1
|
Chen H, Zhu Y, Zhang C, Hu L, Yang K. Engineered bacteria in tumor immunotherapy. Cancer Lett 2024; 589:216817. [PMID: 38492769 DOI: 10.1016/j.canlet.2024.216817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
As the limitations of cancer immunotherapy become increasingly apparent, there is considerable anticipation regarding the utilization of biological tools to enhance treatment efficacy, particularly bacteria and their derivatives. Leveraging advances in genetic and synthetic biology technologies, engineered bacteria now play important roles far beyond those of conventional immunoregulatory agents, and they could function as tumor-targeting vehicles and in situ pharmaceutical factories. In recent years, these engineered bacteria play a role in almost every aspect of immunotherapy. It is nothing short of impressive to keep seeing different strain of bacteria modified in diverse ways for unique immunological enhancement. In this review, we have scrutinized the intricate interplay between the immune system and these engineered bacteria. These interactions generate strategies that can directly or indirectly optimize immunotherapy and even modulate the effects of combination therapies. Collectively, these engineered bacteria present a promising novel therapeutic strategy that promises to change the current landscape of immunotherapy.
Collapse
Affiliation(s)
- Hua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Yinrui Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Chonghai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China.
| |
Collapse
|
2
|
Salmonella as a Promising Curative Tool against Cancer. Pharmaceutics 2022; 14:pharmaceutics14102100. [PMID: 36297535 PMCID: PMC9609134 DOI: 10.3390/pharmaceutics14102100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteria-mediated cancer therapy has become a topic of interest under the broad umbrella of oncotherapy. Among many bacterial species, Salmonella remains at the forefront due to its ability to localize and proliferate inside tumor microenvironments and often suppress tumor growth. Salmonella Typhimurium is one of the most promising mediators, with engineering plasticity and cancer specificity. It can be used to deliver toxins that induce cell death in cancer cells specifically, and also as a cancer-specific instrument for immunotherapy by delivering tumor antigens and exposing the tumor environment to the host immune system. Salmonella can be used to deliver prodrug converting enzymes unambiguously against cancer. Though positive responses in Salmonella-mediated cancer treatments are still at a preliminary level, they have paved the way for developing combinatorial therapy with conventional chemotherapy, radiotherapy, and surgery, and can be used synergistically to combat multi-drug resistant and higher-stage cancers. With this background, Salmonella-mediated cancer therapy was approved for clinical trials by U.S. Food and Drug Administration, but the results were not satisfactory and more pre-clinical investigation is needed. This review summarizes the recent advancements in Salmonella-mediated oncotherapy in the fight against cancer. The present article emphasizes the demand for Salmonella mutants with high stringency toward cancer and with amenable elements of safety by virulence deletions.
Collapse
|
3
|
Howell LM, Forbes NS. Bacteria-based immune therapies for cancer treatment. Semin Cancer Biol 2021; 86:1163-1178. [PMID: 34547442 DOI: 10.1016/j.semcancer.2021.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 12/23/2022]
Abstract
Engineered bacterial therapies that target the tumor immune landscape offer a new class of cancer immunotherapy. Salmonella enterica and Listeria monocytogenes are two species of bacteria that have been engineered to specifically target tumors and serve as delivery vessels for immunotherapies. Therapeutic bacteria have been engineered to deliver cytokines, gene silencing shRNA, and tumor associated antigens that increase immune activation. Bacterial therapies stimulate both the innate and adaptive immune system, change the immune dynamics of the tumor microenvironment, and offer unique strategies for targeting tumors. Bacteria have innate adjuvant properties, which enable both the delivered molecules and the bacteria themselves to stimulate immune responses. Bacterial immunotherapies that deliver cytokines and tumor-associated antigens have demonstrated clinical efficacy. Harnessing the diverse set of mechanisms that Salmonella and Listeria use to alter the tumor-immune landscape has the potential to generate many new and effective immunotherapies.
Collapse
Affiliation(s)
- Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States
| | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States.
| |
Collapse
|
4
|
Devaraj K, Gillison ML, Wu TC. Development of HPV Vaccines for HPV-associated Head and Neck Squamous Cell Carcinoma. ACTA ACUST UNITED AC 2016; 14:345-62. [PMID: 14530303 DOI: 10.1177/154411130301400505] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-risk genotypes of the human papillomavirus (HPV), particularly HPV type 16, are found in a distinct subset of head and neck squamous cell carcinomas (HNSCC). Thus, these HPV-associated HNSCC may be prevented or treated by vaccines designed to induce appropriate HPV virus-specific immune responses. Infection by HPV may be prevented by neutralizing antibodies specific for the viral capsid proteins. In clinical trials, vaccines comprised of HPV virus-like particles (VLPs) have shown great promise as prophylactic HPV vaccines. However, given that capsid proteins are not expressed at detectable levels by infected basal keratinocytes, vaccines with therapeutic potential must target other non-structural viral antigens. Two HPV oncogenic proteins, E6 and E7, are important in the induction and maintenance of cellular transformation and are co-expressed in the majority of HPV-containing carcinomas. Therefore, therapeutic vaccines targeting these proteins may have potential to control HPV-associated malignancies. Various candidate therapeutic HPV vaccines are currently being tested whereby E6 and/or E7 is administered in live vectors, in peptides or protein, in nucleic acid form, as components of chimeric VLPs, or in cell-based vaccines. Encouraging results from experimental vaccination systems in animal models have led to several prophylactic and therapeutic vaccine clinical trials. Should they fulfill their promise, these vaccines may prevent HPV infection or control its potentially life-threatening consequences in humans.
