pathogenicity analysis indicated that CK/CH/SCMY/160315 caused listlessness, sneezing, huddling, head shaking, and increased antibody levels in the inoculated chickens. To further describe pathogenicity of this novel strain, we assessed viral load in different tissues and conducted hematoxylin and eosin (HE) staining of the trachea, lungs and kidneys. Our results provide evidence for the continuing evolution of IBV field strains via genetic recombination and mutation, leading to outbreaks in the vaccinated chicken populations in China.
Collapse
Affiliation(s)
- Wenjun Yan
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science Sichuan University, Chengdu 610064, China
| | - Rongbin Qiu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Fuyan Wang
- Sichuan Sundaily Farm Ecological Food Co., Ltd., Mianyang 621010, China
| | - Xue Fu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science Sichuan University, Chengdu 610064, China
| | - Hao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science Sichuan University, Chengdu 610064, China
| | - Pengfei Cui
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science Sichuan University, Chengdu 610064, China
| | - Yaru Zhai
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science Sichuan University, Chengdu 610064, China
| | - Chun Li
- Sichuan Animal Disease Control Center, Chengdu, 610041, China
| | - Lan Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science Sichuan University, Chengdu 610064, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science Sichuan University, Chengdu 610064, China
| | - Lei Zuo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science Sichuan University, Chengdu 610064, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science Sichuan University, Chengdu 610064, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science Sichuan University, Chengdu 610064, China
| | - Xin Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province; Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science Sichuan University, Chengdu 610064, China.
| |
Collapse
|
8
|
Zhu P, Lv C, Fang C, Peng X, Sheng H, Xiao P, Kumar Ojha N, Yan Y, Liao M, Zhou J. Heat Shock Protein Member 8 Is an Attachment Factor for Infectious Bronchitis Virus. Front Microbiol 2020; 11:1630. [PMID: 32765462 PMCID: PMC7381282 DOI: 10.3389/fmicb.2020.01630] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023] Open
Abstract
Although infectious bronchitis virus (IBV) is the first coronavirus identified, little is known about which membrane protein of host cells could interact with IBV spike protein and facilitate the infection by the virus. In this study, by using a monoclonal antibody to the S1 protein of IBV M41 strain, we found that heat shock protein member 8 (HSPA8) could interact with spike protein of IBV. HSPA8 was found to be present on the cell membrane and chicken tissues, with highest expression level in the kidney. Results of co-IP and GST-pull-down assays indicated that the receptor binding domain (RBD) of IBV M41 could interact with HSPA8. The results of binding blocking assay and infection inhibition assay showed that recombinant protein HSPA8 and antibody to HSPA8 could inhibit IBV M41 infection of chicken embryonic kidney (CEK) cells. Further, we found that HSPA8 interacted with the N-terminal 19–272 amino acids of S1 of IBV Beaudette, H120 and QX strains and HSPA8 from human and pig also interacted with IBV M41-RBD. Finally the results of binding blocking assay and infection inhibition assay showed that recombinant HSPA8 protein and antibody to HSPA8 could inhibit IBV Beaudette strain infection of Vero cells that were treated with heparanase to remove heparan sulfate from the cell surface. Taken together, our results indicate that HSPA8 is a novel host factor involved in IBV infection.
Collapse
Affiliation(s)
- Pengpeng Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Chenfei Lv
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Chengxiu Fang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Xing Peng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Hao Sheng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Peng Xiao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Nishant Kumar Ojha
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yan Yan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
A Novel Synonymous Mutation of SARS-CoV-2: Is This Possible to Affect Their Antigenicity and Immunogenicity? Vaccines (Basel) 2020; 8:vaccines8020220. [PMID: 32422894 PMCID: PMC7349911 DOI: 10.3390/vaccines8020220] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
The S glycoprotein of coronaviruses is important for viral entry and pathogenesis with most variable sequences. Therefore, we analyzed the S gene sequences of SARS-CoV-2 to better understand the antigenicity and immunogenicity of this virus in this study. In phylogenetic analysis, two subtypes (SARS-CoV-2a and -b) were confirmed within SARS-CoV-2 strains. These two subtypes were divided by a novel synonymous mutation of D614G. This may play a crucial role in the evolution of SARS-CoV-2 to evade the host immune system. The region containing this mutation point was confirmed as a B-cell epitope located in the S1 domain, and SARS-CoV-2b strains exhibited severe reduced antigenic indexes compared to SARS-CoV-2a in this area. This may allow these two subtypes to have different antigenicity. If the two subtypes have different serological characteristics, a vaccine for both subtypes will be more effective to prevent COVID-19. Thus, further study is urgently required to confirm the antigenicity of these two subtypes.
Collapse
|
10
|
Lotfollahzadeh S, Madadgar O, Reza Mohebbi M, Reza Mokhber Dezfouli M, George Watson D. Bovine coronavirus in neonatal calf diarrhoea in Iran. Vet Med Sci 2020; 6:686-694. [PMID: 32349194 PMCID: PMC7267123 DOI: 10.1002/vms3.277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 11/22/2022] Open
Abstract
Partial gene sequencing for the bovine coronavirus at the World Genebank is available for many countries, which are distributed unevenly in five continents, but so far, no sequencing of strains has been recorded in Iran. One hundred ninety‐four stool samples from calves with diarrhoea less than one‐month old were collected from five different geographical regions of country in order to detect coronavirus and characterize it if coronavirus was found. Samples were screened for the presence of BCoV by using a commercially available ELISA kit. Furthermore, RT‐PCR was carried out on positive samples for confirmation of the presence of N and S specific genes. Sequencing and phylogenetic analysis was carried out following RT‐PCR tests. 7.2% of samples, were positive for BCoV and all stool samples from the South‐West, Northeast and West regions of Iran were negative. The results showed that all the strains of coronavirus identified in Iran were completely in independent clusters and that they did not stand in the same cluster as any of the strains identified in other parts of the world. The strains from Iran were quite different from strains in other parts of the world but from the point of similarity these viruses showed some similarities to the European strains, such as those found in France, Croatia, Denmark and Sweden.
Collapse
Affiliation(s)
- Samad Lotfollahzadeh
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Omid Madadgar
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Mohammad Reza Mohebbi
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - David George Watson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| |
Collapse
|
11
|
Suzuki T, Otake Y, Uchimoto S, Hasebe A, Goto Y. Genomic Characterization and Phylogenetic Classification of Bovine Coronaviruses Through Whole Genome Sequence Analysis. Viruses 2020; 12:v12020183. [PMID: 32041103 PMCID: PMC7077292 DOI: 10.3390/v12020183] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 01/18/2023] Open
Abstract
Bovine coronavirus (BCoV) is zoonotically transmissible among species, since BCoV-like viruses have been detected in wild ruminants and humans. BCoV causing enteric and respiratory disease is widespread in cattle farms worldwide; however, limited information is available regarding the molecular characterization of BCoV because of its large genome size, despite its significant economic impact. This study aimed to better understand the genomic characterization and evolutionary dynamics of BCoV via comparative sequence and phylogenetic analyses through whole genome sequence analysis using 67 BCoV isolates collected throughout Japan from 2006 to 2017. On comparing the genomic sequences of the 67 BCoVs, genetic variations were detected in 5 of 10 open reading frames (ORFs) in the BCoV genome. Phylogenetic analysis using whole genomes from the 67 Japanese BCoV isolates in addition to those from 16 reference BCoV strains, revealed the existence of two major genotypes (classical and US wild ruminant genotypes). All Japanese BCoV isolates originated from the US wild ruminant genotype, and they tended to form the same clusters based on the year and farm of collection, not the disease type. Phylogenetic trees on hemagglutinin-esterase protein (HE), spike glycoprotein (S), nucleocapsid protein (N) genes and ORF1 revealed clusters similar to that on whole genome, suggesting that the evolution of BCoVs may be closely associated with variations in these genes. Furthermore, phylogenetic analysis of BCoV S genes including those of European and Asian BCoVs and human enteric coronavirus along with the Japanese BCoVs revealed that BCoVs differentiated into two major types (European and American types). Moreover, the European and American types were divided into eleven and three genotypes, respectively. Our analysis also demonstrated that BCoVs with different genotypes periodically emerged and predominantly circulated within the country. These findings provide useful information to elucidate the detailed molecular characterization of BCoVs, which have spread worldwide. Further genomic analyses of BCoV are essential to deepen the understanding of the evolution of this virus.
