1
|
Schouest B, Leslie GJ, Hoxie JA, Maness NJ. Tetherin downmodulation by SIVmac Nef lost with the H196Q escape variant is restored by an upstream variant. PLoS One 2020; 15:e0225420. [PMID: 32764749 PMCID: PMC7413475 DOI: 10.1371/journal.pone.0225420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/13/2020] [Indexed: 01/17/2023] Open
Abstract
The H196 residue in SIVmac239 Nef is conserved across the majority of HIV and SIV isolates, lies immediately adjacent to the AP-2 (adaptor protein 2) binding di-leucine domain (ExxxLM195), and is critical for several described AP-2 dependent Nef functions, including the downregulation of tetherin (BST-2/CD317), CD4, and others. Surprisingly, many stocks of the closely related SIVmac251 swarm virus harbor a nef allele encoding a Q196. In SIVmac239, this variant is associated with loss of multiple AP-2 dependent functions. Publicly available sequences for SIVmac251 stocks were mined for variants linked to Q196 that might compensate for functional defects associated with this residue. Variants were engineered into the SIVmac239 backbone and in Nef expression plasmids and flow cytometry was used to examine surface tetherin expression in primary CD4 T cells and surface CD4 expression in SupT1 cells engineered to express rhesus CD4. We found that SIVmac251 stocks that encode a Q196 residue in Nef uniformly also encode an upstream R191 residue. We show that R191 restores the ability of Nef to downregulate tetherin in the presence of Q196 and has a similar but less pronounced impact on CD4 expression. However, a published report showed Q196 commonly evolves to H196 in vivo, suggesting a fitness cost. R191 may represent compensatory evolution to restore the ability to downregulate tetherin lost in viruses harboring Q196.
Collapse
Affiliation(s)
- Blake Schouest
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States of America
| | - George J. Leslie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States of America
- Department of Microbiology and Immunology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
2
|
Abstract
The accessory protein Nef of human immunodeficiency virus (HIV) is a primary determinant of viral pathogenesis. Nef is abundantly expressed during infection and reroutes a variety of cell surface proteins to disrupt host immunity and promote the viral replication cycle. Nef counteracts host defenses by sequestering and/or degrading its targets via the endocytic and secretory pathways. Nef does this by physically engaging a number of host trafficking proteins. Substantial progress has been achieved in identifying the targets of Nef, and a structural and mechanistic understanding of Nef's ability to command the protein trafficking machinery has recently started to coalesce. Comparative analysis of HIV and simian immunodeficiency virus (SIV) Nef proteins in the context of recent structural advances sheds further light on both viral evolution and the mechanisms whereby trafficking is hijacked. This review describes how advances in cell and structural biology are uncovering in growing detail how Nef subverts the host immune system, facilitates virus release, and enhances viral infectivity.
Collapse
|
3
|
Vekariya U, Saxena R, Singh P, Rawat K, Kumar B, Kumari S, Agnihotri SK, Kaur S, Sachan R, Nazir A, Bhadauria S, Sachdev M, Tripathi RK. HIV-1 Nef-POTEE; A novel interaction modulates macrophage dissemination via mTORC2 signaling pathway. Life Sci 2018; 214:158-166. [PMID: 30391463 DOI: 10.1016/j.lfs.2018.10.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
AIMS Human immunodeficiency virus -1 [HIV-1] Nef, localizes in different cellular compartments and modulates several cellular pathways. Nef promotes virus pathogenicity through alteration in cell surface receptor expression, apoptosis, protein trafficking etc. Nef regulates viral pathogenesis through interaction with different host proteins. Thus, molecular mechanisms of pathogenesis could be deciphered by identifying novel Nef interacting proteins. MAIN METHODS HIV-1 Nef interacting proteins were identified by pull down assay and MALDI-TOF analysis. The interaction was further validated through mammalian two hybrid assay. Functional role of this interaction was identified by immunoprecipitation assay, cell invasion and cell migration studies. Fold Change in mRNA levels of CD163, CD206, CCL17 and CCL18 was analyzed using qPCR. KEY FINDINGS In current study, C. elegans protein ACT4C and its human homolog POTEE was identified to be interacting with Nef. This interaction activates mTORC2 complex, which in-turn activates AKT and PKC-α. The activation of mTORC2 complex was found to be initiated by the interaction of Nef, mTORC2, Rictor to POTEE. The cellular phenotype and functions affected by Nef-POTEE interaction resulted in significant increase in cell invasion and migration of macrophages (MΦ). SIGNIFICANCE MΦ is primary target of HIV-1 infection where HIV-1 replicates and polarizes immunosuppressive M2 phenotype. Combine effect of M2 phenotype and Viral-host protein interactions compromise the MΦ associated physiological functions. Infected MΦ dissemination into other system also leads to HIV-1 induced malignancies. Therefore, targeting POTEE-Nef interaction can lead to formulating better therapeutic strategy against HIV-1.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Reshu Saxena
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Poonam Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Kavita Rawat
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Balawant Kumar
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Sushila Kumari
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | | | - Supinder Kaur
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Rekha Sachan
- Department of Obstetrics & Gynecology, King George Medical University, Lucknow, UP, India
| | - Aamir Nazir
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Smrati Bhadauria
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Monika Sachdev
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Raj Kamal Tripathi
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|
4
|
Kmiec D, Akbil B, Ananth S, Hotter D, Sparrer KMJ, Stürzel CM, Trautz B, Ayouba A, Peeters M, Yao Z, Stagljar I, Passos V, Zillinger T, Goffinet C, Sauter D, Fackler OT, Kirchhoff F. SIVcol Nef counteracts SERINC5 by promoting its proteasomal degradation but does not efficiently enhance HIV-1 replication in human CD4+ T cells and lymphoid tissue. PLoS Pathog 2018; 14:e1007269. [PMID: 30125328 PMCID: PMC6117100 DOI: 10.1371/journal.ppat.1007269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/30/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022] Open
Abstract
