1
|
Venzke S, Michel N, Allespach I, Fackler OT, Keppler OT. Expression of Nef downregulates CXCR4, the major coreceptor of human immunodeficiency virus, from the surfaces of target cells and thereby enhances resistance to superinfection. J Virol 2006; 80:11141-52. [PMID: 16928758 PMCID: PMC1642143 DOI: 10.1128/jvi.01556-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentiviral Nef proteins are key factors for pathogenesis and are known to downregulate functionally important molecules, including CD4 and major histocompatibility complex class I (MHC-I), from the surfaces of infected cells. Recently, we demonstrated that Nef reduces cell surface levels of the human immunodeficiency virus type 1 (HIV-1) entry coreceptor CCR5 (N. Michel, I. Allespach, S. Venzke, O. T. Fackler, and O. T. Keppler, Curr. Biol. 15:714-723, 2005). Here, we report that Nef downregulates the second major HIV-1 coreceptor, CXCR4, from the surfaces of HIV-infected primary CD4 T lymphocytes with efficiencies comparable to those of the natural CXCR4 ligand, stromal cell-derived factor-1 alpha. Analysis of a panel of mutants of HIV-1(SF2) Nef revealed that the viral protein utilized the same signature motifs for downmodulation of CXCR4 and MHC-I, including the proline-rich motif P(73)P(76)P(79)P(82) and the acidic cluster motif E(66)E(67)E(68)E(69.) Expression of wild-type Nef, but not of specific Nef mutants, resulted in a perinuclear accumulation of the coreceptor. Remarkably, the carboxy terminus of CXCR4, which harbors the classical motifs critical for basal and ligand-induced receptor endocytosis, was dispensable for the Nef-mediated reduction of surface exposure. Functionally, the ability of Nef to simultaneously downmodulate CXCR4 and CD4 correlated with maximum-level protection of Nef-expressing target cells from fusion with cells exposing X4 HIV-1 envelopes. Furthermore, the Nef-mediated downregulation of CXCR4 alone on target T lymphocytes was sufficient to diminish cells' susceptibility to X4 HIV-1 virions at the entry step. The downregulation of chemokine coreceptors is a conserved activity of Nef to modulate infected cells, an important functional consequence of which is an enhanced resistance to HIV superinfection.
Collapse
Affiliation(s)
- Stephanie Venzke
- Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
2
|
Michel N, Allespach I, Venzke S, Fackler OT, Keppler OT. The Nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to downregulate cell-surface CCR5 and CD4. Curr Biol 2005; 15:714-23. [PMID: 15854903 DOI: 10.1016/j.cub.2005.02.058] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 02/21/2005] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Viruses frequently render cells refractory to subsequent infection with the same virus. This state of superinfection immunity counteracts potentially detrimental consequences for the infected cell and facilitates high-level replication and viral spread in the host. RESULTS Here, we show that human immunodeficiency virus (HIV) employs its early gene product Nef to efficiently interfere with superinfection at the viral-entry step. In this context, we identify the downregulation of cell-surface CCR5, the major HIV coreceptor, as a novel and highly conserved activity of Nef. Nef targets the CCR5 coreceptor and the HIV binding receptor CD4 via distinct cellular machineries to enhance the endocytosis rate of both HIV receptor components and to accelerate their degradation. Functionally, these genetically separable actions by Nef synergized to efficiently protect cells from HIV superinfection at the level of fusion of the viral envelope with the plasma membrane. CONCLUSIONS HIV has evolved two independent activities for Nef to downregulate the receptor complex and to facilitate its efficient replication and spread. This evasion strategy likely represents a mechanism by which the pathogenicity factor Nef elevates viral replication in vivo and thus promotes AIDS pathogenesis.