Collapse
Affiliation(s)
- Tohru Suzuki
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 3050856, Japan
- Correspondence: ; Tel.: +81-29-838-7914
| | - Yoshihiro Otake
- Central Tochigi Prefectural Livestock Health and Hygiene Center, Utsunomiya, Tochigi 3210905, Japan;
| | - Satoko Uchimoto
- Shiga Prefectural Livestock Health and Hygiene Center, Omihachiman, Shiga 5230813, Japan;
| | - Ayako Hasebe
- Central Gifu Prefectural Livestock Health and Hygiene Center, Gifu 5011112, Japan;
| | - Yusuke Goto
- Central Iwate Prefectural Livestock Health and Hygiene Center, Takizawa, Iwate 0200605, Japan;
| |
Collapse
|
12
|
Biochemical Analysis of Coronavirus Spike Glycoprotein Conformational Intermediates during Membrane Fusion. J Virol 2019; 93:JVI.00785-19. [PMID: 31315988 PMCID: PMC6744234 DOI: 10.1128/jvi.00785-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
A fusion protein expressed on the surface of enveloped viruses mediates fusion of the viral and cellular membranes to facilitate virus infection. Pre- and postfusion structures of viral fusion proteins have been characterized, but conformational changes between them remain poorly understood. Here, we examined the intermediate conformation of the murine coronavirus fusion protein, called the spike protein, which must be cleaved by a cellular protease following receptor binding. Western blot analysis of protease digestion products revealed that two subunits (67 and 69 kDa) are produced from a single spike protein (180 kDa). These two subunits were considered to be by-products derived from conformational changes and were useful for probing the intermediate conformation of the spike protein. Interaction with a heptad repeat (HR) peptide revealed that these subunits adopt packed and unpacked conformations, respectively, and two-dimensional electrophoresis revealed a trimeric assembly. Based on biochemical observations, we propose an asymmetric trimer model for the intermediate structure of the spike protein. Receptor binding induces the membrane-binding potential of the trimer, in which at least one HR motif forms a packed-hairpin structure, while membrane fusion subunits are covered by the receptor-binding subunit, thereby preventing the spike protein from forming the typical homotrimeric prehairpin structure predicted by the current model of class I viral fusion protein. Subsequent proteolysis induces simultaneous packing of the remaining unpacked HRs upon assembly of three HRs at the central axis to generate a six-helix bundle. Our model proposes a key mechanism for membrane fusion of enveloped viruses.IMPORTANCE Recent studies using single-particle cryo-electron microscopy (cryoEM) revealed the mechanism underlying activation of viral fusion protein at the priming stage. However, characterizing the subsequent triggering stage underpinning transition from pre- to postfusion structures is difficult because single-particle cryoEM excludes unstable structures that appear as heterogeneous shapes. Therefore, population-based biochemical analysis is needed to capture features of unstable proteins. Here, we analyzed protease digestion products of a coronavirus fusion protein during activation; their sizes appear to be affected directly by the conformational state. We propose a model for the viral fusion protein in the intermediate state, which involves a compact structure and conformational changes that overcome steric hindrance within the three fusion protein subunits.
Collapse
|
13
|
Keha A, Xue L, Yan S, Yue H, Tang C. Prevalence of a novel bovine coronavirus strain with a recombinant hemagglutinin/esterase gene in dairy calves in China. Transbound Emerg Dis 2019; 66:1971-1981. [PMID: 31077561 PMCID: PMC7168545 DOI: 10.1111/tbed.13228] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/07/2019] [Accepted: 05/04/2019] [Indexed: 11/29/2022]
Abstract
Bovine coronavirus (BCoV) is the causative agent of diarrhoea in newborn calves, winter dysentery in adult cattle and respiratory tract illnesses in cattle across the world. In this study, a total of 190 faecal samples from dairy calves with diarrhoea were collected from 14 farms in six Chinese provinces, and BCoV was detected in 18.95% (36/190) of the samples by reverse transcriptase polymerase chain reaction. Full-length spike, hemagglutinin/esterase (HE), nucleocapsid and transmembrane genes were simultaneously cloned from 13 clinical samples (eight farms in four provinces), and most of the BCoV strains showed a unique evolutionary pattern based on the phylogenetic analysis of these genes. Interesting, 10 of the 13 strains were identified as HE recombinant strains, and these strains had experienced the same recombination event and carried the same recombination sites located between the esterase and lectin domain. They also shared an identical aa variant (F181V) in the R2-loop. Moreover, 9/10 strains displayed another identical aa variant (P, S158A) in the adjacent R1-loop of the HE gene, which differs from the other available BCoV HE sequences in the GenBank database. Our results showed that BCoV is widely circulating in dairy cattle in China, contributing to the diagnosis and control of dairy calves diarrhoea. Furthermore, a BCoV strain that carries a recombinant HE gene has spread in dairy calves in China. To the best of our knowledge, this is the first description of an HE recombination event occurring in BCoV; this is also the first description of the molecular prevalence of BCoV in China. Our findings will enhance current understanding about the genetic evolution of BCoV.
Collapse
Affiliation(s)
- Abi Keha
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Luo Xue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Shen Yan
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Hua Yue
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, China
| |
Collapse
|
14
|
Singh M, Kishore A, Maity D, Sunanda P, Krishnarjuna B, Vappala S, Raghothama S, Kenyon LC, Pal D, Das Sarma J. A proline insertion-deletion in the spike glycoprotein fusion peptide of mouse hepatitis virus strongly alters neuropathology. J Biol Chem 2019; 294:8064-8087. [PMID: 30824541 DOI: 10.1074/jbc.ra118.004418] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/24/2019] [Indexed: 11/06/2022] Open
Abstract
Fusion peptides (FPs) in spike proteins are key players mediating early events in cell-to-cell fusion, vital for intercellular viral spread. A proline residue located at the central FP region has often been suggested to have a distinctive role in this fusion event. The spike glycoprotein from strain RSA59 (PP) of mouse hepatitis virus (MHV) contains two central, consecutive prolines in the FP. Here, we report that deletion of one of these proline residues, resulting in RSA59 (P), significantly affected neural cell syncytia formation and viral titers postinfection in vitro Transcranial inoculation of C57Bl/6 mice with RSA59 (PP) or RSA59 (P) yielded similar degrees of necrotizing hepatitis and meningitis, but only RSA59 (PP) produced widespread encephalitis that extended deeply into the brain parenchyma. By day 6 postinfection, both virus variants were mostly cleared from the brain. Interestingly, inoculation with the RSA59 (P)-carrying MHV significantly reduced demyelination at the chronic stage. We also found that the presence of two consecutive prolines in FP promotes a more ordered, compact, and rigid structure in the spike protein. These effects on FP structure were due to proline's unique stereochemical properties intrinsic to its secondary amino acid structure, revealed by molecular dynamics and NMR experiments. We therefore propose that the differences in the severity of encephalitis and demyelination between RSA59 (PP) and RSA59 (P) arise from the presence or absence, respectively, of the two consecutive prolines in FP. Our studies define a structural determinant of MHV entry in the brain parenchyma important for altered neuropathogenesis.
Collapse
Affiliation(s)
- Manmeet Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Abhinoy Kishore
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | | | | | | | - Sreeparna Vappala
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | | | - Lawrence C Kenyon
- Department of Anatomy, Pathology, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru 560012, India.