SERINC5 is a host restriction factor that impairs infectivity of HIV-1 and other primate lentiviruses and is counteracted by the viral accessory protein Nef. However, the importance of SERINC5 antagonism for viral replication and cytopathicity remained unclear. Here, we show that the Nef protein of the highly divergent SIVcol lineage infecting mantled guerezas (Colobus guereza) is a potent antagonist of SERINC5, although it lacks the CD4, CD3 and CD28 down-modulation activities exerted by other primate lentiviral Nefs. In addition, SIVcol Nefs decrease CXCR4 cell surface expression, suppress TCR-induced actin remodeling, and counteract Colobus but not human tetherin. Unlike HIV-1 Nef proteins, SIVcol Nef induces efficient proteasomal degradation of SERINC5 and counteracts orthologs from highly divergent vertebrate species, such as Xenopus frogs and zebrafish. A single Y86F mutation disrupts SERINC5 and tetherin antagonism but not CXCR4 down-modulation by SIVcol Nef, while mutation of a C-proximal di-leucine motif has the opposite effect. Unexpectedly, the Y86F change in SIVcol Nef had little if any effect on viral replication and CD4+ T cell depletion in preactivated human CD4+ T cells and in ex vivo infected lymphoid tissue. However, SIVcol Nef increased virion infectivity up to 10-fold and moderately increased viral replication in resting peripheral blood mononuclear cells (PBMCs) that were first infected with HIV-1 and activated three or six days later. In conclusion, SIVcol Nef lacks several activities that are conserved in other primate lentiviruses and utilizes a distinct proteasome-dependent mechanism to counteract SERINC5. Our finding that evolutionarily distinct SIVcol Nefs show potent anti-SERINC5 activity supports a relevant role of SERINC5 antagonism for viral fitness in vivo. Our results further suggest this Nef function is particularly important for virion infectivity under conditions of limited CD4+ T cell activation. The accessory protein Nef promotes primate lentiviral replication and enhances the pathogenicity of HIV-1 by mechanisms of immune evasion and enhancing viral infectivity and replication. Here, we show that the evolutionarily most isolated primate lentivirus SIVcol lacks several otherwise conserved Nef functions. Nevertheless, SIVcol Nef potently antagonizes SERINC5, a recently discovered inhibitor of viral infectivity, by down-modulating it from the cell surface and inducing its proteasomal degradation. We identified Y86 in SIVcol Nef as a key determinant of SERINC5 antagonism. Efficient counteraction of SERINC5 did not increase HIV-1 replication in preactivated CD4+ T cells and in ex vivo infected lymphoid tissue but had modest enhancing effects when resting PBMCs were first infected and activated six days later. Evolution of high anti-SERINC5 activity by SIVcol Nef supports a relevant role of this antagonism in vivo, for instance by enhancing virion infectivity under conditions of limited T cell activation.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Bengisu Akbil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Swetha Ananth
- Department of Infectious Diseases, Integrative Virology, CIID, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Birthe Trautz
- Department of Infectious Diseases, Integrative Virology, CIID, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Ahidjo Ayouba
- TransVIHMI, Institut de Recherche pour le Développement, University of Montpellier, INSERM, Montpellier, France
| | - Martine Peeters
- TransVIHMI, Institut de Recherche pour le Développement, University of Montpellier, INSERM, Montpellier, France
| | - Zhong Yao
- Donnelly Centre, University of Toronto, Ontario, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Ontario, Canada
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Ontario, Canada
| | - Vânia Passos
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Integrative Virology, CIID, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- * E-mail:
| |
Collapse
|
5
|
Maintenance of AP-2-Dependent Functional Activities of Nef Restricts Pathways of Immune Escape from CD8 T Lymphocyte Responses. J Virol 2018; 92:JVI.01822-17. [PMID: 29237831 DOI: 10.1128/jvi.01822-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/02/2017] [Indexed: 01/28/2023] Open
Abstract
Nef-specific CD8+ T lymphocytes (CD8TL) are linked to extraordinary control of primate lentiviral replication, but the mechanisms underlying their efficacy remain largely unknown. The immunodominant, Mamu-B*017:01+-restricted Nef195-203MW9 epitope in SIVmac239 partially overlaps a sorting motif important for interactions with host AP-2 proteins and, hence, downmodulation of several host proteins, including Tetherin (CD317/BST-2), CD28, CD4, SERINC3, and SERINC5. We reasoned that CD8TL-driven evolution in this epitope might compromise Nef's ability to modulate these important molecules. Here, we used deep sequencing of SIV from nine B*017:01+ macaques throughout infection with SIVmac239 to characterize the patterns of viral escape in this epitope and then assayed the impacts of these variants on Nef-mediated modulation of multiple host molecules. Acute variation in multiple Nef195-203MW9 residues significantly compromised Nef's ability to downregulate surface Tetherin, CD4, and CD28 and reduced its ability to prevent SERINC5-mediated reduction in viral infectivity but did not impact downregulation of CD3 or major histocompatibility complex class I, suggesting the selective disruption of immunomodulatory pathways involving Nef AP-2 interactions. Together, our data illuminate a pattern of viral escape dictated by a selective balance to maintain AP-2-mediated downregulation while evading epitope-specific CD8TL responses. These data could shed light on mechanisms of both CD8TL-driven viral control generally and on Mamu-B*017:01-mediated viral control specifically.IMPORTANCE A rare subset of humans infected with HIV-1 and macaques infected with SIV can control the virus without aid of antiviral medications. A common feature of these individuals is the ability to mount unusually effective CD8 T lymphocyte responses against the virus. One of the most formidable aspects of HIV is its ability to evolve to evade immune responses, particularly CD8 T lymphocytes. We show that macaques that target a specific peptide in the SIV Nef protein are capable of better control of the virus and that, as the virus evolves to escape this response, it does so at a cost to specific functions performed by the Nef protein. Our results help show how the virus can be controlled by an immune response, which could help in designing effective vaccines.
Collapse
|
6
|
Heusinger E, Kirchhoff F. Primate Lentiviruses Modulate NF-κB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression. Front Microbiol 2017; 8:198. [PMID: 28261165 PMCID: PMC5306280 DOI: 10.3389/fmicb.2017.00198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle.
Collapse
Affiliation(s)
- Elena Heusinger
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
7
|
Acute Viral Escape Selectively Impairs Nef-Mediated Major Histocompatibility Complex Class I Downmodulation and Increases Susceptibility to Antiviral T Cells. J Virol 2015; 90:2119-26. [PMID: 26637459 DOI: 10.1128/jvi.01975-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/24/2015] [Indexed: 01/29/2023] Open
Abstract
Nef-specific CD8(+) T lymphocytes (CD8TL) are associated with control of simian immunodeficiency virus (SIV) despite extensive nef variation between and within animals. Deep viral sequencing of the immunodominant Mamu-B*017:01-restricted Nef165-173IW9 epitope revealed highly restricted evolution. A common acute escape variant, T170I, unexpectedly and uniquely degraded Nef's major histocompatibility complex class I (MHC-I) downregulatory capacity, rendering the virus more vulnerable to CD8TL targeting other epitopes. These data aid in a mechanistic understanding of Nef functions and suggest means of immunity-mediated control of lentivirus replication.