Collapse
Affiliation(s)
- Nico Michel
- Department of Virology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
3
|
Hrecka K, Swigut T, Schindler M, Kirchhoff F, Skowronski J. Nef proteins from diverse groups of primate lentiviruses downmodulate CXCR4 to inhibit migration to the chemokine stromal derived factor 1. J Virol 2005; 79:10650-9. [PMID: 16051857 PMCID: PMC1182621 DOI: 10.1128/jvi.79.16.10650-10659.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 05/20/2005] [Indexed: 11/20/2022] Open
Abstract
Nef proteins of primate lentiviruses promote viral replication, virion infectivity, and evasion of antiviral immune responses by modulating signal transduction pathways and downregulating expression of receptors at the cell surface that are important for efficient antigen-specific responses, such as CD4, CD28, T-cell antigen receptor, and class I and class II major histocompatibility complex. Here we show that Nef proteins from diverse groups of primate lentiviruses which do not require the chemokine receptor CXCR4 for entry into target cells strongly downmodulate the cell surface expression of CXCR4. In contrast, all human immunodeficiency virus type 1 (HIV-1) and the majority of HIV-2 Nef proteins tested did not have such strong effects. SIVmac239 Nef strongly inhibited lymphocyte migration to CXCR4 ligand, the chemokine stromal derived factor 1 (SDF-1). SIVmac239 Nef downregulated CXCR4 by accelerating the rate of its endocytosis. Downmodulation of CXCR4 was abolished by mutations that disrupt the constitutively strong AP-2 clathrin adaptor binding element located in the N-terminal region of the Nef molecule, suggesting that Nef accelerates CXCR4 endocytosis via an AP-2-dependent pathway. Together, these results point to CXCR4 as playing an important role in simian immunodeficiency virus and possibly also HIV-2 persistence in vivo that is unrelated to viral entry into target cells. We speculate that Nef targets CXCR4 to disrupt ordered trafficking of infected leukocytes between local microenvironments in order to facilitate their dissemination and/or impair the antiviral immune response.
Collapse
Affiliation(s)
- Kasia Hrecka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
4
|
Schindler M, Münch J, Brenner M, Stahl-Hennig C, Skowronski J, Kirchhoff F. Comprehensive analysis of nef functions selected in simian immunodeficiency virus-infected macaques. J Virol 2004; 78:10588-97. [PMID: 15367626 PMCID: PMC516420 DOI: 10.1128/jvi.78.19.10588-10597.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of simian immunodeficiency virus (SIVmac) nef mutants have been investigated to clarify which in vitro Nef functions contribute to efficient viral replication and pathogenicity in rhesus macaques. Most of these nef alleles, however, were only functionally characterized for their ability to down-modulate CD4 and class I major histocompatibility complex (MHC-I) cell surface expression and to enhance SIV replication and infectivity. To obtain information on the in vivo relevance of more recently established Nef functions, we examined the ability of a large panel of constructed SIVmac Nef mutants and of variants that emerged in infected macaques to down-regulate CD3, CD28, and MHC-II and to up-regulate the MHC-II-associated invariant chain (Ii). We found that all these four Nef functions were restored in SIV-infected macaques. In most cases, however, the initial mutations and the changes selected in vivo affected several in vitro Nef functions. For example, truncated Nef proteins that emerged in animals infected with SIVmac239 containing a 152-bp deletion in nef efficiently modulated both CD3 and Ii surface expression. Overall, our results suggest that the effect of Nef on each of the six cellular receptors investigated contributes to viral fitness in the infected host but also indicate that modulation of CD3, MHC-I, MHC-II, or Ii surface expression alone is insufficient for SIV virulence.
Collapse
Affiliation(s)
- Michael Schindler
- Department of Virology, Universitätsklinikum, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Münch J, Janardhan A, Stolte N, Stahl-Hennig C, Ten Haaft P, Heeney JL, Swigut T, Kirchhoff F, Skowronski J. T-cell receptor:CD3 down-regulation is a selected in vivo function of simian immunodeficiency virus Nef but is not sufficient for effective viral replication in rhesus macaques. J Virol 2002; 76:12360-4. [PMID: 12414978 PMCID: PMC136863 DOI: 10.1128/jvi.76.23.12360-12364.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the function of severely truncated simian immunodeficiency virus (SIV) Nef proteins (tNef) in vitro and in vivo. These variants emerged in rhesus monkeys infected with SIVmac239 containing a 152-bp deletion in the nef-unique region and have been suggested to enhance SIV virulence (E. T. Sawai, M. S. Hamza, M. Ye, K. E. Shaw, and P. A. Luciw, J. Virol. 74:2038-2045, 2000). We found that the tNef proteins were unable to down-regulate the cell surface expression of major histocompatibility complex class I proteins, CD4, and CD28 and neither stimulated SIV replication nor enhanced virion infectivity. The tNef proteins did efficiently down-regulate T-cell receptor (TCR):CD3 cell surface expression. Nevertheless, the SIVmac239 tnef variants were strongly attenuated in six infected juvenile rhesus macaques. Thus, while the ability of SIV Nef to down-modulate TCR:CD3 cell surface expression apparently confers a selective advantage in vivo, it is insufficient for efficient viral replication in infected macaques. Additional mutations elsewhere in SIVmac239 tnef genomes are required for a virulent phenotype.