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
15
|
Bickerton E, Maier HJ, Stevenson-Leggett P, Armesto M, Britton P. The S2 Subunit of Infectious Bronchitis Virus Beaudette Is a Determinant of Cellular Tropism. J Virol 2018; 92:e01044-18. [PMID: 30021894 PMCID: PMC6146808 DOI: 10.1128/jvi.01044-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
The spike (S) glycoprotein of the avian gammacoronavirus infectious bronchitis virus (IBV) is comprised of two subunits (S1 and S2), has a role in virulence in vivo, and is responsible for cellular tropism in vitro We have previously demonstrated that replacement of the S glycoprotein ectodomain from the avirulent Beaudette strain of IBV with the corresponding region from the virulent M41-CK strain resulted in a recombinant virus, BeauR-M41(S), with the in vitro cell tropism of M41-CK. The IBV Beaudette strain is able to replicate in both primary chick kidney cells and Vero cells, whereas the IBV M41-CK strain replicates in primary cells only. In order to investigate the region of the IBV S responsible for growth in Vero cells, we generated a series of recombinant IBVs expressing chimeric S glycoproteins, consisting of regions from the Beaudette and M41-CK S gene sequences, within the genomic background of Beaudette. The S2, but not the S1, subunit of the Beaudette S was found to confer the ability to grow in Vero cells. Various combinations of Beaudette-specific amino acids were introduced into the S2 subunit of M41 to determine the minimum requirement to confer tropism for growth in Vero cells. The ability of IBV to grow and produce infectious progeny virus in Vero cells was subsequently narrowed down to just 3 amino acids surrounding the S2' cleavage site. Conversely, swapping of the 3 Beaudette-associated amino acids with the corresponding ones from M41 was sufficient to abolish Beaudette growth in Vero cells.IMPORTANCE Infectious bronchitis remains a major problem in the global poultry industry, despite the existence of many different vaccines. IBV vaccines, both live attenuated and inactivated, are currently grown on embryonated hen's eggs, a cumbersome and expensive process due to the fact that most IBV strains do not grow in cultured cells. The reverse genetics system for IBV creates the opportunity for generating rationally designed and more effective vaccines. The observation that IBV Beaudette has the additional tropism for growth on Vero cells also invokes the possibility of generating IBV vaccines produced from cultured cells rather than by the use of embryonated eggs. The regions of the IBV Beaudette S glycoprotein involved in the determination of extended cellular tropism were identified in this study. This information will enable the rational design of a future generation of IBV vaccines that may be grown on Vero cells.
Collapse
|
16
|
Basso LGM, Vicente EF, Crusca E, Cilli EM, Costa-Filho AJ. SARS-CoV fusion peptides induce membrane surface ordering and curvature. Sci Rep 2016; 6:37131. [PMID: 27892522 PMCID: PMC5125003 DOI: 10.1038/srep37131] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.
Collapse
Affiliation(s)
- Luis G M Basso
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil.,Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Eduardo F Vicente
- Faculdade de Ciências e Engenharia, UNESP - Univ Estadual Paulista, Campus de Tupã. Rua Domingos da Costa Lopes, 780, 17602-496, Tupã, SP, Brazil
| | - Edson Crusca
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil
| | - Eduardo M Cilli
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
17
|
Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins. J Virol 2016; 90:5586-5600. [PMID: 27030273 DOI: 10.1128/jvi.00015-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/23/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The fusion peptides (FP) play an essential role in fusion of viral envelope with cellular membranes. The location and properties of the FPs in the spike (S) glycoproteins of different coronaviruses (CoV) have not yet been determined. Through amino acid sequence analysis of S proteins of representative CoVs, we identified a common region as a possible FP (pFP) that shares the characteristics of FPs of class I viral fusion proteins, including high Ala/Gly content, intermediate hydrophobicity, and few charged residues. To test the hypothesis that this region contains the CoV FP, we systemically mutated every residue in the pFP of Middle East respiratory syndrome betacoronavirus (MERS-CoV) and found that 11 of the 22 residues in the pFP (from G953 to L964, except for A956) were essential for S protein-mediated cell-cell fusion and virus entry. The synthetic MERS-CoV pFP core peptide (955IAGVGWTAGL964) induced extensive fusion of liposome membranes, while mutant peptide failed to induce any lipid mixing. We also selectively mutated residues in pFPs of two other β-CoVs, severe acute respiratory syndrome coronavirus (SARS-CoV) and mouse hepatitis virus (MHV). Although the amino acid sequences of these two pFPs differed significantly from that of MERS-CoV and each other, most of the pFP mutants of SARS-CoV and MHV also failed to mediate membrane fusion, suggesting that these pFPs are also the functional FPs. Thus, the FPs of 3 different lineages of β-CoVs are conserved in location within the S glycoproteins and in their functions, although their amino acid sequences have diverged significantly during CoV evolution. IMPORTANCE Within the class I viral fusion proteins of many enveloped viruses, the FP is the critical mediator of fusion of the viral envelope with host cell membranes leading to virus infection. FPs from within a virus family, like influenza viruses or human immunodeficiency viruses (HIV), tend to share high amino acid sequence identity. In this study, we determined the location and amino acid sequences of the FPs of S glycoproteins of 3 β-CoVs, MERS-CoV, SARS-CoV, and MHV, and demonstrated that they were essential for mediating cell-cell fusion and virus entry. Interestingly, in marked contrast to the FPs of influenza and HIV, the primary amino acid sequences of the FPs of β-CoVs in 3 different lineages differed significantly. Thus, during evolution the FPs of β-CoVs have diverged significantly in their primary sequences while maintaining the same essential biological functions. Our findings identify a potential new target for development of drugs against CoVs.
Collapse
|
18
|
Zhao F, Han Z, Zhang T, Shao Y, Kong X, Ma H, Liu S. Genomic characteristics and changes of avian infectious bronchitis virus strain CK/CH/LDL/97I after serial passages in chicken embryos. Intervirology 2014; 57:319-30. [PMID: 25195733 PMCID: PMC7179551 DOI: 10.1159/000365193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 06/07/2014] [Indexed: 12/12/2022] Open
Abstract
Background We previously attenuated the infectious bronchitis virus (IBV) strain CK/CH/LDL/97I and found that it can convey protection against the homologous pathogenic virus. Objective To compare the full-length genome sequences of the Chinese IBV strain CK/CH/LDL/97I and its embryo-passaged, attenuated level to identify sequence substitutions responsible for the attenuation and define markers of attenuation. Methods The full-length genomes of CK/CH/LDL/97I P5 and P115 were amplified and sequenced. The sequences were assembled and compared using the MEGALIGN program (DNAStar) and a phylogenetic tree was constructed using MEGA4 software. Results The CK/CH/LDL/97I virus population contained subpopulations with a mixture of genetic mutants. Changes were observed in nsp4, nsp9, nsp11/12, nsp14, nsp15, nsp16, and ORF3a, but these did not result in amino acid substitutions or did not show functional variations. Amino acid substitutions occurred in the remaining genes between P5 and P115; most were found in the S region, and some of the nucleotide mutations resulted in amino acid substitutions. Among the 9 nsps in the ORF1 region, nsp3 contained the most nucleotide substitutions. Conclusions Sequence variations in different genes, especially the S gene and nsp3, in the genomes of CK/CH/LDL/97I viruses might contribute to differences in viral replication, pathogenicity, antigenicity, immunogenicity, and tissue tropism.
Collapse
Affiliation(s)
- Fei Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Identification of novel functional regions within the spike glycoprotein of MHV-A59 based on a bioinformatics approach. Virus Res 2014; 189:177-88. [PMID: 24910120 PMCID: PMC4134989 DOI: 10.1016/j.virusres.2014.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 01/23/2023]
Abstract
Identification of functional regions within MHV-A59 spike (S) protein through analysis of sequence similarities with FcγR. C547 substitution abolishes the recognition of cleaved S by monoclonal antibodies. Substitution of residues 547 and 581–586 in S prevents the recovery of a viable virus. Amino acid replacements at positions 562/589 and 667/687 in S affect viral replication. Replacement of residue 939 in S affects the fusogenic properties of the virus.
Mouse Hepatitis Virus (MHV) is a single-stranded positive sense RNA virus with the ability to promote acute and chronic diseases in mice. The MHV spike protein (S) is a major virulence determinant which in addition to binding to cellular receptors to mediate cell entry and facilitate virus spread to adjacent cells by cell–cell fusion, also is a molecular mimic of the FcγRII receptor. This molecular mimicry of FcγRII by the MHV S protein is also exhibited by other lineage 2a betacoronaviruses, with the exception of the human coronavirus HCoV-OC43. In this work we undertook a mutational analysis to attempt to identify specific amino acid sequences within the spike glycoprotein crucial for molecular mimicry of FcγRII. Although we were unsuccessful in isolating mutant viruses which were specifically defective in that property, we identified several mutations with interesting phenotypes. Mutation of the cysteine in position 547 to alanine and alanine replacements at residues 581–586 was lethal. Replacing proline 939 with the corresponding HCoV-OC43 residue, leucine, decreased the ability MHV to induce cell–cell fusion, providing experimental support for an earlier proposal that residues 929–944 make up the fusion peptide of the MHV S protein.