Collapse
|
8
|
Abstract
UNLABELLED The role of the accessory viral Nef protein as a multifunctional manipulator of the host cell that is required for effective replication of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) in vivo is well established. It is unknown, however, whether Nef manipulates all or just specific subsets of CD4(+) T cells, which are the main targets of virus infection and differ substantially in their state of activation and importance for a functional immune system. Here, we analyzed the effect of Nef proteins differing in their T cell receptor (TCR)-CD3 downmodulation function in HIV-infected human lymphoid aggregate cultures and peripheral blood mononuclear cells. We found that Nef efficiently downmodulates TCR-CD3 in naive and memory CD4(+) T cells and protects the latter against apoptosis. In contrast, highly proliferative CD45RA(+) CD45RO(+) CD4(+) T cells were main producers of infectious virus but largely refractory to TCR-CD3 downmodulation. Such T cell subset-specific differences were also observed for Nef-mediated modulation of CD4 but not for enhancement of virion infectivity. Our results indicate that Nef predominantly modulates surface receptors on CD4(+) T cell subsets that are not already fully permissive for viral replication. As a consequence, Nef-mediated downmodulation of TCR-CD3, which distinguishes most primate lentiviruses from HIV type 1 (HIV-1) and its vpu-containing simian precursors, may promote a selective preservation of central memory CD4(+) T cells, which are critical for the maintenance of a functional immune system. IMPORTANCE The Nef proteins of human and simian immunodeficiency viruses manipulate infected CD4(+) T cells in multiple ways to promote viral replication and immune evasion in vivo. Here, we show that some effects of Nef are subset specific. Downmodulation of CD4 and TCR-CD3 is highly effective in central memory CD4(+) T cells, and the latter Nef function protects this T cell subset against apoptosis. In contrast, highly activated/proliferating CD4(+) T cells are largely refractory to receptor downmodulation but are main producers of infectious HIV-1. Nef-mediated enhancement of virion infectivity, however, was observed in all T cell subsets examined. Our results provide new insights into how primate lentiviruses manipulate their target cells and suggest that the TCR-CD3 downmodulation function of Nef may promote a selective preservation of memory CD4(+) T cells, which are critical for immune function, but has little effect on activated/proliferating CD4(+) T cells, which are the main targets for viral replication.
Collapse
|
9
|
Basmaciogullari S, Pizzato M. The activity of Nef on HIV-1 infectivity. Front Microbiol 2014; 5:232. [PMID: 24904546 PMCID: PMC4033043 DOI: 10.3389/fmicb.2014.00232] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022] Open
Abstract
The replication and pathogenicity of lentiviruses is crucially modulated by “auxiliary proteins” which are expressed in addition to the canonical retroviral ORFs gag, pol, and env. Strategies to inhibit the activity of such proteins are often sought and proposed as possible additions to increase efficacy of the traditional antiretroviral therapy. This requires the acquisition of an in-depth knowledge of the molecular mechanisms underlying their function. The Nef auxiliary protein is expressed uniquely by primate lentiviruses and plays an important role in virus replication in vivo and in the onset of AIDS. Among its several activities Nef enhances the intrinsic infectivity of progeny virions through a mechanism which remains today enigmatic. Here we review the current knowledge surrounding such activity and we discuss its possible role in HIV biology.
Collapse
Affiliation(s)
- Stéphane Basmaciogullari
- Hôpital Necker-Enfants Malades, Sorbonne Paris Cité, Université Paris Descartes Paris, France ; INSERM U845 Paris, France
| | - Massimo Pizzato
- Centre for Integrative Biology, University of Trento Trento, Italy
| |
Collapse
|
10
|
Markle TJ, Philip M, Brockman MA. HIV-1 Nef and T-cell activation: a history of contradictions. Future Virol 2013; 8. [PMID: 24187576 DOI: 10.2217/fvl.13.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
HIV-1 Nef is a multifunctional viral protein that contributes to higher plasma viremia and more rapid disease progression. Nef appears to accomplish this, in part, through modulation of T-cell activation; however, the results of these studies over the past 25 years have been inconsistent. Here, the history of contradictory observations related to HIV-1 Nef and its ability to modulate T-cell activation is reviewed, and recent reports that may help to explain Net's apparent ability to both inhibit and activate T cells are highlighted.
Collapse
Affiliation(s)
- Tristan J Markle
- Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada
| | | | | |
Collapse
|
11
|
Characterisation of simian immunodeficiency virus-infected cells in pigtail macaques. Virology 2012; 428:11-20. [DOI: 10.1016/j.virol.2012.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/12/2012] [Accepted: 03/24/2012] [Indexed: 11/23/2022]
|
12
|
Narute PS, Smithgall TE. Nef alleles from all major HIV-1 clades activate Src-family kinases and enhance HIV-1 replication in an inhibitor-sensitive manner. PLoS One 2012; 7:e32561. [PMID: 22393415 PMCID: PMC3290594 DOI: 10.1371/journal.pone.0032561] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 02/01/2012] [Indexed: 01/04/2023] Open
Abstract
The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs) that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts). Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication.
Collapse
Affiliation(s)
- Purushottam S. Narute
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
13
|
Landi A, Iannucci V, Nuffel AV, Meuwissen P, Verhasselt B. One protein to rule them all: modulation of cell surface receptors and molecules by HIV Nef. Curr HIV Res 2012; 9:496-504. [PMID: 22103833 PMCID: PMC3290772 DOI: 10.2174/157016211798842116] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/02/2011] [Accepted: 09/17/2011] [Indexed: 01/30/2023]
Abstract
The HIV-1, HIV-2 and SIV Nef protein are known to modulate the expression of several cell surface receptors and molecules to escape the immune system, to alter T cell activation, to enhance viral replication, infectivity and transmission and overall to ensure the optimal environment for infection outcome. Consistent and continuous efforts have been made over the years to characterize the modulation of expression of each of these molecules, in the hope that a better understanding of these processes essential for HIV infection and/or pathogenesis will eventually highlight new therapeutic targets. In this article we provide an extensive review of the knowledge gained so far on this important and evolving topic.