Collapse
Affiliation(s)
- Jan Münch
- Abteilung Virologie, Universitätsklinikum, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Schaefer TM, Bell I, Pfeifer ME, Ghosh M, Trible RP, Fuller CL, Ashman C, Reinhart TA. The conserved process of TCR/CD3 complex down-modulation by SIV Nef is mediated by the central core, not endocytic motifs. Virology 2002; 302:106-22. [PMID: 12429520 DOI: 10.1006/viro.2002.1628] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Nef protein of Simian immunodeficiency virus (SIV) associates with multiple T lymphocyte signaling proteins, including the T cell receptor (TCR) zeta chain. We demonstrate here that these interactions are conserved and highly specific. Nefs derived from genetically diverse strains of SIV (SIV(mac)239, SIV(smm)PBj, and SIV(smm)DeltaB670) all interacted with TCR zeta on two separate domains, referred to as SIV Nef interaction domains (SNIDs), as examined in both yeast two-hybrid and glutathione-S-transferase (GST) fusion protein pull-down assays. Multiple HIV-1 Nefs were examined and none interacted with TCR zeta. In contrast, HIV-2(UC1) Nef, similar to SIV Nef, interacted with TCR zeta on two domains, although only the SIV Nefs potently reduced cell-surface expression of the TCR/CD3 complex in T cells. In addition, we examined the abilities of SIV, HIV-2, and HIV-1 Nefs to interact with the cytoplasmic domains of other signaling molecules including CD3epsilon, CD3gamma, and FcepsilonRIgamma, which also contain YxxL motifs, and determined that SIV and HIV-2 Nefs interacted only with TCR zeta, whereas HIV-1 Nef did not interact with any signal-transducing cytoplasmic domain examined. Last, to gain further insight into the mechanism by which Nef down-modulates the TCR/CD3 complex, we mutated or deleted regions on Nef involved in endocytosis, localization of Nef to the plasma membrane, interaction with cellular kinases, or that were conserved among multiple strains of SIV. Mutation of the myristoylation site and a conserved region surrounding a putative PKC phosphorylation site were the only mutations that abrogated Nef-mediated down-modulation of the TCR/CD3 complex. These findings demonstrate there is a spectrum of associations between SIV, HIV-2, and HIV-1 Nefs, and the TCR/CD3 complex, and suggest that down-modulation of the TCR/CD3 complex occurs via association with subsets of cellular proteins that are different from those involved in CD4 and CD28 down-modulation.
Collapse
Affiliation(s)
- Todd M Schaefer
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Pistello M, Moscardini M, Mazzetti P, Bonci F, Zaccaro L, Isola P, Freer G, Specter S, Matteucci D, Bendinelli M. Development of feline immunodeficiency virus ORF-A (tat) mutants: in vitro and in vivo characterization. Virology 2002; 298:84-95. [PMID: 12093176 DOI: 10.1006/viro.2002.1442] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A functional ORF-A is essential for efficient feline immunodeficiency virus replication in lymphocytes. We have characterized a series of mutants of the Petaluma strain, derived from p34TF10 and having different combinations of stop codons and increasingly long deletions in ORF-A. Six clones proved fully replicative in fibroblastoid Crandell feline kidney cells and monocyte-derived macrophage cultures but failed to replicate in T cell lines and primary lymphoblasts. Cats inoculated with three selected mutants had considerably milder infections than controls given intact ORF-A virus. In vivo, the mutants maintained growth properties similar to those in vitro for at least 7 months, except that replication in lymphoid cells was strongly reduced but not ablated. One mutant underwent extensive ORF-A changes without, however, reverting to wild-type. Antiviral immune responses were feeble in all cats, suggesting that viral loads were too low to represent a sufficiently powerful antigenic stimulus.