Collapse
Affiliation(s)
- Kalpana Devaraj
- Department of Pathology, The Johns Hopkins Medical Institutions, 720 Rutland Avenue, Ross Building 512, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
5
|
Development a scalable production process for truncated human papillomavirus type-6 L1 protein using WAVE Bioreactor and hollow fiber membrane. Appl Microbiol Biotechnol 2015; 100:1231-1240. [DOI: 10.1007/s00253-015-6974-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/16/2015] [Accepted: 08/31/2015] [Indexed: 10/23/2022]
|
6
|
Lee HJ, Yoon JK, Heo Y, Cho H, Cho Y, Gwon Y, Kim KC, Choi J, Lee JS, Oh YK, Kim YB. Therapeutic potential of an AcHERV-HPV L1 DNA vaccine. J Microbiol 2015; 53:415-20. [PMID: 26025174 DOI: 10.1007/s12275-015-5150-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/30/2015] [Accepted: 05/03/2015] [Indexed: 10/23/2022]
Abstract
Cervical cancer is strongly associated with chronic human papillomavirus infections, among which HPV16 is the most common. Two commercial HPV vaccines, Gardasil and Cervarix are effective for preventing HPV infection, but cannot be used to treat existing HPV infections. Previously, we developed a human endogenous retrovirus (HERV)-enveloped recombinant baculovirus capable of delivering the L1 genes of HPV types 16, 18, and 58 (AcHERV-HP16/18/58L1, AcHERV-HPV). Intramuscular administration of AcHERVHPV vaccines induced a strong cellular immune response as well as a humoral immune response. In this study, to examine the therapeutic effect of AcHERV-HPV in a mouse model, we established an HPV16 L1 expressing tumor cell line. Compared to Cervarix, immunization with AcHERVHPV greatly enhanced HPV16 L1-specific cytotoxic T lymphocytes (CTL) in C57BL/6 mice. Although vaccination could not remove preexisting tumors, strong CTL activity retarded the growth of inoculated tumor cells. These results indicate that AcHERV-HPV could serve as a potential therapeutic DNA vaccine against concurrent infection with HPV 16, 18, and 58.
Collapse
Affiliation(s)
- Hee-Jung Lee
- Department of Bio-industrial Technologies, Konkuk University, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ma F, Zhang Q, Zheng L. Interleukin/chitosan (JY) adjuvant enhances the mucosal immunity of human papillomavirus 16 L1 virus-like particles in mice. Biotechnol Lett 2014; 37:773-7. [DOI: 10.1007/s10529-014-1739-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/24/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Fenlian Ma
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yingxin Street 100, Beijing, 100052, China,
| | | | | |
Collapse
|
8
|
Maclean J, Rybicki EP, Williamson AL. Vaccination strategies for the prevention of cervical cancer. Expert Rev Anticancer Ther 2014; 5:97-107. [PMID: 15757442 DOI: 10.1586/14737140.5.1.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Infection with high-risk human papillomaviruses (HPVs) is an essential step in the multistep process leading to cervical cancer. There are approximately 120 different types of HPV identified: of these, 18 are high-risk types associated with cervical cancer, with HPV-16 being the dominant type in most parts of the world. The major capsid protein of papillomavirus, produced in a number of expression systems, self assembles to form virus-like particles. Virus-like particles are the basis of the first generation of HPV vaccines presently being tested in clinical trials. Virus-like particles are highly immunogenic and afford protection from infection both in animal models and in Phase IIb clinical trials. A number of Phase III trials are in progress to determine if the vaccine will protect against cervical disease and, in some cases, genital warts. However, it is predicted that these vaccines will be too expensive for the developing world, where they are desperately needed. Another problem is that they will be type specific. Novel approaches to the production of virus-like particles in plants, second-generation vaccine approaches including viral and bacterial vaccine vectors and DNA vaccines, as well as different routes of immunization, are also reviewed.
Collapse
Affiliation(s)
- James Maclean
- University of Cape Town, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, Observatory Cape Town 7925, South Africa.
| | | | | |
Collapse
|
9
|
Xu D, Wang D, Yang X, Cao M, Yu J, Wang Y. Fusion of HPV L1 into Shigella surface IcsA: a new approach in developing live attenuated Shigella-HPV vaccine. Antiviral Res 2013; 102:61-9. [PMID: 24333518 DOI: 10.1016/j.antiviral.2013.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 11/05/2013] [Accepted: 12/09/2013] [Indexed: 11/16/2022]
Abstract
Despite the success of L1 virus-like particles (VLPs) vaccines in prevention of high-risk human papillomavirus (HPV) infection and cervical cancer, extraordinary high cost for the complete vaccination has impeded widespread use of the vaccine in resource-poor countries, where cervical cancers impose greater challenge. Presentation of HPV L1 protein by attenuated pathogenic bacteria through natural infection provides a promising low-cost and convenient alternative. Here, we describe the construction and characterization of attenuated L1-expressing Shigella vaccine candidate, by fusion of L1 into the autotransporter of Shigella sonnei, IcsA, an essential virulence factor responsible for actin-based motility. The functional α domain of IcsA was replaced by codon-optimized L1 gene with independent open reading frames (ORFs) facilitated by suicide vector pJCB12. The L1 gene was stabilized in the genome of recombinant S. sonnei with protein expression and assembly of VLPs in the bacterial cytoplasm. Through conjunctival route vaccination in guinea pigs, L1-containing S. sonnei was able to elicit specific immune response to HPV16 L1 VLP as well as bacterial antigens. The results demonstrated the feasibility of the novel stratagem to develop prophylactic Shigella-HPV vaccines.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Cancer Research, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an 710061, China; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Depu Wang
- Institute of Cancer Research, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaofeng Yang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Cao
- Institute of Cancer Research, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jun Yu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yili Wang
- Institute of Cancer Research, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
10
|