Collapse
Affiliation(s)
- Alessia Landi
- Department of Clinical Biology, Immunology and Microbiology, Ghent University, Gent, Belgium
| | | | | | | | | |
Collapse
|
14
|
Arhel N, Lehmann M, Clauss K, Nienhaus GU, Piguet V, Kirchhoff F. The inability to disrupt the immunological synapse between infected human T cells and APCs distinguishes HIV-1 from most other primate lentiviruses. J Clin Invest 2009; 119:2965-75. [PMID: 19759518 DOI: 10.1172/jci38994] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 07/22/2009] [Indexed: 12/31/2022] Open
Abstract
Viruses that infect T cells, including those of the lentivirus genus, such as HIV-1, modulate the responsiveness of infected T cells to stimulation by interacting APCs in a manner that renders the T cells more permissive for viral replication. HIV-1 and other primate lentiviruses use their Nef proteins to manipulate the T cell/APC contact zone, the immunological synapse (IS). It is known that primate lentiviral Nef proteins differ substantially in their ability to modulate cell surface expression of the TCR-CD3 and CD28 receptors critical for the formation and function of the IS. However, the impact of these differences in Nef function on the interaction and communication between virally infected T cells and primary APCs has not been investigated. Here we have used primary human cells to show that Nef proteins encoded by HIV-2 and most SIVs, which downmodulate cell surface expression of TCR-CD3, disrupt formation of the IS between infected T cells and Ag-presenting macrophages or DCs. In contrast, nef alleles from HIV-1 and its simian precursor SIVcpz failed to suppress synapse formation and events downstream of TCR signaling. Our data suggest that most primate lentiviruses disrupt communication between virally infected CD4+ Th cells and APCs, whereas HIV-1 and its SIV precursor have largely lost this capability. The resulting differences in the levels of T cell activation and apoptosis may play a role in the pathogenesis of AIDS.
Collapse
Affiliation(s)
- Nathalie Arhel
- Institute of Molecular Virology, University of Ulm, Albert-Einstein-Allee 11, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Is the high virulence of HIV-1 an unfortunate coincidence of primate lentiviral evolution? Nat Rev Microbiol 2009; 7:467-76. [PMID: 19305418 DOI: 10.1038/nrmicro2111] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the subset of primate lentiviruses that contain a vpu gene - HIV-1 and its simian precursors - the Nef protein has lost the ability to down-modulate CD3, block T cell activation and suppress programmed death. Vpu counteracts a host restriction factor induced by the inflammatory cytokine interferon-alpha. I propose that the acquisition of vpu may have allowed the viral lineage that gave rise to HIV-1 to evolve towards greater pathogenicity by removing the selective pressure for a protective Nef function that prevents damagingly high levels of immune activation.
Collapse
|
16
|
Arhel NJ, Kirchhoff F. Implications of Nef: host cell interactions in viral persistence and progression to AIDS. Curr Top Microbiol Immunol 2009; 339:147-75. [PMID: 20012528 DOI: 10.1007/978-3-642-02175-6_8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The HIV and SIV Nef accessory proteins are potent enhancers of viral persistence and accelerate progression to AIDS in HIV-1-infected patients and non-human primate models. Although relatively small (27-35 kD), Nef can interact with a multitude of cellular factors and induce complex changes in trafficking, signal transduction, and gene expression that together converge to promote viral replication and immune evasion. In particular, Nef recruits several immunologically relevant cellular receptors to the endocytic machinery to reduce the recognition and elimination of virally infected cells by the host immune system, while simultaneously interacting with various kinases to promote T cell activation and viral replication. This review provides an overview on selected Nef interactions with host cell proteins, and discusses their possible relevance for viral spread and pathogenicity.
Collapse
Affiliation(s)
- Nathalie J Arhel
- Institute of Virology, Universitätsklinikum Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
17
|
Wang SH, Xing H, He X, Zhu FX, Meng ZF, Ruan YH, Shao YM. Nef mutations in long-term non-progressors from former plasma donors infected with HIV-1 subtype B in China. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2008; 21:485-491. [PMID: 19263804 DOI: 10.1016/s0895-3988(09)60007-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE To study the specific amino acid variation in Nef that may be related to disease progression after infection with HIV-1 subtype B, a predominant strain circulating in China, and to determine whether changes in Nef secondary structure may influence different stages of AIDS development based on the concept that the Nef gene of HIV infection dramatically alter the severity of viral infection and virus replication and disease progression, and that long-term non-progressors (LTNP) of HIV infection are commonly associated with either a deletion of the Nef gene or the defective Nef alleles. METHODS The study subjects were divided into LTNP1(n=14), LTNP2 (n=16) and slow progressor (SP, n=19) groups for mutational analysis of the Nef sequence. The data were obtained by using Bioedit, MEGA, Anthewin and SAS software. RESULTS Residues in Nef TA(48/49) and K151 occurred more frequently in the LTNP group while AA(48/49) was more frequently observed in the SP group. Of the differences observed in the secondary structure comparison using Nef consensus sequences of these three groups, one was roughly corresponding to the Nef(48/49) mutation site. CONCLUSION TA(48/49), K(151), and AA(48/49) in the Nef gene might be associated with the different stages of HIV infection, and there may be a link between the Nef secondary structure and the progression of HIV-1 infection.
Collapse
Affiliation(s)
- Shu-Hua Wang
- State Key Laboratory for Infection Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Stangler T, Tran T, Hoffmann S, Schmidt H, Jonas E, Willbold D. Competitive displacement of full-length HIV-1 Nef from the Hck SH3 domain by a high-affinity artificial peptide. Biol Chem 2007; 388:611-5. [PMID: 17552908 DOI: 10.1515/bc.2007.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We studied the interaction of the artificial 12-aa proline-rich peptide PD1 with the SH3 domain of the hematopoietic cell kinase Hck and the peptide's potency in competitively displacing HIV-1 Nef from the Hck SH3 domain. PD1 was obtained from a phage display screen and exhibits exceptional affinity for the Hck SH3 domain (K(d)=0.23 microM). Competition experiments using NMR spectroscopy demonstrate that the peptide even displaces Nef from Hck SH3 and allow for estimation of the Nef-Hck SH3 dissociation constant (K(d)=0.44 microM), the strongest SH3 ligand interaction known so far. Consequences of this study for novel antiviral concepts are discussed.