Collapse
|
20
|
Martínez N, Brandão PE, de Souza SP, Barrera M, Santana N, de Arce HD, Pérez LJ. Molecular and phylogenetic analysis of bovine coronavirus based on the spike glycoprotein gene. INFECTION GENETICS AND EVOLUTION 2012; 12:1870-8. [PMID: 22634277 PMCID: PMC7106151 DOI: 10.1016/j.meegid.2012.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 11/29/2022]
Abstract
Bovine coronavirus has been associated with diarrhoea in newborn calves, winter dysentery in adult cattle and respiratory tract infections in calves and feedlot cattle. In Cuba, the presence of BCoV was first reported in 2006. Since then, sporadic outbreaks have continued to occur. This study was aimed at deepening the knowledge of the evolution, molecular markers of virulence and epidemiology of BCoV in Cuba. A total of 30 samples collected between 2009 and 2011 were used for PCR amplification and direct sequencing of partial or full S gene. Sequence comparison and phylogenetic studies were conducted using partial or complete S gene sequences as phylogenetic markers. All Cuban bovine coronavirus sequences were located in a single cluster supported by 100% bootstrap and 1.00 posterior probability values. The Cuban bovine coronavirus sequences were also clustered with the USA BCoV strains corresponding to the GenBank accession numbers EF424621 and EF424623, suggesting a common origin for these viruses. This phylogenetic cluster was also the only group of sequences in which no recombination events were detected. Of the 45 amino acid changes found in the Cuban strains, four were unique.
Collapse
Affiliation(s)
- Nadia Martínez
- Centro Nacional de Sanidad Agropecuaria, La Habana, Cuba
| | | | | | | | | | | | | |
Collapse
|
21
|
Hewson KA, Scott PC, Devlin JM, Ignjatovic J, Noormohammadi AH. The presence of viral subpopulations in an infectious bronchitis virus vaccine with differing pathogenicity--a preliminary study. Vaccine 2012; 30:4190-9. [PMID: 22542436 PMCID: PMC7115607 DOI: 10.1016/j.vaccine.2012.04.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/13/2012] [Accepted: 04/15/2012] [Indexed: 01/22/2023]
Abstract
There are currently four commercially available vaccines in Australia to protect chickens against infectious bronchitis virus (IBV). Predominantly, IBV causes clinical signs associated with respiratory or kidney disease, which subsequently cause an increase in mortality rate. Three of the current vaccines belong to the same subgroup (subgroup 1), however, the VicS vaccine has been reported to cause an increased vaccinal reaction compared to the other subgroup 1 vaccines. Molecular anomalies detected in VicS suggested the presence of two major subspecies, VicS-v and VicS-del, present in the commercial preparation of VicS. The most notable anomaly is the absence of a 40 bp sequence in the 3'UTR of VicS-del. In this investigation, the two subspecies were isolated and shown to grow independently and to similar titres in embryonated chicken eggs. An in vivo investigation involved 5 groups of 20 chickens each and found that VicS-del grew to a significantly lesser extent in the chicken tissues collected than did VicS-v. The group inoculated with an even ratio of the isolated subspecies scored the most severe clinical signs, with the longest duration. These results indicate the potential for a cooperative, instead of an expected competitive, relationship between VicS-v and VicS-del to infect a host, which is reminiscent of RNA viral quasi-species.
Collapse
Affiliation(s)
- Kylie A Hewson
- The University of Melbourne, Veterinary Science, 250 Princes Hwy, Werribee, 3030, Victoria, Australia.
| | | | | | | | | |
Collapse
|
22
|
Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses 2012; 4:557-80. [PMID: 22590686 PMCID: PMC3347323 DOI: 10.3390/v4040557] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 12/16/2022] Open
Abstract
Coronavirus-cell entry programs involve virus-cell membrane fusions mediated by viral spike (S) proteins. Coronavirus S proteins acquire membrane fusion competence by receptor interactions, proteolysis, and acidification in endosomes. This review describes our current understanding of the S proteins, their interactions with and their responses to these entry triggers. We focus on receptors and proteases in prompting entry and highlight the type II transmembrane serine proteases (TTSPs) known to activate several virus fusion proteins. These and other proteases are essential cofactors permitting coronavirus infection, conceivably being in proximity to cell-surface receptors and thus poised to split entering spike proteins into the fragments that refold to mediate membrane fusion. The review concludes by noting how understanding of coronavirus entry informs antiviral therapies.
Collapse
Affiliation(s)
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA;
| |
Collapse
|
23
|
Britton P, Armesto M, Cavanagh D, Keep S. Modification of the avian coronavirus infectious bronchitis virus for vaccine development. Bioeng Bugs 2012; 3:114-9. [PMID: 22179147 DOI: 10.4161/bbug.18983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Infectious bronchitis virus (IBV) causes an infectious respiratory disease of domestic fowl that affects poultry of all ages causing economic problems for the poultry industry worldwide. Although IBV is controlled using live attenuated and inactivated vaccines it continues to be a major problem due to the existence of many serotypes, determined by the surface spike protein resulting in poor cross-protection, and loss of immunogenicity associated with vaccine production. Live attenuated IBV vaccines are produced by the repeated passage in embryonated eggs resulting in spontaneous mutations. As a consequence attenuated viruses have only a few mutations responsible for the loss of virulence, which will differ between vaccines affecting virulence and/or immunogenicity and can revert to virulence. A new generation of vaccines is called for and one means of controlling IBV involves the development of new and safer vaccines by precisely modifying the IBV genome using reverse genetics for the production of rationally attenuated IBVs in order to obtain an optimum balance between loss of virulence and capacity to induce immunity.
Collapse
Affiliation(s)
- Paul Britton
- Avian Viral Diseases, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, UK.
| | | | | | | |
Collapse
|
24
|
Armesto M, Evans S, Cavanagh D, Abu-Median AB, Keep S, Britton P. A recombinant avian infectious bronchitis virus expressing a heterologous spike gene belonging to the 4/91 serotype. PLoS One 2011; 6:e24352. [PMID: 21912629 PMCID: PMC3166170 DOI: 10.1371/journal.pone.0024352] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/05/2011] [Indexed: 12/11/2022] Open
Abstract
We have shown previously that replacement of the spike (S) gene of the apathogenic IBV strain Beau-R with that from the pathogenic strain of the same serotype, M41, resulted in an apathogenic virus, BeauR-M41(S), that conferred protection against challenge with M41. We have constructed a recombinant IBV, BeauR-4/91(S), with the genetic backbone of Beau-R but expressing the spike protein of the pathogenic IBV strain 4/91(UK), which belongs to a different serogroup as Beaudette or M41. Similar to our previous findings with BeauR-M41(S), clinical signs observations showed that the S gene of the pathogenic 4/91 virus did not confer pathogenicity to the rIBV BeauR-4/91(S). Furthermore, protection studies showed there was homologous protection; BeauR-4/91(S) conferred protection against challenge with wild type 4/91 virus as shown by the absence of clinical signs, IBV RNA assessed by qRT-PCR and the fact that no virus was isolated from tracheas removed from birds primarily infected with BeauR-4/91(S) and challenged with IBV 4/91(UK). A degree of heterologous protection against M41 challenge was observed, albeit at a lower level.Our results confirm and extend our previous findings and conclusions that swapping of the ectodomain of the S protein is a precise and effective way of generating genetically defined candidate IBV vaccines.
Collapse
Affiliation(s)
- Maria Armesto
- Avian Viral Diseases, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
| | - Sharon Evans
- Avian Viral Diseases, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
| | - David Cavanagh
- Avian Viral Diseases, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
| | - Abu-Bakr Abu-Median
- Avian Viral Diseases, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
| | - Sarah Keep
- Avian Viral Diseases, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
| | - Paul Britton
- Avian Viral Diseases, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
| |
Collapse
|
25
|
A mechanism of virus-induced demyelination. Interdiscip Perspect Infect Dis 2010; 2010:109239. [PMID: 20652053 PMCID: PMC2905936 DOI: 10.1155/2010/109239] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/20/2010] [Indexed: 11/17/2022] Open
Abstract
Myelin forms an insulating sheath surrounding axons in the central and peripheral nervous systems and is essential for rapid propagation of neuronal action potentials. Demyelination is an acquired disorder in which normally formed myelin degenerates, exposing axons to the extracellular environment. The result is dysfunction of normal neuron-to-neuron communication and in many cases, varying degrees of axonal degeneration. Numerous central nervous system demyelinating disorders exist, including multiple sclerosis. Although demyelination is the major manifestation of most of the demyelinating diseases, recent studies have clearly documented concomitant axonal loss to varying degrees resulting in long-term disability. Axonal injury may occur secondary to myelin damage (outside-in model) or myelin damage may occur secondary to axonal injury (inside-out model). Viral induced demyelination models, has provided unique imminent into the cellular mechanisms of myelin destruction. They illustrate mechanisms of viral persistence, including latent infections, virus reactivation and viral-induced tissue damage. These studies have also provided excellent paradigms to study the interactions between the immune system and the central nervous system (CNS). In this review we will discuss potential cellular and molecular mechanism of central nervous system axonal loss and demyelination in a viral induced mouse model of multiple sclerosis.