Hongli L, Xukui L, Ting L, Wensheng L, Lusheng S, Jin Z. Transgenic tobacco expressed HPV16-L1 and LT-B combined immunization induces strong mucosal and systemic immune responses in mice. Hum Vaccin Immunother 2013; 9:83-9. [PMID: 23108357 PMCID: PMC3667950 DOI: 10.4161/hv.22292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/09/2012] [Accepted: 09/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although there are two HPV vaccines have been used to prevent cervical cancer, the cost limits their application in developing countries. The aim of this study was to evaluate the potential value of plant-based HPV16L1 and LTB proteins as a high-efficiency, low-cost and easy-to-use HPV16L1 oral vaccine. RESULTS Transgenic plant-derived HPV16L1 and LTB were identified, which display potent immunogenicity and biologic activity. Higher levels of specific IgG and IgA levels of HPV16L1 were induced when mice were immunized with L1 combined with LTB by the oral route. The stimulation index (SI) of spleen cells from the L1/LTB-immunized group was significantly higher than that in the L1-immunized group (p < 0.05). The percentage of IFN-γ (+) /IL-4 (+) CD4 (+) T cells from the L1/LTB group was clearly increased compared with that in the L1 and control groups (p < 0.05). METHODS Plant-expressed HPV16L1 and LTB proteins were extracted from transgenic tobacco leaves, and their biologic characteristics and activity were examined with electron microscopy and GM1-binding assays respectively. Mice were immunized orally with either HPV16L1 or LTB alone or in combination. Induced mucosal and systemic immune responses were detected by ELISA, Hemagglutination inhibition (HAI), lymphocyte proliferation assays and flow cytometry analysis. CONCLUSION Strong mucosal and systemic immune responses were induced by transgenic tobacco derived HPV16-L1 and LTB combined immunization. This study will lay the foundation for the development of a new type of vaccine to decrease HPV16 infections, which may lead to the prevention of cervical cancer.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/isolation & purification
- Administration, Oral
- Animals
- Antibodies, Viral/blood
- Bacterial Toxins/administration & dosage
- Bacterial Toxins/genetics
- Bacterial Toxins/isolation & purification
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Capsid Proteins/isolation & purification
- Cell Proliferation
- Enterotoxins/administration & dosage
- Enterotoxins/genetics
- Enterotoxins/isolation & purification
- Escherichia coli Proteins/administration & dosage
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/isolation & purification
- Female
- Flow Cytometry
- Immunity, Mucosal
- Immunoglobulin A/analysis
- Immunoglobulin G/analysis
- Immunoglobulin G/blood
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/isolation & purification
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/genetics
- Papillomavirus Vaccines/immunology
- Papillomavirus Vaccines/isolation & purification
- Plants, Genetically Modified
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Spleen/immunology
- Nicotiana
- Vaccination/methods
Collapse
Affiliation(s)
- Liu Hongli
- First Affiliated Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| | - Li Xukui
- Stomatological Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| | - Lei Ting
- First Affiliated Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| | - Li Wensheng
- First Affiliated Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| | - Si Lusheng
- First Affiliated Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| | - Zheng Jin
- First Affiliated Hospital of Medical College; Xi’an Jiaotong University; Xi’an, Shaanxi Province, P.R. China
| |
Collapse
|
11
|
Paterson Y, Guirnalda PD, Wood LM. Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy. Semin Immunol 2010; 22:183-9. [PMID: 20299242 PMCID: PMC4411241 DOI: 10.1016/j.smim.2010.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 02/15/2010] [Indexed: 01/30/2023]
Abstract
This review covers the use of the facultative intracellular bacteria, Listeriamonocytogenes and Salmonella enterica serovar typhimurium as delivery systems for tumor-associated antigens in tumor immunotherapy. Because of their ability to infect and survive in antigen presenting cells, these bacteria have been harnessed to deliver tumor antigens to the immune system both as bacterially expressed proteins and encoded on eukaryotic plasmids. They do this in the context of strong innate immunity, which provides the required stimulus to the immune response to break tolerance against those tumor-associated antigens that bear homology to self. Here we describe differences in the properties of these bacteria as vaccine vectors, a summary of the major therapies they have been applied to and their advancement towards the clinic.
Collapse
Affiliation(s)
- Yvonne Paterson
- University of Pennsylvania, Department of Microbiology, 323 Johnson Pavilion, 36th St. and Hamilton Walk, Philadelphia, PA 19104-6076, United States.
| | | | | |
Collapse
|
12
|
Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? THE JOURNAL OF IMMUNOLOGY 2009; 183:6883-92. [PMID: 19923474 DOI: 10.4049/jimmunol.0901466] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The route of vaccination is important in influencing immune responses at the initial site of pathogen invasion where protection is most effective. Immune responses required for mucosal protection can differ vastly depending on the individual pathogen. For some mucosal pathogens, including acute self-limiting infections, high-titer neutralizing Abs that enter tissue parenchyma or transude into the mucosal lumen are sufficient for clearing cell-free virus. However, for pathogens causing chronic infections such as HIV, hepatitis C virus, herpes viruses, mycobacteria, and fungal and parasitic infections, a single arm of the immune response generated by systemic vaccination may be insufficient for protection. Induction of the mucosal innate and adaptive immune systems, including CD4+ T help, Th17, high avidity CD8+ CTL, and secretory IgA and IgG1 neutralizing Abs, at the site of pathogen entry may be required for effective protection against highly invasive pathogens that lead to chronic infection and may be generated predominantly by mucosal vaccination.
Collapse
Affiliation(s)
- Igor M Belyakov
- Midwest Research Institute, 110 Thomas Johnson Drive, Frederick, MD 21702, USA.
| | | |
Collapse
|
13
|
Abstract
Human papillomavirus (HPV) has been associated with several human cancers, including cervical cancer, vulvar cancer, vaginal and anal cancer, and a subset of head and neck cancers. The identification of HPV as an etiological factor for HPV-associated malignancies creates the opportunity for the control of these cancers through vaccination. Currently, the preventive HPV vaccine using HPV virus-like particles has been proven to be safe and highly effective. However, this preventive vaccine does not have therapeutic effects, and a significant number of people have established HPV infection and HPV-associated lesions. Therefore, it is necessary to develop therapeutic HPV vaccines to facilitate the control of HPV-associated malignancies and their precursor lesions. Among the various forms of therapeutic HPV vaccines, DNA vaccines have emerged as a potentially promising approach for vaccine development due to their safety profile, ease of preparation and stability. However, since DNA does not have the intrinsic ability to amplify or spread in transfected cells like viral vectors, DNA vaccines can have limited immunogenicity. Therefore, it is important to develop innovative strategies to improve DNA vaccine potency. Since dendritic cells (DCs) are key players in the generation of antigen-specific immune responses, it is important to develop innovative strategies to modify the properties of the DNA-transfected DCs. These strategies include increasing the number of antigen-expressing/antigen-loaded DCs, improving antigen processing and presentation in DCs, and enhancing the interaction between DCs and T cells. Many of the studies on DNA vaccines have been performed on preclinical models. Encouraging results from impressive preclinical studies have led to several clinical trials.