Collapse
Affiliation(s)
- Thomas Stangler
- Institut für Physikalische Biologie and BMFZ, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Hoffmann S, Jonas E, König S, Preusser-Kunze A, Willbold D. Nef protein of human immunodeficiency virus type 1 binds its own myristoylated N-terminus. Biol Chem 2007; 388:181-3. [PMID: 17261081 DOI: 10.1515/bc.2007.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
HIV-1 Nef is a small protein (approx. 25 kDa) that is posttranslationally modified by myristoylation. To explain its complex activities, a 'Nef-cycle' is discussed, which postulates different molecular conformations of Nef. Using recombinant full-length non-myristoylated Nef and synthetic peptides, we demonstrate by fluorescence titration experiments that a peptide representing the myristoylated N-terminus of Nef is specifically bound by Nef. A non-myristoylated N-terminal fragment of Nef or a myristoylated control peptide does not bind to Nef. These results are the first direct experimental evidence of the existence of a myristate-binding pocket in Nef, a prerequisite of the postulated 'closed' Nef conformation.
Collapse
Affiliation(s)
- Silke Hoffmann
- Institut für Physikalische Biologie and BMFZ, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
20
|
Peng B, Voltan R, Cristillo AD, Alvord WG, Davis-Warren A, Zhou Q, Murthy KK, Robert-Guroff M. Replicating Ad-recombinants encoding non-myristoylated rather than wild-type HIV Nef elicit enhanced cellular immunity. AIDS 2006; 20:2149-57. [PMID: 17086054 DOI: 10.1097/qad.0b013e32801086ee] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine if immunization with non-myristoylated nef would elicit enhanced cellular immune responses resulting from improved presentation of Nef peptides by MHC-I on the cell surface, and enhanced T-cell help. DESIGN The myristoylation site of HIV and SIV Nef is required for several Nef functions that modulate the immune response in an infected host, including downregulation of MHC-I, MHC-II, and CD4, and increased expression of the invariant chain on the cell surface. We constructed replication-competent Ad5- and Ad7-HIV recombinants encoding wild-type nef (nefWT) or a nef mutant (nefNM) lacking 19 amino-terminal amino acids, including the myristoylation site, and sequentially immunized chimpanzees mucosally, first with Ad5-HIVnef recombinants and subsequently with Ad7-HIVnef recombinants. METHODS Peripheral blood lymphocytes were evaluated over the immunization course for Nef-specific cellular immune responses by interferon (IFN)-gamma ELISPOT and T-cell proliferation assays. Nef-specific CD4 and CD8 memory T cells that produced intracellular IFN-gamma, interleukin-2, and tumor necrosis factor (TNF)-alpha were assessed by flow cytometry. RESULTS In comparison to immunization with Ad-HIVnefWT, Ad-HIVnefNM elicited statistically significant increases in numbers of IFN-gamma-secreting cells after the Ad7-HIVnefNM immunization and increased T-cell proliferative responses following both Ad5- and Ad7-HIVnefNM immunizations. Nef-specific CD4 and CD8 memory T-cell populations secreting TNF-alpha were also significantly increased in the Ad-HIVnefNM immunization group. CONCLUSIONS The results support the hypothesis that immunization with Ad-recombinants encoding HIVnefNM rather than HIVnefWT elicits enhanced cellular immunity resulting from improved antigen presentation and greater T-cell help.
Collapse
Affiliation(s)
- Bo Peng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Brenner M, Münch J, Schindler M, Wildum S, Stolte N, Stahl-Hennig C, Fuchs D, Mätz-Rensing K, Franz M, Heeney J, Ten Haaft P, Swigut T, Hrecka K, Skowronski J, Kirchhoff F. Importance of the N-distal AP-2 binding element in Nef for simian immunodeficiency virus replication and pathogenicity in rhesus macaques. J Virol 2006; 80:4469-81. [PMID: 16611907 PMCID: PMC1472002 DOI: 10.1128/jvi.80.9.4469-4481.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Point mutations in SIVmac239 Nef disrupting CD4 downmodulation and enhancement of virion infectivity attenuate viral replication in acutely infected rhesus macaques, but changes selected later in infection fully restore Nef function (A. J. Iafrate et al., J. Virol. 74:9836-9844, 2000). To further evaluate the relevance of these Nef functions for viral persistence and disease progression, we analyzed an SIVmac239 Nef mutant containing a deletion of amino acids Q64 to N67 (delta64-67Nef). This mutation inactivates the N-distal AP-2 clathrin adaptor binding element and disrupts the abilities of Nef to downregulate CD4, CD28 and CXCR4 and to stimulate viral replication in vitro. However, it does not impair the downmodulation of CD3 and class I major histocompatibility complex (MHC-I) or MHC-II and the upregulation of the MHC-II-associated invariant chain, and it has only a moderate effect on the enhancement of virion infectivity. Replication of the delta64-67Nef variant in acutely infected macaques was intermediate between grossly nef-deleted and wild-type SIVmac239. Subsequently, three of six macaques developed moderate to high viral loads and developed disease, whereas the remaining animals efficiently controlled SIV replication and showed a more attenuated clinical course of infection. Sequence analysis revealed that the deletion in nef was not repaired in any of these animals. However, some changes that slightly enhanced the ability of Nef to downmodulate CD4 and moderately increased Nef-mediated enhancement of viral replication and infectivity in vitro were observed in macaques developing high viral loads. Our results imply that both the Nef functions that were disrupted by the delta64-67 mutation and the activities that remained intact contribute to viral pathogenicity.