Collapse
|
26
|
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Recent studies have demonstrated that significant axonal injury also occurs in MS patients and correlates with neurological dysfunction, but it is not known whether this neuronal damage is a primary disease process, or occurs only secondary to demyelination. In the current studies, neurotropic strains of mouse hepatitis virus (MHV) that induce meningitis, encephalitis, and demyelination in the CNS, an animal model of MS, were used to evaluate mechanisms of axonal injury. The pathogenic properties of genetically engineered isogenic spike protein recombinant demyelinating and nondemyelinating strains of MHV were compared. Studies demonstrate that a demyelinating strain of MHV causes concomitant axonal loss and macrophage-mediated demyelination. The mechanism of axonal loss and demyelination in MHV infection is dependent on successful transport of virus from gray matter to white matter using the MHV host attachment spike glycoprotein. Our data show that axonal loss and demyelination can be independent direct viral cytopathic events, and suggest that similar direct axonal damage may occur in MS. These results have important implications for the design of neuroprotective strategies for CNS demyelinating disease, and our model identifies the spike protein as a therapeutic target to prevent axonal transport of neurotropic viruses.
Collapse
|
27
|
Entry from the cell surface of severe acute respiratory syndrome coronavirus with cleaved S protein as revealed by pseudotype virus bearing cleaved S protein. J Virol 2008; 82:11985-91. [PMID: 18786990 DOI: 10.1128/jvi.01412-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is known to take an endosomal pathway for cell entry; however, it is thought to enter directly from the cell surface when a receptor-bound virion spike (S) protein is affected by trypsin, which induces cleavage of the S protein and activates its fusion potential. This suggests that SARS-CoV bearing a cleaved form of the S protein can enter cells directly from the cell surface without trypsin treatment. To explore this possibility, we introduced a furin-like cleavage sequence in the S protein at amino acids 798 to 801 and found that the mutated S protein was cleaved and induced cell fusion without trypsin treatment when expressed on the cell surface. Furthermore, a pseudotype virus bearing a cleaved S protein was revealed to infect cells in the presence of a lysosomotropic agent as well as a protease inhibitor, both of which are known to block SARS-CoV infection via an endosome, whereas the infection of pseudotypes with an uncleaved, wild-type S protein was blocked by these agents. A heptad repeat peptide, derived from a SARS-CoV S protein that is known to efficiently block infections from the cell surface, blocked the infection by a pseudotype with a cleaved S protein but not that with an uncleaved S protein. Those results indicate that SARS-CoV with a cleaved S protein is able to enter cells directly from the cell surface and agree with the previous observation of the protease-mediated cell surface entry of SARS-CoV.
Collapse
|
28
|
Amino acid substitutions in the S2 subunit of mouse hepatitis virus variant V51 encode determinants of host range expansion. J Virol 2007; 82:1414-24. [PMID: 18032498 DOI: 10.1128/jvi.01674-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We previously described mouse hepatitis virus (MHV) variant V51 derived from a persistent infection of murine DBT cells with an expanded host range (R. S. Baric, E. Sullivan, L. Hensley, B. Yount, and W. Chen, J. Virol. 73:638-649, 1999). Sequencing of the V51 spike gene, the mediator of virus entry, revealed 13 amino acid substitutions relative to the originating MHV A59 strain. Seven substitutions were located in the amino-terminal S1 cleavage subunit, and six were located in the carboxy-terminal S2 cleavage subunit. Using targeted RNA recombination, we constructed a panel of recombinant viruses to map the mediators of host range to the six substitutions in S2, with a subgroup of four changes of particular interest. This subgroup maps to two previously identified domains within S2, a putative fusion peptide and a heptad repeat, both conserved features of class I fusion proteins. In addition to an altered host range, V51 displayed altered utilization of CEACAM1a, the high-affinity receptor for A59. Interestingly, a recombinant with S1 from A59 and S2 from V51 was severely debilitated in its ability to productively infect cells via CEACAM1a, while the inverse recombinant was not. This result suggests that the S2 substitutions exert powerful effects on the fusion trigger that normally passes from S1 to S2. These novel findings play against the existing data that suggest that MHV host range determinants are located in the S1 subunit, which harbors the receptor binding domain, or involve coordinating changes in both S1 and S2. Mounting evidence also suggests that the class I fusion mechanism may possess some innate plasticity that regulates viral host range.
Collapse
|
29
|
Kanno T, Hatama S, Ishihara R, Uchida I. Molecular analysis of the S glycoprotein gene of bovine coronaviruses isolated in Japan from 1999 to 2006. J Gen Virol 2007; 88:1218-1224. [PMID: 17374765 DOI: 10.1099/vir.0.82635-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In total, 55 isolates of Bovine coronavirus (BCoV) were collected from cases of enteric and respiratory disease occurring between 1999 and 2006 in Japan. Phylogenetic analysis of the polymorphic region of the S glycoprotein gene of these isolates, together with those of other known strains, classified the BCoV strains and isolates into four clusters. Recent field isolates display distinctive genetic divergence from the prototype enteric BCoV strains--Mebus, Quebec, Kakegawa, F15 and LY138--and have diverged in three different aspects over 8 years. These data suggested that the genetic divergence in the polymorphic region of the S glycoprotein has progressed considerably; thus, molecular analysis of this region should be useful in investigating the molecular epidemiology of BCoV. In addition, based on the differences in amino acids among the isolates, our study did not reveal the presence of certain genetic markers of pathogenicity and clinical symptoms in this polymorphic region.
Collapse
Affiliation(s)
- Toru Kanno
- Hokkaido Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| | - Shinichi Hatama
- Hokkaido Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| | - Ryoko Ishihara
- Hokkaido Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| | - Ikuo Uchida
- Hokkaido Research Station, National Institute of Animal Health, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|
30
|
Perlman S, Holmes KV. Spike gene determinants of mouse hepatitis virus host range expansion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:301-4. [PMID: 17037548 PMCID: PMC7123859 DOI: 10.1007/978-0-387-33012-9_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
31
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
32
|
Qiu Z, Hingley ST, Simmons G, Yu C, Das Sarma J, Bates P, Weiss SR. Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J Virol 2006; 80:5768-76. [PMID: 16731916 PMCID: PMC1472567 DOI: 10.1128/jvi.00442-06] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.
Collapse
Affiliation(s)
- Zhaozhu Qiu
- Department of Microbiology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6076, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Tripet B, Kao DJ, Jeffers SA, Holmes KV, Hodges RS. Template-based coiled-coil antigens elicit neutralizing antibodies to the SARS-coronavirus. J Struct Biol 2006; 155:176-94. [PMID: 16697221 PMCID: PMC7129695 DOI: 10.1016/j.jsb.2006.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/09/2006] [Indexed: 11/30/2022]
Abstract
The Spike (S) glycoprotein of coronaviruses (CoV) mediates viral entry into host cells. It contains two hydrophobic heptad repeat (HR) regions, denoted HRN and HRC, which oligomerize the S glycoprotein into a trimer in the native state and when activated collapse into a six-helix bundle structure driving fusion of the host and viral membranes. Previous studies have shown that peptides of the HR regions can inhibit viral infectivity. These studies imply that the HR regions are accessible and that agents which can interact with them may prevent viral entry. In the present study, we have investigated an approach to generate antibodies that specifically recognize the HRN and HRC regions of the SARS-CoV spike (S) glycoprotein in order to evaluate whether these antibodies can inhibit viral infectivity and thus neutralize the SARS-CoV. In this regard, we incorporated HRN and HRC coiled-coil surface residues into a de novo designed two-stranded α-helical coiled-coil template for generating conformation-specific antibodies that recognize α-helices in proteins (Lu, S.M., Hodges, R.S., 2002. J. Biol. Chem. 277, 23515–23524). Eighteen surface residues from two regions of HRN and HRC were incorporated into the template and used to generate four anti-sera, HRN1, HRN2, HRC1, and HRC2. Our results show that all of the elicited anti-sera can specifically recognize HRN or HRC peptides and the native SARS-CoV S protein in an ELISA format. Flow cytometry (FACS) analysis, however, showed only HRC1 and HRC2 anti-sera could bind to native S protein expressed on the cell surface of Chinese hamster ovary cells, i.e., the cell surface structure of the S glycoprotein precluded the ability of the HRN1 or HRN2 anti-sera to see their respective epitope sites. In in vitro viral infectivity assays, no inhibition was observed for either HRN1 or HRN2 anti-serum, whereas both HRC1 and HRC2 anti-sera could inhibit SARS-CoV infection in a dose-dependent manner. Interestingly, the HRC1 anti-serum, which was a more effective inhibitor of viral infectivity compared to HRC2 anti-serum, could only bind the pre-fusogenic state of HRC, i.e., the HRC1 anti-serum did not recognize the six-helix bundle conformation (fusion state) whereas HRC2 anti-serum did. These results suggest that antibodies that are more specific for the pre-fusogenic state of HRC may be better neutralizing antibodies. Overall, these results clearly demonstrate that the two-stranded coiled-coil template acts as an excellent presentation system for eliciting helix-specific antibodies against highly conserved viral antigens and HRC1 and HRC2 peptides may represent potential candidates for use in a peptide vaccine against the SARS-CoV.