Collapse
Affiliation(s)
- Archana Monie
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
14
|
Gissmann L, Nieto K. The Therapeutic Vaccine: Is it Feasible? Arch Med Res 2009; 40:493-8. [DOI: 10.1016/j.arcmed.2009.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 11/28/2022]
|
15
|
Mustafa W, Maciag PC, Pan ZK, Weaver JR, Xiao Y, Isaacs SN, Paterson Y. Listeria monocytogenes delivery of HPV-16 major capsid protein L1 induces systemic and mucosal cell-mediated CD4+ and CD8+ T-cell responses after oral immunization. Viral Immunol 2009; 22:195-204. [PMID: 19435416 DOI: 10.1089/vim.2008.0071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neutralizing antibodies are thought to be required at mucosal surfaces to prevent human papillomavirus (HPV) transmission. However, the potential for cell-mediated immunity in mediating protection against HPV infection has not been well explored. We generated recombinant Listeria monocytogenes (Lm) constructs that secrete listeriolysin O (LLO) fused with overlapping N-terminal (LLO-L1(1-258)) or C-terminal (LLO-L1(238-474)) fragments of HPV type 16 major capsid protein L1 (HPV-16-L1). Oral immunization of mice with either construct induced IFN-gamma-producing CD8+ and CD4+ T cells in the spleen and in the Peyer's patches with the C-terminal construct. Oral immunization with both constructs resulted in diminished viral titers in the cervix and uterus of mice after intravaginal challenge with vaccinia virus expressing HPV-16-L1.
Collapse
Affiliation(s)
- Waleed Mustafa
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Pedro L, Soares S, Ferreira G. Purification of Bionanoparticles. Chem Eng Technol 2008; 31:815-825. [PMID: 32313384 PMCID: PMC7162033 DOI: 10.1002/ceat.200800176] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/11/2022]
Abstract
The recent demand for nanoparticulate products such as viruses, plasmids, protein nanoparticles, and drug delivery systems have resulted in the requirement for predictable and controllable production processes. Protein nanoparticles are an attractive candidate for gene and molecular therapy due to their relatively easy production and manipulation. These particles combine the advantages of both viral and non-viral vectors while minimizing the disadvantages. However, their successful application depends on the availability of selective and scalable methodologies for product recovery and purification. Downstream processing of nanoparticles depends on the production process, producer system, culture media and on the structural nature of the assembled nanoparticle, i.e., mainly size, shape and architecture. In this paper, the most common processes currently used for the purification of nanoparticles, are reviewed.
Collapse
Affiliation(s)
- L. Pedro
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - S. S. Soares
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - G. N. M. Ferreira
- IBB‐Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| |
Collapse
|
17
|
Intravaginal immunization of mice with recombinant Salmonella enterica serovar Typhimurium expressing human papillomavirus type 16 antigens as a potential route of vaccination against cervical cancer. Infect Immun 2008; 76:1940-51. [PMID: 18332214 DOI: 10.1128/iai.01484-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cervical cancer, the second leading cause of cancer deaths in women, is the consequence of high-risk human papillomavirus (HPV) infections. Toward the development of therapeutic vaccines that can induce both innate and adaptive mucosal immune responses, we analyzed intravaginal (ivag) vaccine delivery of live attenuated Salmonella enterica serovar Typhimurium expressing HPV16L1 as a model antigen. Innate immune responses were examined in cervicovaginal tissues by determining gene expression patterns by microarray analysis using nylon membranes imprinted with cDNA fragments coding for inflammation-associated genes. At 24 h, a wide range of genes, including those for chemokines and Th1- and Th2-type cytokine and chemokine receptors were up-regulated in mice ivag immunized with Salmonella compared to control mice. However, the majority of transcripts returned to their steady-state levels 1 week after immunization, suggesting a transient inflammatory response. Indeed, cervicovaginal histology of immunized mice showed a massive, but transient, infiltration of macrophages and neutrophils, while T cells were still increased after 7 days. Ivag immunization also induced humoral and antitumor immune responses, i.e., serum and vaginal anti-HPV16VLP antibody titers similar to those induced by oral immunization, and significant protection in tumor protection experiments using HPV16-expressing C3 tumor cells. These results show that ivag immunization with live attenuated Salmonella expressing HPV16 antigens modulates the local mucosal gene expression pattern into a transient proinflammatory profile, elicits strong systemic and mucosal immunity against HPV16, and confers protection against HPV16 tumor cells subcutaneously implanted in mice. Examination of the efficacy with which ivag HPV16E7E6 Salmonella induces regression of tumors located in cervicovaginal tissue is warranted.
Collapse
|
18
|
Dell K, Koesters R, Linnebacher M, Klein C, Gissmann L. Intranasal immunization with human papillomavirus type 16 capsomeres in the presence of non-toxic cholera toxin-based adjuvants elicits increased vaginal immunoglobulin levels. Vaccine 2006; 24:2238-47. [PMID: 16455165 DOI: 10.1016/j.vaccine.2005.11.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/26/2005] [Accepted: 11/10/2005] [Indexed: 11/24/2022]
Abstract
Prophylactic immunization against human papillomaviruses (HPVs) aims preferentially at the generation of antibodies, which are directed against the virus capsid proteins. DNA-free virus-like particles or their pentameric subunits, the capsomeres represent suitable antigens. Here we investigated if anti-HPV16 L1 specific antibodies and L1-specific CTL induced by intranasal immunization with capsomeres in sera and vaginal washings of C57Bl6 mice can be enhanced by co-application of the non-toxic cholera toxin adjuvants CTA1-D2D1 or CTB. We found that CTA1-D2D1 elevated L1-specific serum IgG antibodies in a dose-dependent manner and both CTA1-D2D1 and CTB significantly increased L1-specific IgA antibody levels in the vaginal lumen. Furthermore, CTA1-D2D1 and CTB enhanced L1-specific CTL responses.