Collapse
Affiliation(s)
- M Pistello
- Retrovirus Center and Virology Section, University of Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Münch J, Stolte N, Fuchs D, Stahl-Hennig C, Kirchhoff F. Efficient class I major histocompatibility complex down-regulation by simian immunodeficiency virus Nef is associated with a strong selective advantage in infected rhesus macaques. J Virol 2001; 75:10532-6. [PMID: 11581427 PMCID: PMC114633 DOI: 10.1128/jvi.75.21.10532-10536.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Substitution of Y223F disrupts the ability of simian immunodeficiency virus (SIV) Nef to down-modulate major histocompatibility complex (MHC) class I from the cell surface but has no effect on other Nef functions, such as down-regulation of CD4, CD28, and CD3 cell surface expression or stimulation of viral replication and enhancement of virion infectivity. Inoculation of three rhesus macaques with the SIVmac239 Y223F-Nef variant revealed that this point mutation consistently reverts and that Nef activity in MHC class I down-modulation is fully restored within 4 weeks after infection. Our results demonstrate a strong selective pressure for a tyrosine at amino acid position 223 in SIV Nef, and they constitute evidence that Nef-mediated MHC class I down-regulation provides a selective advantage for viral replication in vivo.
Collapse
Affiliation(s)
- J Münch
- Institute for Clinical and Molecular Virology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
9
|
Couillin I, Letourneur F, Lefèbvre P, Guillet JG, Martinon F. DNA vaccination of macaques with several different Nef sequences induces multispecific T cell responses. Virology 2001; 279:136-45. [PMID: 11145897 DOI: 10.1006/viro.2000.0705] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD8(+) T lymphocytes play a key role in controlling viremia during primary human immunodeficiency virus-1 and in maintaining disease-free infection. It has recently been shown that DNA immunization of rhesus monkeys can elicit strong, long-lived antigen-specific cytotoxic T lymphocyte (CTL) responses. In previous work, it was shown that macaque CTL responses to lipopeptide vaccination were directed against a limited number of epitopes. In the present study, we used the DNA immunization approach to enlarge T cell responses to several epitopes and to multiple isolates. We immunized macaques with a mixture of six plasmids reflecting the variability of Nef epitopic regions in the simian immunodeficiency virus (SIV) mac251 primary isolate. The Nef genes from viruses included in the SIVmac251 primary isolate were sequenced and the six selected sequences were individually subcloned into the pCI vector, under cytomegalovirus enhancer/promoter control, and injected into macaques. We show that DNA immunization with Nef sequences induced interferon-gamma (IFN-gamma) secreting cell responses directed against several regions of Nef. Reacting T cell lines were expanded in vitro and multispecific CTL responses mapping the 96-138 Nef region were analyzed. Several peptides recognized by CTL were identified and studies using peptides reflecting the variability of Nef indicated that all of the Nef variants were recognized in the 96-138 region. Moreover, CTL responses were directed against an immunodominant epitope located in a functional region within the Nef protein that is essential for viral replication. This work shows that our approach of DNA immunization with several sequences induced multispecific T cell responses recognizing variants included in the SIVmac251 primary isolate.
Collapse
Affiliation(s)
- I Couillin
- Laboratoire d'Immunologie des Pathologies Infectieuses et Tumorales, INSERM U445, Paris, France
| | | | | | | | | |
Collapse
|
10
|
Mortara L, Letourneur F, Villefroy P, Beyer C, Gras-Masse H, Guillet JG, Bourgault-Villada I. Temporal loss of Nef-epitope CTL recognition following macaque lipopeptide immunization and SIV challenge. Virology 2000; 278:551-61. [PMID: 11118377 DOI: 10.1006/viro.2000.0671] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To address the subtle interactions between antiviral cytotoxic T-cell (CTL) immune responses and the evolution of viral quasispecies variants in vivo, we performed a longitudinal study in a simian immunodeficiency virus (SIV)-infected rhesus macaque that had a long experimental SIV infection before developing simian AIDS. Before being infected with SIV, this animal was immunized with a mixture of seven lipopeptides derived from SIV Nef and Gag proteins and showed a bispecific antiviral CTL response directed toward Nef 169-178 and 211-225 peptides. After SIV infection, CTL activity against the Nef 169-178 epitope was no longer detectable, as assessed from peripheral blood mononuclear cells stimulated by autologous SIV. CTL activity against the 211-225 epitope was lost after 3 months, and an additional CTL response to the amino acids 112-119 Nef epitope emerged. Analysis of the Nef proviral sequence revealed the presence of immune escape variants first in the 211-225 epitope and much later in the 112-119 epitope. In contrast, epitope 169-178 showed only two mutations among all viral sequencing performed. We conclude that in this macaque, bispecific CTL exerted a strong selective pressure and escape virus mutants finally emerged. We identified CTL recognizing a conserved Nef epitope 112-119 (SYKLAIDM), essential for viral replication, which could be associated with a prolonged AIDS-free period. These results stress the importance of the induction of broader multispecific CTLs directed against highly conserved and functional T-cell epitopes by vaccination, with the aim of keeping HIV infection in check.