Collapse
Affiliation(s)
- Brian Tripet
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Daniel J. Kao
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Scott A. Jeffers
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | - Robert S. Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
- Corresponding author. Fax: +1 303 724 3249.
| |
Collapse
|
34
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2006; 69:635-64. [PMID: 16339739 PMCID: PMC1306801 DOI: 10.1128/mmbr.69.4.635-664.2005] [Citation(s) in RCA: 752] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
35
|
Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 2005. [PMID: 16339739 DOI: 10.1128/mmbr.69.4.635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6076, USA.
| | | |
Collapse
|
36
|
York J, Agnihothram SS, Romanowski V, Nunberg JH. Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junín arenavirus envelope glycoprotein. Virology 2005; 343:267-74. [PMID: 16169032 PMCID: PMC7173107 DOI: 10.1016/j.virol.2005.08.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/10/2005] [Accepted: 08/22/2005] [Indexed: 11/03/2022]
Abstract
The G2 fusion subunit of the Junín virus envelope glycoprotein GP-C contains two hydrophobic heptad-repeat regions that are postulated to form a six-helix bundle structure required for the membrane fusion activity of Class I viral fusion proteins. We have investigated the role of these heptad-repeat regions and, specifically, the importance of the putative interhelical a and d position sidechains by using alanine-scanning mutagenesis. All the mutant glycoproteins were expressed and transported to the cell surface. Proteolytic maturation at the subtilisin kexin isozyme-1/site-1-protease (SKI-1/S1P) cleavage site was observed in all but two of the mutants. Among the adequately cleaved mutant glycoproteins, four positions in the N-terminal region (I333, L336, L347 and L350) and two positions in the C-terminal region (R392 and W395) were shown to be important determinants of cell–cell fusion. Taken together, our results indicate that α-helical coiled-coil structures are likely critical in promoting arenavirus membrane fusion. These findings support the inclusion of the arenavirus GP-C among the Class I viral fusion proteins and suggest pharmacologic and immunologic strategies for targeting arenavirus infection and hemorrhagic fever.
Collapse
Affiliation(s)
- Joanne York
- Montana Biotechnology Center, The University of Montana, Science Complex Room 221, Missoula, MT 59812, USA
| | - Sudhakar S. Agnihothram
- Montana Biotechnology Center, The University of Montana, Science Complex Room 221, Missoula, MT 59812, USA
| | - Victor Romanowski
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Jack H. Nunberg
- Montana Biotechnology Center, The University of Montana, Science Complex Room 221, Missoula, MT 59812, USA
- Corresponding author. Fax: +1 406 243 6425.
| |
Collapse
|
37
|
Sainz B, Rausch JM, Gallaher WR, Garry RF, Wimley WC. Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein. J Virol 2005; 79:7195-206. [PMID: 15890958 PMCID: PMC1112137 DOI: 10.1128/jvi.79.11.7195-7206.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.
Collapse
Affiliation(s)
- Bruno Sainz
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-43, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
38
|
Chou THW, Wang S, Sakhatskyy PV, Mboudjeka I, Mboudoudjeck I, Lawrence JM, Huang S, Coley S, Yang B, Li J, Zhu Q, Lu S. Epitope mapping and biological function analysis of antibodies produced by immunization of mice with an inactivated Chinese isolate of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 2005; 334:134-43. [PMID: 15749129 PMCID: PMC7111783 DOI: 10.1016/j.virol.2005.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 01/10/2005] [Accepted: 01/25/2005] [Indexed: 11/26/2022]
Abstract
Inactivated severe acute respiratory syndrome-associated coronavirus (SARS-CoV) has been tested as a candidate vaccine against the re-emergence of SARS. In order to understand the efficacy and safety of this approach, it is important to know the antibody specificities generated with inactivated SARS-CoV. In the current study, a panel of twelve monoclonal antibodies (mAbs) was established by immunizing Balb/c mice with the inactivated BJ01 strain of SARS-CoV isolated from the lung tissue of a SARS-infected Chinese patient. These mAbs could recognize SARS-CoV-infected cells by immunofluorescence analysis (IFA). Seven of them were mapped to the specific segments of recombinant spike (S) protein: six on S1 subunit (aa 12-798) and one on S2 subunit (aa 797-1192). High neutralizing titers against SARS-CoV were detected with two mAbs (1A5 and 2C5) targeting at a subdomain of S protein (aa 310-535), consistent with the previous report that this segment of S protein contains the major neutralizing domain. Some of these S-specific mAbs were able to recognize cleaved products of S protein in SARS-CoV-infected Vero E6 cells. None of the remaining five mAbs could recognize either of the recombinant S, N, M, or E antigens by ELISA. This study demonstrated that the inactivated SARS-CoV was able to preserve the immunogenicity of S protein including its major neutralizing domain. The relative ease with which these mAbs were generated against SARS-CoV virions further supports that subunit vaccination with S constructs may also be able to protect animals and perhaps humans. It is somewhat unexpected that no N-specific mAbs were identified albeit anti-N IgG was easily identified in SARS-CoV-infected patients. The availability of this panel of mAbs also provided potentially useful agents with applications in therapy, diagnosis, and basic research of SARS-CoV.
Collapse
Affiliation(s)
- Te-hui W Chou
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Lazare Research Building, Worcester, MA 01605-2397, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jeong JH, Kim GY, Yoon SS, Park SJ, Kim YJ, Sung CM, Shin SS, Lee BJ, Kang MI, Park NY, Koh HB, Cho KO. Molecular analysis of S gene of spike glycoprotein of winter dysentery bovine coronavirus circulated in Korea during 2002-2003. Virus Res 2005; 108:207-12. [PMID: 15681072 PMCID: PMC7114273 DOI: 10.1016/j.virusres.2004.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 07/05/2004] [Accepted: 07/10/2004] [Indexed: 11/17/2022]
Abstract
Since the molecular analysis of spike (S) glycoprotein gene of bovine coronavirus (BCoV) has been conducted and compared mainly among American and Canadian isolates and/or strains, it is unclear whether BCoV circulated in the other countries are distinctive in genetic characteristics. In the present study, we analyzed the S glycoprotein gene to characterize 10 winter dysentery (WD) coronavirus strains circulated in Korea during 2002-2003 and compared the nucleotide (nt) and deduced amino acid (aa) sequences with the other known BCoV. The phylogenetic analysis of the entire S glycoprotein gene revealed that the aa sequences of all Korean WD strains were more homologous to each other and were very closely related to respiratory bovine coronavirus (RBCV) strain OK and enteric bovine coronavirus (EBCV) strain LY-138, but were distinct from the other known BCoVs. Based on the phylogenetic analysis of the hypervariable region of the S1 subunit, all Korean WD strains clustered with the respiratory strain OK, BCQ3994 and the enteric strain LY-138, while the Canadian BCQ calf diarrhea and WD strains, and the American RBCV LSU, French EBCV F15 and avirulent VACC, L9, and Mebus strains clustered on a separate major branch. These data suggest that the WD strains circulated in Korea had a genetic property of both RBCV and EBCV and were significantly distinct from the ancestral enteric strain.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Laboratory of Animal Diseases, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Coronaviridae: a review of coronaviruses and toroviruses. CORONAVIRUSES WITH SPECIAL EMPHASIS ON FIRST INSIGHTS CONCERNING SARS 2005. [PMCID: PMC7123520 DOI: 10.1007/3-7643-7339-3_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
|
41
|
Abstract
This chapter describes the interactions between the different structural components of the viruses and discusses their relevance for the process of virion formation. Two key factors determine the efficiency of the assembly process: intracellular transport and molecular interactions. Many viruses have evolved elaborate strategies to ensure the swift and accurate delivery of the virion components to the cellular compartment(s) where they must meet and form (sub) structures. Assembly of viruses starts in the nucleus by the encapsidation of viral DNA, using cytoplasmically synthesized capsid proteins; nucleocapsids then migrate to the cytosol, by budding at the inner nuclear membrane followed by deenvelopment, to pick up the tegument proteins.