Collapse
Affiliation(s)
- Kerstin Dell
- Deutsches Krebsforschungszentrum, Angewandte Tumorvirologie, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Hummel S, Apte RN, Qimron U, Vitacolonna M, Porgador A, Zöller M. Tumor Vaccination by Salmonella typhimurium After Transformation with a Eukaryotic Expression Vector in Mice. J Immunother 2005; 28:467-79. [PMID: 16113603 DOI: 10.1097/01.cji.0000170359.92090.8b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transformed attenuated Salmonella typhimurium (ST) have been suggested as an efficient means of tumor vaccination. However, ST themselves might be immunosuppressive, and the question has arisen as to whether this impedes vaccination efficacy even if ST are transformed with a eukaryotic expression vector such that "tumor antigen" will be transcribed by the host. The question was evaluated using a mutant SL7207, where the yej operon, which interferes with MHC I-mediated presentation, had been inactivated (SL7207DeltayejE). Mice were vaccinated with SL7207 or SL7207DeltayejE transformed with a eukaryotic expression vector carrying the lacZ or the gp100 gene and later received lacZ-transfected RENCA or YC8 or gp100-expressing B16F1 tumor cells. In vaccinated mice, tumor growth started with a delay and some animals remained tumor-free; however, the tumor growth rate remained unaltered. No significant difference was seen between SL7207DeltayejE versus SL7207 vaccinated mice. The latter finding contrasted with ex vivo analyses where vaccination with SL7207DeltayejE, compared with SL7207, induced a significantly stronger response, including nonadaptive defense mechanisms. The failure to detect a superior vaccination efficacy of SL7207DeltayejE in vivo could be attributed to a stronger effect of the yej operon on MHC-mediated antigen presentation when driven by a prokaryotic promoter. Also, additional Salmonella genes apparently interfere with maintenance of a sustained immune response. Thus, the immunosuppressive yej operon affects innate and adaptive immunity. However, when ST are carriers for eukaryotic-expressed tumor antigens, yej does not severely hamper induction of an immune response.
Collapse
Affiliation(s)
- Susanne Hummel
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The association of certain high-risk human papillomaviruses with the development of anogenital cancer in humans is well-established. Numerous preclinical studies have underwritten the development of both prophylactic and therapeutic vaccine candidates for clinical evaluation. Prophylactic strategies are utilising virus-like particles composed of the L1 viral capsid protein to induce neutralising antibodies while therapeutic approaches are aimed at generating specific T cells targeted at the viral E6 and/or E7 oncogene products. Thus far, human papillomavirus virus-like particle vaccines have proven to be clinically efficacious in the early trials looking at the prevention of infection. Important future milestones will be showing the prevention of high-grade cervical intraepithelial neoplasia and sufficient longevity for such protection. Different types of therapeutic vaccines including peptide, protein, DNA or viral vector-based vaccines have proven to be safe and immunogenic in patients, although there is often no correlation with clinical outcome. The possibility of combined prophylactic and therapeutic vaccines may offer the best chance for a significant reduction in the incidence of death from cervical cancer worldwide.
Collapse
Affiliation(s)
- Peter L Stern
- Cancer Research UK Immunology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, M20 4BX, UK.
| |
Collapse
|
21
|
Antigen Delivery Systems II: Development of Live Recombinant Attenuated Bacterial Antigen and DNA Vaccine Delivery Vector Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Oh YK, Sohn T, Park JS, Kang MJ, Choi HG, Kim JA, Kim WK, Ko JJ, Kim CK. Enhanced mucosal and systemic immunogenicity of human papillomavirus-like particles encapsidating interleukin-2 gene adjuvant. Virology 2004; 328:266-73. [PMID: 15464846 DOI: 10.1016/j.virol.2004.06.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 05/04/2004] [Accepted: 06/17/2004] [Indexed: 10/26/2022]
Abstract
Here, we report the enhanced mucosal and systemic immunogenicity of human papillomavirus type (HPV) 16 L1 virus-like particles (VLP) encapsidating a cytokine genetic adjuvant. Plasmid DNA expressing interleukin-2 (pIL2) was encapsidated in VLP using the reassembly property of VLP from disassembled L1 capsomeres. pIL2 in reassembled VLP showed stability against DNase I, indicating encapsidation. After intramuscular immunization into mice, the highest vaginal and salivary HPV16 L1-specific IgA titers were observed in pIL2-encapsidated VLP, followed by VLP plus pIL2 in separate plasmid, and VLP alone. Similar to mucosal responses, serum IgG, IgG1, and IgG2a antibody titers were the highest in the group treated with pIL2-encapsidated VLP. Moreover, the adjuvanticity of pIL2 encapsidated in VLP was stronger in IgG2a antibody relative to IgG1 antibody. Our results indicate that the encapsidation of a genetic cytokine adjuvant pIL2 would be beneficial for more effective induction of mucosal and systemic immune responses to VLP vaccines.
Collapse
Affiliation(s)
- Yu-Kyoung Oh
- College of Medicine and Research Institute of Basic Medicine, Pochon CHA University, Kyounggi-do 487-800, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Human papillomaviruses (HPVs) are the primary etiologic agents of cervical cancer. Thus, cervical cancer and other HPV-associated malignancies might be prevented or treated by HPV vaccines. Transmission of papillomavirus may be prevented by the generation of antibodies to capsid proteins L1 and L2 that neutralize viral infection. However, because the capsid proteins are not expressed at detectable levels by infected basal keratinocytes or in HPV-transformed cells, therapeutic vaccines generally target nonstructural early viral antigens. Two HPV oncogenic proteins, E6 and E7, are critical to the induction and maintenance of cellular transformation and are coexpressed in the majority of HPV-containing carcinomas. Thus, therapeutic vaccines targeting E6 and E7 may provide the best option for controlling HPV-associated malignancies. Various candidate therapeutic HPV vaccines are currently being tested whereby E6 and/or E7 are administered in live vectors, as peptides or protein, in nucleic acid form, as components of chimeric virus-like particles, or in cell-based vaccines. Encouraging results from experimental vaccination systems in animal models have led to several prophylactic and therapeutic vaccine clinical trials. If these preventive and therapeutic HPV vaccines prove successful in patients, as they have in animal models, then oncogenic HPV infection and its associated malignancies may be controllable by vaccination.
Collapse
Affiliation(s)
- Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
24
|
Baud D, Benyacoub J, Revaz V, Kok M, Ponci F, Bobst M, Curtiss R, De Grandi P, Nardelli-Haefliger D. Immunogenicity against human papillomavirus type 16 virus-like particles is strongly enhanced by the PhoPc phenotype in Salmonella enterica serovar Typhimurium. Infect Immun 2004; 72:750-6. [PMID: 14742517 PMCID: PMC321624 DOI: 10.1128/iai.72.2.750-756.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant Salmonella strains have been widely used to deliver heterologous antigens and induce immune responses in vaccinated animals and humans. It remains to be established, however, how these bacteria mount an immune response; this has prevented the rational design of vaccines. Here we report for the first time that a particular genetic program, PhoPc, is necessary for recombinant Salmonella strains to induce an antibody response to a heterologous antigen, the human papillomaviruses type 16 (HPV16) virus-like particle (VLP). The PhoPc phenotype results from a point mutation in phoQ, the gene encoding the sensor component of a two-component regulatory system (PhoP-PhoQ) that controls the expression of a number of virulence factors in Salmonellae. To demonstrate that immunogenicity of the viral antigen expressed by the bacterial vector was dependent on the PhoPc phenotype, we have expressed the phoQ mutant gene (phoQ24) in two differently attenuated Salmonella enterica serovar Typhimurium strains. Our data show extrachromosomal phoQ24 to be dominant over the chromosomal copy of the phoQ gene, conferring the PhoPc phenotype on the recipient strains. In addition, activation of PhoPQ-regulated genes by the plasmid-encoded PhoQ24 did not alter bacterial survival and conferred immunogenicity to the HPV16 VLP expressed in the two S. enterica serovar Typhimurium backgrounds, inducing the production of HPV-specific antibodies in mice. This strongly suggests that at least one of the PhoP-regulated genes is necessary for mounting an efficient antibody response to HPV16 VLP. This finding sets the stage for further development of a Salmonella-based vaccine against HPV infection and cervical cancer.