Collapse
Affiliation(s)
- L Mortara
- Laboratoire d'Immunologie des Pathologies Infectieuses et Tumorales, Institut Cochin de Génétique Moléculaire (ICGM), INSERM U445, 27 rue du Faubourg Saint-Jacques, Paris, 75014, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Iafrate AJ, Carl S, Bronson S, Stahl-Hennig C, Swigut T, Skowronski J, Kirchhoff F. Disrupting surfaces of nef required for downregulation of CD4 and for enhancement of virion infectivity attenuates simian immunodeficiency virus replication in vivo. J Virol 2000; 74:9836-44. [PMID: 11024110 PMCID: PMC102020 DOI: 10.1128/jvi.74.21.9836-9844.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multifunctional simian and human immunodeficiency virus (SIV and HIV) Nef proteins are important for virulence. We studied the importance of selected Nef functions using an SIV Nef with mutations in two regions that are required for CD4 downregulation. This Nef mutant is defective for downregulating CD4 and, in addition, for enhancing SIV infectivity and induction of SIV replication from infected quiescent peripheral blood mononuclear cells, but not for other known functions, including downregulation of class I major histocompatibility complex (MHC) cell surface expression. Replication of SIV containing this Nef variant in rhesus monkeys was attenuated early during infection. Subsequent increases in viral load coincided with selection of reversions and second-site compensatory changes in Nef. Our results indicate that the surfaces of Nef that mediate CD4 downregulation and the enhancement of virion infectivity are critical for SIV replication in vivo. Furthermore, these findings indicate that class I MHC downregulation by Nef is not sufficient for SIV virulence early in infection.
Collapse
Affiliation(s)
- A J Iafrate
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Barber SA, Maughan MF, Roos JW, Clements JE. Two amino acid substitutions in the SIV Nef protein mediate associations with distinct cellular kinases. Virology 2000; 276:329-38. [PMID: 11040124 DOI: 10.1006/viro.2000.0558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A functional Nef protein is crucial in vivo for viral replication leading to pathogenesis in SIV-infected macaques. Moreover, a full-length Nef protein is required for optimal virus replication in primary cells, and both HIV and SIV Nef proteins enhance virion infectivity. Enhanced infectivity may result in part from the ability of Nef to incorporate cellular kinases into virions. In two previous reports, we compared in vitro kinase profiles of SIV recombinant clones that express nef genes derived either from the prototypic lymphocyte-tropic SIVmac239, clone SIV/Fr-2, or from our neurovirulent clone SIV/17E-Fr. While the SIV/Fr-2 Nef protein associated with the previously described PAK-related kinase and an unidentified serine kinase present in a Nef-associated kinase complex (NAKC), SIV/17E-Fr Nef was found to associate with a novel serine kinase activity that was biochemically distinct from both PAK and NAKC. Interestingly, while both Nef proteins were incorporated into virus particles, Nef-associated kinase activity was detected only in virions containing the SIV/17E-Fr Nef protein. Because sequence analysis identified only five amino acids that differed between the Nef proteins of SIV/Fr-2 and SIV/17E-Fr, we were able to evaluate the contribution of each amino acid to Nef-associated kinase activity as well as virus infectivity by constructing a panel of SIV clones containing individual reversions of each differing amino acid in SIV/17E-Fr Nef to the corresponding amino acid in SIV/Fr-2 Nef. In this report, we identify previously uncharacterized amino acids in the N terminus and the conserved core domain of Nef that are essential for the detection of Nef/kinase interactions as well as Nef phosphorylation during SIV infection. Further, via a novel infectivity assay recently developed in our laboratory that utilizes CEMX174 reporter cells stably expressing an SIV/LTR-luciferase construct, we find no direct correlation between specific Nef kinase associations and enhanced virion infectivity.