Collapse
Affiliation(s)
- Matthias Brenner
- Department of Virology, Universitätsklinikum, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hrecka K, Swigut T, Schindler M, Kirchhoff F, Skowronski J. Nef proteins from diverse groups of primate lentiviruses downmodulate CXCR4 to inhibit migration to the chemokine stromal derived factor 1. J Virol 2005; 79:10650-9. [PMID: 16051857 PMCID: PMC1182621 DOI: 10.1128/jvi.79.16.10650-10659.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 05/20/2005] [Indexed: 11/20/2022] Open
Abstract
Nef proteins of primate lentiviruses promote viral replication, virion infectivity, and evasion of antiviral immune responses by modulating signal transduction pathways and downregulating expression of receptors at the cell surface that are important for efficient antigen-specific responses, such as CD4, CD28, T-cell antigen receptor, and class I and class II major histocompatibility complex. Here we show that Nef proteins from diverse groups of primate lentiviruses which do not require the chemokine receptor CXCR4 for entry into target cells strongly downmodulate the cell surface expression of CXCR4. In contrast, all human immunodeficiency virus type 1 (HIV-1) and the majority of HIV-2 Nef proteins tested did not have such strong effects. SIVmac239 Nef strongly inhibited lymphocyte migration to CXCR4 ligand, the chemokine stromal derived factor 1 (SDF-1). SIVmac239 Nef downregulated CXCR4 by accelerating the rate of its endocytosis. Downmodulation of CXCR4 was abolished by mutations that disrupt the constitutively strong AP-2 clathrin adaptor binding element located in the N-terminal region of the Nef molecule, suggesting that Nef accelerates CXCR4 endocytosis via an AP-2-dependent pathway. Together, these results point to CXCR4 as playing an important role in simian immunodeficiency virus and possibly also HIV-2 persistence in vivo that is unrelated to viral entry into target cells. We speculate that Nef targets CXCR4 to disrupt ordered trafficking of infected leukocytes between local microenvironments in order to facilitate their dissemination and/or impair the antiviral immune response.
Collapse
Affiliation(s)
- Kasia Hrecka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
23
|
Yang P, Henderson AJ. Nef enhances c-Cbl phosphorylation in HIV-infected CD4+ T lymphocytes. Virology 2005; 336:219-28. [PMID: 15892963 DOI: 10.1016/j.virol.2005.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 12/16/2004] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
The multifunctional HIV-1 protein Nef possesses several motifs that interact with signaling molecules in infected T cells. In order to determine whether Nef influences T cell activation, cells were infected with Nef-positive and Nef-negative clones of HIV. CD28 expression and changes in tyrosine phosphorylation were monitored. We observed no Nef-dependent changes in CD28 expression or function. However, infection with Nef-positive virus led to changes in tyrosine phosphorylation. This Nef-induced phosphorylation was observed in unstimulated cells, and c-Cbl was identified as one of the proteins whose phosphorylation was upregulated by Nef. Furthermore, Lck is required for Nef-mediated c-Cbl tyrosine phosphorylation. These results suggest that Nef modifies T cell signaling in the absence of T cell receptor engagement and co-stimulation.
Collapse
Affiliation(s)
- Polung Yang
- Integrated Bioscience Graduate Program in Immunobiology, Department of Veterinary Science, Immunology Research Laboratories, 115 Henning Building, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
24
|
Cluet D, Bertsch C, Beyer C, Gloeckler L, Erhardt M, Gut JP, Galzi JL, Aubertin AM. Detection of human immunodeficiency virus type 1 Nef and CD4 physical interaction in living human cells by using bioluminescence resonance energy transfer. J Virol 2005; 79:8629-36. [PMID: 15956605 PMCID: PMC1143710 DOI: 10.1128/jvi.79.13.8629-8636.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 02/21/2005] [Indexed: 11/20/2022] Open
Abstract
CD4 down-regulation by human immunodeficiency virus type 1 (HIV-1) Nef protein is a key function for virus virulence. This activity may be mediated by a direct Nef-CD4 interaction. We investigated the formation, in situ, of such a complex between proteins using bioluminescence resonance energy transfer technology and co-immunoprecipitations. Our data clearly demonstrate that Nef and CD4 interact in intact human cells. Moreover, our results clearly indicate that the dileucine motif of the CD4 cytoplasmic domain, critical for the Nef-induced CD4 down-regulation, is not implicated in the Nef/CD4 complex formation in the cellular context.
Collapse
Affiliation(s)
- David Cluet
- INSERM-ULP U544, Université Louis Pasteur, Institut de Virologie, 3 Rue Koeberlé, 67000 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hodara VL, Velasquillo MC, Parodi LM, Giavedoni LD. Expression of CD154 by a simian immunodeficiency virus vector induces only transitory changes in rhesus macaques. J Virol 2005; 79:4679-90. [PMID: 15795254 PMCID: PMC1069524 DOI: 10.1128/jvi.79.8.4679-4690.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus infection is characterized by dysregulation of antigen-presenting cell function and defects in cell-mediated immunity. Recent evidence suggests that impaired ability of CD4+ T cells to upregulate the costimulatory molecule CD154 is at the core of this dysregulation. To test the hypothesis that increased expression of CD154 on infected CD4+ T cells could modulate immune function, we constructed a replication-competent simian immunodeficiency virus (SIV) vector that expressed CD154. We found that this recombinant vector directed the expression of CD154 on the surface of infected CD4+ T cells and that expression of CD154 resulted in activation of B cells present in the same cultures. Experimental infection of rhesus macaques resulted in very low viral loads for the CD154-expressing virus and the control virus, indicating that expression of CD154 did not result in increased viral replication. Analyses of the anti-SIV immune responses and the phenotype of lymphocytes in blood and lymphoid tissues showed changes that occurred during the acute phase of infection only in animals infected with the CD154-expressing SIV, but that became indistinguishable from those seen in animals infected with the control virus at later time points. We conclude that the level of expression of CD154 in itself is not responsible for affecting the immune response to an attenuated virus. Considering that the CD154-expressing SIV vector and the virus control did not carry an active nef gene, our results suggest that, in CD4+ T cells infected with wild-type virus, Nef is the viral factor that interferes with the immune mechanisms that regulate expression of CD154.
Collapse
Affiliation(s)
- Vida L Hodara
- Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | | | | | | |
Collapse
|
26
|
Hill BT, Skowronski J. Human N-myristoyltransferases form stable complexes with lentiviral nef and other viral and cellular substrate proteins. J Virol 2005; 79:1133-41. [PMID: 15613341 PMCID: PMC538564 DOI: 10.1128/jvi.79.2.1133-1141.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef is a multifunctional virulence factor of primate lentiviruses that facilitates viral replication in the infected host. All known functions of Nef require that it be myristoylated at its N terminus. This reaction is catalyzed by N-myristoyltransferases (NMTs), which transfer myristate from myristoyl coenzyme A (myristoyl-CoA) to the N-terminal glycine of substrate proteins. Two NMT isoforms (NMT-1 and NMT-2) are expressed in mammalian cells. To provide a better mechanistic understanding of Nef function, we used biochemical and microsequencing techniques to isolate and identify Nef-associated proteins. Through these studies, NMT-1 was identified as an abundant Nef-associated protein. The Nef-NMT-1 complex is most likely a transient intermediate of the myristoylation reaction of Nef and is modulated by agents which affect the size of the myristoyl-CoA pool in the cell. We also examined two other proteins that bear an N-terminal myristoylation signal, human immunodeficiency virus type 1 Gag and Hck protein tyrosine kinase, and found that Gag bound preferentially the NMT-2 isoform, while Hck bound mostly to NMT-1. Recognition of different NMT isoforms by these viral and cellular substrate proteins suggests nonoverlapping roles for these enzymes in vivo and reveals a potential for the development of inhibitors that target the myristoylation of specific viral substrates more selectively.