Collapse
Affiliation(s)
- David Baud
- Department of Gynaecology, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Eiben GL, da Silva DM, Fausch SC, Le Poole IC, Nishimura MI, Kast WM. Cervical cancer vaccines: recent advances in HPV research. Viral Immunol 2003; 16:111-21. [PMID: 12828864 DOI: 10.1089/088282403322017866] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Carcinomas of the anogenital tract, particularly cancer of the cervix, account for almost 12% of all cancers in women, and so represent the second most frequent gynecological malignancy in the world (48). It is well established that chronic infection of cervical epithelium by human papillomaviruses (HPV) is necessary for the development of cervical cancer. In fact, HPV DNA has been demonstrated in more than 99.7% of cervical cancer biopsy specimens, with high-risk HPV16 and HPV18 sequences being most prevalent (45,73). Therefore, an effective vaccine that would mount an immune response against HPV-related proteins might contribute to the prevention or elimination of HPV expressing lesions. This review will concentrate on the most recent advances in vaccine-mediated prevention and immunotherapy of HPV-induced cervical cancer, including presentations from the 20(th) International HPV Conference held in October 2002 in Paris.
Collapse
Affiliation(s)
- Gretchen L Eiben
- Cancer Immunology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | | | | | |
Collapse
|
26
|
Da Silva DM, Schiller JT, Kast WM. Heterologous boosting increases immunogenicity of chimeric papillomavirus virus-like particle vaccines. Vaccine 2003; 21:3219-27. [PMID: 12804851 DOI: 10.1016/s0264-410x(03)00237-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chimeric human papillomavirus virus-like particles (HPV cVLPs), containing the HPV16 non-structural protein E7, are potent vaccines for inducing antigen-specific protective immunity against HPV-transformed tumors in animal models. Previous data demonstrated that the effectiveness of cytotoxic T lymphocyte (CTL) induction after repetitive vaccination with the same cVLP, and thus vaccine efficacy, is limited by the presence of neutralizing antibodies induced after the first application. Here, we determined if altering the route of vaccine delivery or incorporation of the target antigen into VLPs of a heterologous papillomavirus type could overcome inhibition of MHC class I antigen presentation by neutralizing antibodies, resulting in a boosting of CD8(+) T-cell responses against the incorporated antigen, HPV16 E7. Mucosal delivery of cVLPs resulted in detection of systemic E7-specific CD8(+) T cells, however, these routes were not able to bypass the inhibitory effect of circulating antibodies against homologous VLP types. In contrast, mice immunized and boosted with heterologous cVLPs containing HPV16 E7 showed a higher frequency of E7-specific T cells in vitro and displayed reduced tumor growth in a therapeutic setting compared to mice treated with homologous cVLPs. The data indicate that the use of different cVLP types for prime/boost regimens is a promising strategy to increase the efficacy and usefulness of cVLP-based vaccines for the treatment of cervical neoplasia.
Collapse
Affiliation(s)
- Diane M Da Silva
- Cancer Immunology Program, Department of Microbiology and Immunology, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 S. First Avenue, Maywood, IL, 60153, USA
| | | | | |
Collapse
|
27
|
Offringa R, de Jong A, Toes REM, van der Burg SH, Melief CJM. Interplay between human papillomaviruses and dendritic cells. Curr Top Microbiol Immunol 2003; 276:215-40. [PMID: 12797450 DOI: 10.1007/978-3-662-06508-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design of the human papillomavirus (HPV) infection cycle is tightly fitted to the differentiation program of its natural host, the keratinocyte. This has important consequences for the role of antigen-presenting cells in the priming of antiviral immunity. The confinement of HPV infection to epithelia puts the epithelial dendritic cell, the Langerhans cell (LC), in charge of the induction of T cell-dependent immunity. Because HPV-infected keratinocytes cannot reach the regional lymphoid organs, and HPV-infection of LCs does not result in viral gene expression, priming of antiviral T cells exclusively depends on cross-presentation of viral antigens by the LC. Sensitization of the immune system in the regional lymphoid organs elicits systemic anti-HPV immunity as well as intraepithelial immune surveillance by memory-type intraepithelial T cells and locally produced antibodies. The high rate of spontaneous rejections of high-risk HPV-infections and HPV-positive premalignant lesions indicates that in general the LC-driven antigen presentation machinery is capable of raising an effective immune defense against HPV. Epidemiological studies also reveal that a decrease in the vigilance of the immune system is readily exploited by HPV to escape immune destruction, resulting in persistent infections and development of HPV-positive cancers. In view of the inherent antigenicity of HPV, immune intervention strategies constitute a promising approach for both the prevention and the therapeutic treatment of HPV-induced diseases. Importantly, the mechanisms that govern the induction and effector phases of the intraepithelial immune surveillance against HPV must be taken into account when designing such strategies.