Collapse
Affiliation(s)
- Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | |
Collapse
|
42
|
Shen S, Law Y, Liu D. A single amino acid mutation in the spike protein of coronavirus infectious bronchitis virus hampers its maturation and incorporation into virions at the nonpermissive temperature. Virology 2004; 326:288-98. [PMID: 15302214 PMCID: PMC7126609 DOI: 10.1016/j.virol.2004.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 05/25/2004] [Accepted: 06/03/2004] [Indexed: 11/22/2022]
Abstract
The spike (S) glycoprotein of coronavirus is responsible for receptor binding and membrane fusion. A number of variants with deletions and mutations in the S protein have been isolated from naturally and persistently infected animals and tissue cultures. Here, we report the emergence and isolation of two temperature sensitive (ts) mutants and a revertant in the process of cold-adaptation of coronavirus infectious bronchitis virus (IBV) to a monkey kidney cell line. The complete sequences of wild type (wt) virus, two ts mutants, and the revertant were compared and variations linked to phenotypes were mapped. A single amino acid reversion (L294-to-Q) in the S protein is sufficient to abrogate the ts phenotype. Interestingly, unlike wt virus, the revertant grows well at and below 32 degrees C, the permissive temperature, as it carries other mutations in multiple genes that might be associated with the cold-adaptation phenotype. If the two ts mutants were allowed to enter cells at 32 degrees C, the S protein was synthesized, core-glycosylated and at least partially modified at 40 degrees C. However, compared with wt virus and the revertant, no infectious particles of these ts mutants were assembled and released from the ts mutant-infected cells at 40 degrees C. Evidence presented demonstrated that the Q294-to-L294 mutation, located at a highly conserved domain of the S1 subunit, might hamper processing of the S protein to a matured 180-kDa, endo-glycosidase H-resistant glycoprotein and the translocation of the protein to the cell surface. Consequently, some essential functions of the S protein, including mediation of cell-to-cell fusion and its incorporation into virions, were completely abolished.
Collapse
Affiliation(s)
| | | | - D.X Liu
- Corresponding author. Institute of Molecular and Cell Biology, 30 Medical Drive, 117609, Singapore. Fax: +65-67791117.
| |
Collapse
|
43
|
Ye R, Montalto-Morrison C, Masters PS. Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: distinct roles for charge-rich and cysteine-rich regions of the endodomain. J Virol 2004; 78:9904-17. [PMID: 15331724 PMCID: PMC514984 DOI: 10.1128/jvi.78.18.9904-9917.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The coronavirus spike protein (S) forms the distinctive virion surface structures that are characteristic of this viral family, appearing in negatively stained electron microscopy as stems capped with spherical bulbs. These structures are essential for the initiation of infection through attachment of the virus to cellular receptors followed by fusion to host cell membranes. The S protein can also mediate the formation of syncytia in infected cells. The S protein is a type I transmembrane protein that is very large compared to other viral fusion proteins, and all except a short carboxy-terminal segment of the S molecule constitutes the ectodomain. For the prototype coronavirus mouse hepatitis virus (MHV), it has previously been established that S protein assembly into virions is specified by the carboxy-terminal segment, which comprises the transmembrane domain and the endodomain. We have genetically dissected these domains in the MHV S protein to localize the determinants of S incorporation into virions. Our results establish that assembly competence maps to the endodomain of S, which was shown to be sufficient to target a heterologous integral membrane protein for incorporation into MHV virions. In particular, mutational analysis indicated a major role for the charge-rich carboxy-terminal region of the endodomain. Additionally, we found that the adjacent cysteine-rich region of the endodomain is critical for fusion of infected cells, confirming results previously obtained with S protein expression systems.
Collapse
Affiliation(s)
- Rong Ye
- Wadsworth Center, New York State Department of Health, New Scotland Ave., P.O. Box 22002, Albany, NY 12201-2002, USA
| | | | | |
Collapse
|
44
|
St-Jean JR, Jacomy H, Desforges M, Vabret A, Freymuth F, Talbot PJ. Human respiratory coronavirus OC43: genetic stability and neuroinvasion. J Virol 2004; 78:8824-34. [PMID: 15280490 PMCID: PMC479063 DOI: 10.1128/jvi.78.16.8824-8834.2004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The complete genome sequences of the human coronavirus OC43 (HCoV-OC43) laboratory strain from the American Type Culture Collection (ATCC), and a HCoV-OC43 clinical isolate, designated Paris, were obtained. Both genomes are 30,713 nucleotides long, excluding the poly(A) tail, and only differ by 6 nucleotides. These six mutations are scattered throughout the genome and give rise to only two amino acid substitutions: one in the spike protein gene (I958F) and the other in the nucleocapsid protein gene (V81A). Furthermore, the two variants were shown to reach the central nervous system (CNS) after intranasal inoculation in BALB/c mice, demonstrating neuroinvasive properties. Even though the ATCC strain could penetrate the CNS more effectively than the Paris 2001 isolate, these results suggest that intrinsic neuroinvasive properties already existed for the HCoV-OC43 ATCC human respiratory isolate from the 1960s before it was propagated in newborn mouse brains. It also demonstrates that the molecular structure of HCoV-OC43 is very stable in the environment (the two variants were isolated ca. 40 years apart) despite virus shedding and chances of persistence in the host. The genomes of the two HCoV-OC43 variants display 71, 53.1, and 51.2% identity with those of mouse hepatitis virus A59, severe acute respiratory syndrome human coronavirus Tor2 strain (SARS-HCoV Tor2), and human coronavirus 229E (HCoV-229E), respectively. HCoV-OC43 also possesses well-conserved motifs with regard to the genome sequence of the SARS-HCoV Tor2, especially in open reading frame 1b. These results suggest that HCoV-OC43 and SARS-HCoV may share several important functional properties and that HCoV-OC43 may be used as a model to study the biology of SARS-HCoV without the need for level three biological facilities.
Collapse
Affiliation(s)
- Julien R St-Jean
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7 Quebec, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Xu D, Zhang Z, Chu F, Li Y, Jin L, Zhang L, Gao GF, Wang FS. Genetic variation of SARS coronavirus in Beijing Hospital. Emerg Infect Dis 2004; 10:789-94. [PMID: 15200810 PMCID: PMC3323231 DOI: 10.3201/eid1005.030875] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To characterize genetic variation of severe acute respiratory syndrome–associated coronavirus (SARS-CoV) transmitted in the Beijing area during the epidemic outbreak of 2003, we sequenced 29 full-length S genes of SARS-CoV from 20 hospitalized SARS patients on our unit, the Beijing 302 Hospital. Viral RNA templates for the S-gene amplification were directly extracted from raw clinical samples, including plasma, throat swab, sputum, and stool, during the course of the epidemic in the Beijing area. We used a TA-cloning assay with direct analysis of nested reverse transcription–polymerase chain reaction products in sequence. One hundred thirteen sequence variations with nine recurrent variant sites were identified in analyzed S-gene sequences compared with the BJ01 strain of SARS-CoV. Among them, eight variant sites were, we think, the first documented. Our findings demonstrate the coexistence of S-gene sequences with and without substitutions (referred to BJ01) in samples analyzed from some patients.