Collapse
Affiliation(s)
- Brian T Hill
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
27
|
Parreira R, Pádua E, Piedade J, Venenno T, Paixão MT, Esteves A. Genetic analysis of human immunodeficiency virus type 1nef in portugal: Subtyping, identification of mosaic genes, and amino acid sequence variability. J Med Virol 2005; 77:8-16. [PMID: 16032733 DOI: 10.1002/jmv.20408] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Extending our previous genetic characterization of human immunodeficiency virus type 1 (HIV-1) strains circulating in Portugal, we here report the first phylogenetic and putative amino acid sequence variability analyses of nef accessory gene. Viral sequences (n = 53) were amplified by nested PCR from proviral DNA purified from peripheral blood mononuclear cells of HIV-1 infected individuals (n = 49). Phylogenetic inference analysis demonstrated a distribution of the viral sequences between subtypes A (sub-subtype A1), B, D, F (sub-subtype F1), G, H, and J, with subtypes G and B accounting altogether for more than half of the genotypes found. A significant number of the proviral DNA sequences analyzed (18.4%) were shown to correspond to intragenic nef recombinants, with the majority having the typical CRF02_AG nef structure. In addition, three novel intragenic recombinant structures were found (B/G/B, CRF02_AG/H, and D/G). From phylogenetic analysis, it was concluded that part of the non-recombinant nef genes might have actually been amplified from mosaic viruses: CRF06_cpx, CRF14_BG, and a new envA/nefJ recombinant. While comparing all the putative Nef sequences, significant amino acid sequence variability was observed. However, most of the described nef functional motifs were relatively well conserved in the majority of the sequences analyzed and numerous amino acid changes fell outside these regions. The results presented unambiguously endorse the high level of complexity of HIV-1 epidemics in Portugal.
Collapse
Affiliation(s)
- Ricardo Parreira
- Unidade de Virologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
28
|
Schindler M, Münch J, Brenner M, Stahl-Hennig C, Skowronski J, Kirchhoff F. Comprehensive analysis of nef functions selected in simian immunodeficiency virus-infected macaques. J Virol 2004; 78:10588-97. [PMID: 15367626 PMCID: PMC516420 DOI: 10.1128/jvi.78.19.10588-10597.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of simian immunodeficiency virus (SIVmac) nef mutants have been investigated to clarify which in vitro Nef functions contribute to efficient viral replication and pathogenicity in rhesus macaques. Most of these nef alleles, however, were only functionally characterized for their ability to down-modulate CD4 and class I major histocompatibility complex (MHC-I) cell surface expression and to enhance SIV replication and infectivity. To obtain information on the in vivo relevance of more recently established Nef functions, we examined the ability of a large panel of constructed SIVmac Nef mutants and of variants that emerged in infected macaques to down-regulate CD3, CD28, and MHC-II and to up-regulate the MHC-II-associated invariant chain (Ii). We found that all these four Nef functions were restored in SIV-infected macaques. In most cases, however, the initial mutations and the changes selected in vivo affected several in vitro Nef functions. For example, truncated Nef proteins that emerged in animals infected with SIVmac239 containing a 152-bp deletion in nef efficiently modulated both CD3 and Ii surface expression. Overall, our results suggest that the effect of Nef on each of the six cellular receptors investigated contributes to viral fitness in the infected host but also indicate that modulation of CD3, MHC-I, MHC-II, or Ii surface expression alone is insufficient for SIV virulence.
Collapse
Affiliation(s)
- Michael Schindler
- Department of Virology, Universitätsklinikum, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Percario Z, Olivetta E, Fiorucci G, Mangino G, Peretti S, Romeo G, Affabris E, Federico M. Human immunodeficiency virus type 1 (HIV-1) Nef activates STAT3 in primary human monocyte/macrophages through the release of soluble factors: involvement of Nef domains interacting with the cell endocytotic machinery. J Leukoc Biol 2003; 74:821-32. [PMID: 12960275 DOI: 10.1189/jlb.0403161] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Increasing evidence indicates that the expression of the human immunodeficiency virus-1 (HIV-1) Nef protein significantly influences the activation state of the host cell. Here we report that Nef specifically activates STAT3 in primary human monocyte-derived macrophages (MDM). This was demonstrated by both single-cycle infection experiments driven by Vesicular Stomatitis virus glycoprotein (VSV-G) pseudotyped HIV-1 and treatment with exogenous recombinant Nef. The analysis of the effects of Nef mutants revealed that domains of the C-terminal flexible loop interacting with the cell endocytotic machinery are involved in the STAT3 activation. In particular, our data suggest that the Nef-dependent STAT3 activation relies on the targeting of Nef to the late endosome/lysosome compartment. In addition, we found that Nef activates STAT3 through a mechanism mediated by the release of soluble factor(s), including MIP-1alpha, that requires de novo protein synthesis but appears independent from the activation of src tyrosine kinases. The results presented here support the idea that the first intervention of Nef in the intracellular signaling of monocyte-macrophages could generate, by means of the release of soluble factor(s), a secondary wave of activation that could be of a potential pathogenetic significance.