Collapse
Affiliation(s)
- R Offringa
- Tumor Immunology Group, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Zöller M. Immunotherapy of cancer by active vaccination: does allogeneic bone marrow transplantation after non-myeloablative conditioning provide a new option? Technol Cancer Res Treat 2003; 2:237-60. [PMID: 12779354 DOI: 10.1177/153303460300200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The critical role of antigen-specific T cells in cancer immunotherapy has been amply demonstrated in many model systems. Though success of clinical trials still remains far behind expectation, the continuous improvement in our understanding of the biology of the immune response will provide the basis of optimized cancer vaccines and allow for new modalities of cancer treatment. This review focuses on the current status of active therapeutic vaccination and future prospects. The latter will mainly be concerned with allogeneic bone marrow cell transplantation after non-myeloablative conditioning, because it is my belief that this approach could provide a major breakthrough in cancer immunotherapy. Concerning active vaccination protocols the following aspects will be addressed: i) the targets of immunotherapeutic approaches; ii) the response elements needed for raising a therapeutically successful immune reaction; iii) ways to achieve an optimal confrontation of the immune system with the tumor and iv) supportive regimen of immunomodulation. Hazards which one is most frequently confronted with in trials to attack tumors with the inherent weapon of immune defense will only be briefly mentioned. Many question remain to be answered in the field of allogeneic bone marrow transplantation after non-myeloablative conditioning to optimize the therapeutic setting for this likely very powerful tool of cancer therapy. Current considerations to improve engraftment and to reduce graft versus host disease while strengthening graft versus tumor reactivity will be briefly reviewed. Finally, I will discuss whether tumor-reactive T cells can be "naturally" maintained during the process of T cell maturation in the allogeneic host. Provided this hypothesis can be substantiated, a T cell vaccine will meet a pool of virgin T cells in the allogeneically reconstituted host, which are tolerant towards the host, but not anergised towards tumor antigens presented by MHC molecules of the host.
Collapse
Affiliation(s)
- Margot Zöller
- Dept. of Tumor Progression & Immune Defense, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Eiben GL, Velders MP, Kast WM. The cell-mediated immune response to human papillomavirus-induced cervical cancer: implications for immunotherapy. Adv Cancer Res 2003; 86:113-48. [PMID: 12374277 DOI: 10.1016/s0065-230x(02)86004-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Gretchen L Eiben
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood Illinois 60153, USA
| | | | | |
Collapse
|
30
|
Brentjens MH, Yeung-Yue KA, Lee PC, Tyring SK. Vaccines for viral diseases with dermatologic manifestations. Dermatol Clin 2003; 21:349-69. [PMID: 12757257 DOI: 10.1016/s0733-8635(02)00098-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vaccines against infectious diseases have been available since the 1800s, when an immunization strategy against smallpox developed by Jenner gained wide acceptance. Until recently, the only vaccination strategies available involved the use of protein-based, whole killed, and attenuated live virus vaccines. These strategies have led to the development of effective vaccines against a variety of diseases with primary or prominent cutaneous manifestations. Effective and safe vaccines now used worldwide include those directed against measles and rubella (now commonly used together with a mumps vaccine as the trivalent MMR), chickenpox, and hepatitis B. The eradication of naturally occurring smallpox remains one of the greatest successes in the history of modern medicine, but stockpiles of live smallpox exist in the United States and Russia. Renewed interest in the smallpox vaccine reflects concerns about a possible bioterrorist threat using this virus. Yellow fever is a hemorrhagic virus endemic to tropical areas of South America and Africa. An effective vaccine for this virus has existed since 1937, and it is used widely in endemic areas of South America, and to a lesser extent in Africa. This vaccine is recommended once every 10 years for people who are traveling to endemic areas. Advances in immunology have led to a greater understanding of immune system function in viral diseases. Progress in genetics and molecular biology has allowed researchers to design vaccines with novel mechanisms of action (eg, DNA, vector, and VLP vaccines). Vaccines have also been designed to specifically target particular viral components, allowing for stimulation of various arms of the immune system as desired. Ongoing research shows promise in prophylactic and therapeutic vaccination for viral infections with cutaneous manifestations. Further studies are necessary before vaccines for HSV, HPV, and HIV become commercially available.
Collapse
Affiliation(s)
- Mathijs H Brentjens
- University of Texas Medical Branch-Galveston, Department of Dermatology, Galveston, TX, USA
| | | | | | | |
Collapse
|
31
|
Balmelli C, Demotz S, Acha-Orbea H, De Grandi P, Nardelli-Haefliger D. Trachea, lung, and tracheobronchial lymph nodes are the major sites where antigen-presenting cells are detected after nasal vaccination of mice with human papillomavirus type 16 virus-like particles. J Virol 2002; 76:12596-602. [PMID: 12438585 PMCID: PMC136716 DOI: 10.1128/jvi.76.24.12596-12602.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination by the nasal route has been successfully used for the induction of immune responses. Either the nasal-associated lymphoid tissue (NALT), the bronchus-associated lymphoid tissue, or lung dendritic cells have been mainly involved. Following nasal vaccination of mice with human papillomavirus type 16 (HPV16) virus-like-particles (VLPs), we have previously shown that interaction of the antigen with the lower respiratory tract was necessary to induce high titers of neutralizing antibodies in genital secretions. However, following a parenteral priming, nasal vaccination with HPV16 VLPs did not require interaction with the lung to induce a mucosal immune response. To evaluate the contribution of the upper and lower respiratory tissues and associated lymph nodes (LN) in the induction of humoral responses against HPV16 VLPs after nasal vaccination, we localized the immune inductive sites and identified the antigen-presenting cells involved using a specific CD4(+) T-cell hybridoma. Our results show that the trachea, the lung, and the tracheobronchial LN were the major sites responsible for the induction of the immune response against HPV16 VLP, while the NALT only played a minor role. Altogether, our data suggest that vaccination strategies aiming to induce efficient immune responses against HPV16 VLP in the female genital tract should target the lower respiratory tract.
Collapse
Affiliation(s)
- Carole Balmelli
- Department of Gynecology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Dale CJ, Liu XS, De Rose R, Purcell DFJ, Anderson J, Xu Y, Leggatt GR, Frazer IH, Kent SJ. Chimeric human papilloma virus-simian/human immunodeficiency virus virus-like-particle vaccines: immunogenicity and protective efficacy in macaques. Virology 2002; 301:176-87. [PMID: 12359458 DOI: 10.1006/viro.2002.1589] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vaccines to efficiently block or limit sexual transmission of both HIV and human papilloma virus (HPV) are urgently needed. Chimeric virus-like-particle (VLP) vaccines consisting of both multimerized HPV L1 proteins and fragments of SIV gag p27, HIV-1 tat, and HIV-1 rev proteins (HPV-SHIV VLPs) were constructed and administered to macaques both systemically and mucosally. An additional group of macaques first received a priming vaccination with DNA vaccines expressing the same SIV and HIV-1 antigens prior to chimeric HPV-SHIV VLP boosting vaccinations. Although HPV L1 antibodies were induced in all immunized macaques, weak antibody or T cell responses to the chimeric SHIV antigens were detected only in animals receiving the DNA prime/HPV-SHIV VLP boost vaccine regimen. Significant but partial protection from a virulent mucosal SHIV challenge was also detected only in the prime/boosted macaques and not in animals receiving the HPV-SHIV VLP vaccines alone, with three of five prime/boosted animals retaining some CD4+ T cells following challenge. Thus, although some immunogenicity and partial protection was observed in non-human primates receiving both DNA and chimeric HPV-SHIV VLP vaccines, significant improvements in vaccine design are required before we can confidently proceed with this approach to clinical trials.