Collapse
Affiliation(s)
| | | | | | | | - Lei Jin
- Beijing 302 Hospital, Beijing, China
| | | | - George F. Gao
- University of Oxford, Headington, Oxford, United Kingdom
| | | |
Collapse
|
46
|
Zhu J, Xiao G, Xu Y, Yuan F, Zheng C, Liu Y, Yan H, Cole DK, Bell JI, Rao Z, Tien P, Gao GF. Following the rule: formation of the 6-helix bundle of the fusion core from severe acute respiratory syndrome coronavirus spike protein and identification of potent peptide inhibitors. Biochem Biophys Res Commun 2004; 319:283-8. [PMID: 15158473 PMCID: PMC7111185 DOI: 10.1016/j.bbrc.2004.04.141] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is a newly identified member of Family Coronaviridae. Coronavirus envelope spike protein S is a class I viral fusion protein which is characterized by the existence of two heptad repeat regions (HR1 and HR2) (forming a complex called fusion core). Here we report that by using in vitro bio-engineering techniques, SARS-CoV HR1 and HR2 bind to each other and form a typical 6-helix bundle. The HR2, either as a synthetic peptide or as a GST-fusion polypeptide, is a potent inhibitor of virus entry. The results do show that SARS-CoV follows the general fusion mechanism of class I viruses and this lays the ground for identification of virus fusion/entry inhibitors for this devastating emerging virus.
Collapse
Affiliation(s)
- Jieqing Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hofmann H, Hattermann K, Marzi A, Gramberg T, Geier M, Krumbiegel M, Kuate S, Uberla K, Niedrig M, Pöhlmann S. S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J Virol 2004; 78:6134-42. [PMID: 15163706 PMCID: PMC416513 DOI: 10.1128/jvi.78.12.6134-6142.2004] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia with a fatal outcome in approximately 10% of patients. SARS-CoV is not closely related to other coronaviruses but shares a similar genome organization. Entry of coronaviruses into target cells is mediated by the viral S protein. We functionally analyzed SARS-CoV S using pseudotyped lentiviral particles (pseudotypes). The SARS-CoV S protein was found to be expressed at the cell surface upon transient transfection. Coexpression of SARS-CoV S with human immunodeficiency virus-based reporter constructs yielded viruses that were infectious for a range of cell lines. Most notably, viral pseudotypes harboring SARS-CoV S infected hepatoma cell lines but not T- and B-cell lines. Infection of the hepatoma cell line Huh-7 was also observed with replication-competent SARS-CoV, indicating that hepatocytes might be targeted by SARS-CoV in vivo. Inhibition of vacuolar acidification impaired infection by SARS-CoV S-bearing pseudotypes, indicating that S-mediated entry requires low pH. Finally, infection by SARS-CoV S pseudotypes but not by vesicular stomatitis virus G pseudotypes was efficiently inhibited by a rabbit serum raised against SARS-CoV particles and by sera from SARS patients, demonstrating that SARS-CoV S is a target for neutralizing antibodies and that such antibodies are generated in SARS-CoV-infected patients. Our results show that viral pseudotyping can be employed for the analysis of SARS-CoV S function. Moreover, we provide evidence that SARS-CoV infection might not be limited to lung tissue and can be inhibited by the humoral immune response in infected patients.
Collapse
Affiliation(s)
- Heike Hofmann
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, Nikolaus-Fiebiger-Center, Glückstrasse 6, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ingallinella P, Bianchi E, Finotto M, Cantoni G, Eckert DM, Supekar VM, Bruckmann C, Carfi A, Pessi A. Structural characterization of the fusion-active complex of severe acute respiratory syndrome (SARS) coronavirus. Proc Natl Acad Sci U S A 2004; 101:8709-14. [PMID: 15161975 PMCID: PMC423260 DOI: 10.1073/pnas.0402753101] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Indexed: 11/18/2022] Open
Abstract
The causative agent of a recent outbreak of an atypical pneumonia, known as severe acute respiratory syndrome (SARS), has been identified as a coronavirus (CoV) not belonging to any of the previously identified groups. Fusion of coronaviruses with the host cell is mediated by the envelope spike protein. Two regions within the spike protein of SARS-CoV have been identified, showing a high degree of sequence conservation with the other CoV, which are characterized by the presence of heptad repeats (HR1 and HR2). By using synthetic and recombinant peptides corresponding to the HR1 and HR2 regions, we were able to characterize the fusion-active complex formed by this novel CoV by CD, native PAGE, proteolysis protection analysis, and size-exclusion chromatography. HR1 and HR2 of SARS-CoV associate into an antiparallel six-helix bundle, with structural features typical of the other known class I fusion proteins. We have also mapped the specific boundaries of the region, within the longer HR1 domain, making contact with the shorter HR2 domain. Notably, the inner HR1 coiled coil is a stable alpha-helical domain even in the absence of interaction with the HR2 region. Inhibitors binding to HR regions of fusion proteins have been shown to be efficacious against many viruses, notably HIV. Our results may help in the design of anti-SARS therapeutics.
Collapse
Affiliation(s)
- Paolo Ingallinella
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Via Pontina Km 30.600, 00040 Pomezia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bosch BJ, Martina BEE, Van Der Zee R, Lepault J, Haijema BJ, Versluis C, Heck AJR, De Groot R, Osterhaus ADME, Rottier PJM. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci U S A 2004; 101:8455-60. [PMID: 15150417 PMCID: PMC420415 DOI: 10.1073/pnas.0400576101] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The coronavirus SARS-CoV is the primary cause of the life-threatening severe acute respiratory syndrome (SARS). With the aim of developing therapeutic agents, we have tested peptides derived from the membrane-proximal (HR2) and membrane-distal (HR1) heptad repeat region of the spike protein as inhibitors of SARS-CoV infection of Vero cells. It appeared that HR2 peptides, but not HR1 peptides, were inhibitory. Their efficacy was, however, significantly lower than that of corresponding HR2 peptides of the murine coronavirus mouse hepatitis virus (MHV) in inhibiting MHV infection. Biochemical and electron microscopical analyses showed that, when mixed, SARS-CoV HR1 and HR2 peptides assemble into a six-helix bundle consisting of HR1 as a central triple-stranded coiled coil in association with three HR2 alpha-helices oriented in an antiparallel manner. The stability of this complex, as measured by its resistance to heat dissociation, appeared to be much lower than that of the corresponding MHV complex, which may explain the different inhibitory potencies of the HR2 peptides. Analogous to other class I viral fusion proteins, the six-helix complex supposedly represents a postfusion conformation that is formed after insertion of the fusion peptide, proposed here for coronaviruses to be located immediately upstream of HR1, into the target membrane. The resulting close apposition of fusion peptide and spike transmembrane domain facilitates membrane fusion. The inhibitory potency of the SARS-CoV HR2-peptides provides an attractive basis for the development of a therapeutic drug for SARS.
Collapse
Affiliation(s)
- Berend Jan Bosch
- Division of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xu Y, Liu Y, Lou Z, Qin L, Li X, Bai Z, Pang H, Tien P, Gao GF, Rao Z. Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core. J Biol Chem 2004; 279:30514-22. [PMID: 15123674 PMCID: PMC7982547 DOI: 10.1074/jbc.m403760200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The surface transmembrane glycoprotein is responsible for mediating virion attachment to cell and subsequent virus-cell membrane fusion. However, the molecular mechanisms for the viral entry of coronaviruses remain poorly understood. The crystal structure of the fusion core of mouse hepatitis virus S protein, which represents the first fusion core structure of any coronavirus, reveals a central hydrophobic coiled coil trimer surrounded by three helices in an oblique, antiparallel manner. This structure shares significant similarity with both the low pH-induced conformation of influenza hemagglutinin and fusion core of HIV gp41, indicating that the structure represents a fusion-active state formed after several conformational changes. Our results also indicate that the mechanisms for the viral fusion of coronaviruses are similar to those of influenza virus and HIV. The coiled coil structure has unique features, which are different from other viral fusion cores. Highly conserved heptad repeat 1 (HR1) and HR2 regions in coronavirus spike proteins indicate a similar three-dimensional structure among these fusion cores and common mechanisms for the viral fusion. We have proposed the binding regions of HR1 and HR2 of other coronaviruses and a structure model of their fusion core based on our mouse hepatitis virus fusion core structure and sequence alignment. Drug discovery strategies aimed at inhibiting viral entry by blocking hairpin formation may be applied to the inhibition of a number of emerging infectious diseases, including severe acute respiratory syndrome.
Collapse
Affiliation(s)
- Yanhui Xu
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|