Collapse
Affiliation(s)
- S A Barber
- Division of Comparative Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland, 21205, USA
| | | | | | | |
Collapse
|
13
|
Swigut T, Iafrate AJ, Muench J, Kirchhoff F, Skowronski J. Simian and human immunodeficiency virus Nef proteins use different surfaces to downregulate class I major histocompatibility complex antigen expression. J Virol 2000; 74:5691-701. [PMID: 10823877 PMCID: PMC112057 DOI: 10.1128/jvi.74.12.5691-5701.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) Nef proteins are related regulatory proteins that share several functions, including the ability to downregulate class I major histocompatibility complex (MHC) and CD4 expression on the cell surface and to alter T-cell-receptor-initiated signal transduction in T cells. We compared the mechanisms used by SIV mac239 Nef and HIV-1 Nef to downregulate class I MHC and found that the ability of SIV Nef to downregulate class I MHC requires a unique C-terminal region of the SIV mac239 Nef molecule which is not found in HIV-1 Nef. Interestingly, mutation of the PxxP motif in SIV Nef, unlike in HIV-1 Nef, does not affect class I MHC downregulation. We also found that downregulation of class I MHC by SIV Nef requires a conserved tyrosine in the cytoplasmic domain of the class I MHC heavy chain and involves accelerated endocytosis of class I complexes, as previously found with HIV-1 Nef. Thus, while SIV and HIV-1 Nef proteins use a similar mechanism to downregulate class I MHC expression, they have evolved different surfaces for molecular interactions with cell factors that regulate class I MHC traffic. Mutations in the C-terminal domain of SIV mac239 Nef selectively disrupt class I MHC downregulation, having no detectable effect on other functions of Nef, such as the downregulation of CD4 and CD3 surface expression, the stimulation of SIV virion infectivity, and the induction of SIV replication from T cells infected in the absence of stimulation. The resulting mutants will be useful reagents for studying the importance of class I MHC downregulation for SIV replication and AIDS pathogenesis in infected rhesus macaques.
Collapse
Affiliation(s)
- T Swigut
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
14
|
Carl S, Iafrate AJ, Lang SM, Stolte N, Stahl-Hennig C, Mätz-Rensing K, Fuchs D, Skowronski J, Kirchhoff F. Simian immunodeficiency virus containing mutations in N-terminal tyrosine residues and in the PxxP motif in Nef replicates efficiently in rhesus macaques. J Virol 2000; 74:4155-64. [PMID: 10756028 PMCID: PMC111930 DOI: 10.1128/jvi.74.9.4155-4164.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SIVmac Nef contains two N-terminal tyrosines that were proposed to be part of an SH2-ligand domain and/or a tyrosine-based endocytosis signal and a putative SH3-ligand domain (P(104)xxP(107)). In the present study, we investigated the effects of combined mutations in these tyrosine and proline residues on simian immunodeficiency virus (SIV) Nef interactions with the cellular signal transduction and endocytic machinery. We found that mutation of Y(28)F, Y(39)F, P(104)A, and P(107)A (FFAA-Nef) had little effect on Nef functions such as the association with the cellular tyrosine kinase Src, downregulation of cell surface expression of CD4 and class I major histocompatibility complex, and enhancement of virion infectivity. However, mutations in the PxxP sequence reduced the ability of Nef to stimulate viral replication in primary lymphocytes. Three macaques infected with the SIVmac239 FFAA-Nef variant showed high viral loads during the acute phase of infection. Reversions in the mutated prolines were observed between 12 and 20 weeks postinfection. Importantly, reversion of A(107)-->P, which restored the ability of Nef to coprecipitate a 62-kDa phosphoprotein in in vitro kinase assays, did not precede the development of a high viral load. The Y(28)/Y(39)-->F(28)/F(39) substitutions did not revert. In conclusion, mutations in both the tyrosine residues and the putative SH3 ligand domain apparently do not disrupt major aspects of SIV Nef function in vivo.
Collapse
Affiliation(s)
- S Carl
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|