Collapse
Affiliation(s)
- C Jane Dale
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Eleanor J Cheadle
- Applied Immunology Laboratory, Cancer Research UK Clinical Centre, St James's University Hospital, Leeds, UK
| | | |
Collapse
|
34
|
Stern PL. Recent developments in human papillomavirus diagnosis and therapy in genital neoplasia. Expert Opin Ther Pat 2002. [DOI: 10.1517/13543776.12.2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Da Silva DM, Pastrana DV, Schiller JT, Kast WM. Effect of preexisting neutralizing antibodies on the anti-tumor immune response induced by chimeric human papillomavirus virus-like particle vaccines. Virology 2001; 290:350-60. [PMID: 11883199 DOI: 10.1006/viro.2001.1179] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chimeric human papillomavirus virus-like particles (HPV cVLPs) carrying HPV16 E7 protein are potent vaccines for inducing cell-mediated immunity (CMI) against HPV-induced tumors in animal models. We tested the hypothesis that virion-neutralizing antibodies generated during an initial vaccination might prevent effective boosting of CMI to the cVLPs. Mice with circulating HPV16-neutralizing antibodies, generated by direct immunization with wild-type VLPs or by passive transfer of hyperimmune anti-HPV16 VLP mouse sera, were subsequently vaccinated with HPV16 E7-containing cVLPs. Mice with preexisting neutralizing antibodies were not protected from HPV16 E7-positive TC-1 tumor challenge, compared to the protection seen in mice lacking these antibodies. Antibody-coated VLPs bound very inefficiently to receptor-positive cell lines, suggesting that one of the mechanisms of antibody interference is blocking of VLP binding to its receptor and thereby uptake of VLPs by antigen-presenting cells. Our results suggest that repetitive vaccination with a cVLP for induction of cellular immune responses to an incorporated antigen may be of limited effectiveness due to the presence of neutralizing antibodies against the capsid proteins induced after the first application. This limitation could potentially be overcome by boosting with cVLPs containing the same target antigen incorporated into other papillomavirus-type VLPs.
Collapse
Affiliation(s)
- D M Da Silva
- Cancer Immunology Program, Cardinal Bernardin Cancer Center, Department of Microbiology and Immunology, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
36
|
Ahmed MI, Salahy EE, Fayed ST, El-Hefnawy NG, Khalifa A. Human papillomavirus infection among Egyptian females with cervical carcinoma: relationship to spontaneous apoptosis and TNF-alpha. Clin Biochem 2001; 34:491-8. [PMID: 11676979 DOI: 10.1016/s0009-9120(01)00243-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES This study was designed to detect HPV type-16 in Cervical carcinoma (CC) tissue specimens. The results were correlated with clinicopathological parameters of the carcinoma, with spontaneous apoptosis and with immunoreactivity to TNF-alpha antibodies. METHODS Fresh frozen tissue specimens representing 30 cases of cervical carcinoma as well as 20 normal cervical tissues (NCT) were the subjects of this study. HPV-16 DNA was detected by Polymerase Chain Reaction (PCR). The occurrence of spontaneous apoptotic cell death was analyzed by the apoptosis assay. Apoptotic cells were also counted by light microscopy and the apoptotic index (AI) was calculated. Electron microscopy was used to confirm the morphology of apoptotic cells. TNF-alpha was quantified using EIA kit. RESULTS HPV-16 DNA was more frequent in CC than in NCT. No correlation was observed between HPV infection and grade, stage or pathologic type of CC. The occurrence of spontaneous apoptosis was significantly higher in CC than in NCT, where it was correlated to advanced tumor stage and tumor pathology being more in adenocarcinoma (AC) than in squamous cell carcinoma (SCC). Moreover, AI was negatively correlated to HPV-16 infection. TNF-alpha levels were significantly higher in CC vs. NCT, where they were positively correlated to advanced tumor stage. TNF-alpha levels were correlated to DNA fragmentation and AI (r = 0.47 and 0.57 respectively). A cut-off value for TNF-alpha was calculated to be 9.1 pg/mg protein (using ROC curve). At the determined cut-off point the sensitivity was 70% and the specificity was 80%. CONCLUSIONS HPV infection, high levels of TNF-alpha and spontaneous apoptosis were strongly associated with malignant phenotype of cervical tissues. Rate of spontaneous apoptosis was higher in AC compared to SCC. On the other hand, HPV negativity was correlated with AI. Moreover, TNF-alpha and apoptotic cell death were correlated to each other as well as to tumor progression. No correlation was detected between TNF-alpha and HPV-16 infection.
Collapse
Affiliation(s)
- M I Ahmed
- Oncology Diagnostic Unit, Biochemistry Dept., Ain Shams Faculty of Medicine, Abbassia, Cairo, Egypt 11566.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Worldwide, cervical cancer is one of the most common cancers in women. This is especially true in developing countries, where Papanicolaou smear screening, an effective preventive measure against cervical cancer, is insufficiently implemented. With growing evidence for human papillomavirus as a central etiologic factor in cervical neoplasia, development of a vaccine against this virus has emerged as an important objective in prevention of cervical cancer. International efforts in vaccine development have culminated in advancement of various vaccine strategies and initiation of human clinical trials. Reports from animal vaccine trials and early phase I human trials indicate markedly enhanced immune response through vaccination. However, the clinical significance of these results requires confirmation from long-term human trials.
Collapse
Affiliation(s)
- S S Im
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California-Irvine, Bio Sciences II, Room 3232, Irvine, CA 92697, USA
| | | | | |
Collapse
|