Collapse
|
30
|
Swigut T, Greenberg M, Skowronski J. Cooperative interactions of simian immunodeficiency virus Nef, AP-2, and CD3-zeta mediate the selective induction of T-cell receptor-CD3 endocytosis. J Virol 2003; 77:8116-26. [PMID: 12829850 PMCID: PMC161955 DOI: 10.1128/jvi.77.14.8116-8126.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Nef proteins of human immunodeficiency virus and simian immunodeficiency virus (SIV) bind the AP-1 and AP-2 clathrin adaptors to downmodulate the expression of CD4 and CD28 by recruiting them to sites of AP-2 clathrin-dependent endocytosis. Additionally, SIV Nef directly binds the CD3-zeta subunit of the CD3 complex and downmodulates the T-cell receptor (TCR)-CD3 complex. We report here that SIV mac239 Nef induces the endocytosis of TCR-CD3 in Jurkat T cells. SIV Nef also induces the endocytosis of a chimeric CD8-CD3-zeta protein containing only the CD3-zeta cytoplasmic domain (8-zeta), in the absence of other CD3 subunits. Thus, the interaction of SIV Nef with CD3-zeta likely mediates the induction of TCR-CD3 endocytosis. In cells expressing SIV Nef and 8-zeta, both proteins colocalize with AP-2, indicating that Nef induces 8-zeta internalization via this pathway. Surprisingly, deletion of constitutively strong AP-2 binding determinants (CAIDs) in SIV Nef had little effect on its ability to induce TCR-CD3, or 8-zeta endocytosis, even though these determinants are required for the induction of CD4 and CD28 endocytosis via this pathway. Fluorescent microscopic analyses revealed that while neither the mutant SIV Nef protein nor 8-zeta colocalized with AP-2 when expressed independently, both proteins colocalized with AP-2 when coexpressed. In vitro binding studies using recombinant SIV Nef proteins lacking CAIDs and recombinant CD3-zeta cytoplasmic domain demonstrated that SIV Nef and CD3-zeta cooperate to bind AP-2 via a novel interaction. The fact that Nef uses distinct AP-2 interaction surfaces to recruit specific membrane receptors demonstrates how Nef independently selects distinct types of target receptors and recruits them to AP-2 for endocytosis.
Collapse
Affiliation(s)
- Tomek Swigut
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
31
|
Greenway AL, Holloway G, McPhee DA, Ellis P, Cornall A, Lidman M. HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. J Biosci 2003; 28:323-35. [PMID: 12734410 DOI: 10.1007/bf02970151] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 has at its disposal numerous proteins encoded by its genome which provide the required arsenal to establish and maintain infection in its host for a considerable number of years. One of the most important and enigmatic of these proteins is Nef. The Nef protein of HIV-1 plays a fundamental role in the virus life cycle. This small protein of approximately 27 kDa is required for maximal virus replication and disease progression. The mechanisms by which it is able to act as a positive factor during virus replication is an area of intense research and although some controversy surrounds Nef much has been gauged as to how it functions. Its ability to modulate the expression of key cellular receptors important for cell activation and control signal transduction elements and events by interacting with numerous cellular kinases and signalling molecules, including members of the Src family kinases, leading to an effect on host cell function is likely to explain at least in part its role during infection and represents a finely tuned mechanism where this protein assists HIV-1 to control its host.
Collapse
Affiliation(s)
- Alison L Greenway
- Macfarlane Burnet Institute for Medical Research and Public Health, Cnr Commercial and Punt Roads, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | |
Collapse
|
32
|
Williams M, Roeth JF, Kasper MR, Fleis RI, Przybycin CG, Collins KL. Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking. J Virol 2002; 76:12173-84. [PMID: 12414957 PMCID: PMC136906 DOI: 10.1128/jvi.76.23.12173-12184.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Accepted: 08/19/2002] [Indexed: 11/20/2022] Open
Abstract
Nef, an essential pathogenic determinant for human immunodeficiency virus type 1, has multiple functions that include disruption of major histocompatibility complex class I molecules (MHC-I) and CD4 and CD28 cell surface expression. The effects of Nef on MHC-I have been shown to protect infected cells from cytotoxic T-lymphocyte recognition by downmodulation of a subset of MHC-I (HLA-A and -B). The remaining HLA-C and -E molecules prevent recognition by natural killer (NK) cells, which would otherwise lyse cells expressing small amounts of MHC-I. Specific amino acid residues in the MHC-I cytoplasmic tail confer sensitivity to Nef, but their function is unknown. Here we show that purified Nef binds directly to the HLA-A2 cytoplasmic tail in vitro and that Nef forms complexes with MHC-I that can be isolated from human cells. The interaction between Nef and MHC-I appears to be weak, indicating that it may be transient or stabilized by other factors. Supporting the fact that these molecules interact in vivo, we found that Nef colocalizes with HLA-A2 molecules in a perinuclear distribution inside cells. In addition, we demonstrated that Nef fails to bind the HLA-E tail and also fails to bind HLA-A2 tails with deletions of amino acids necessary for MHC-I downmodulation. These data provide an explanation for differential downmodulation of MHC-I allotypes by Nef. In addition, they provide the first direct evidence indicating that Nef functions as an adaptor molecule able to link MHC-I to cellular trafficking proteins.
Collapse
Affiliation(s)
- Maya Williams
- Graduate Program in Cellular and Molecular Biology, University of Michigan. University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
33
|
Schaefer TM, Bell I, Pfeifer ME, Ghosh M, Trible RP, Fuller CL, Ashman C, Reinhart TA. The conserved process of TCR/CD3 complex down-modulation by SIV Nef is mediated by the central core, not endocytic motifs. Virology 2002; 302:106-22. [PMID: 12429520 DOI: 10.1006/viro.2002.1628] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Nef protein of Simian immunodeficiency virus (SIV) associates with multiple T lymphocyte signaling proteins, including the T cell receptor (TCR) zeta chain. We demonstrate here that these interactions are conserved and highly specific. Nefs derived from genetically diverse strains of SIV (SIV(mac)239, SIV(smm)PBj, and SIV(smm)DeltaB670) all interacted with TCR zeta on two separate domains, referred to as SIV Nef interaction domains (SNIDs), as examined in both yeast two-hybrid and glutathione-S-transferase (GST) fusion protein pull-down assays. Multiple HIV-1 Nefs were examined and none interacted with TCR zeta. In contrast, HIV-2(UC1) Nef, similar to SIV Nef, interacted with TCR zeta on two domains, although only the SIV Nefs potently reduced cell-surface expression of the TCR/CD3 complex in T cells. In addition, we examined the abilities of SIV, HIV-2, and HIV-1 Nefs to interact with the cytoplasmic domains of other signaling molecules including CD3epsilon, CD3gamma, and FcepsilonRIgamma, which also contain YxxL motifs, and determined that SIV and HIV-2 Nefs interacted only with TCR zeta, whereas HIV-1 Nef did not interact with any signal-transducing cytoplasmic domain examined. Last, to gain further insight into the mechanism by which Nef down-modulates the TCR/CD3 complex, we mutated or deleted regions on Nef involved in endocytosis, localization of Nef to the plasma membrane, interaction with cellular kinases, or that were conserved among multiple strains of SIV. Mutation of the myristoylation site and a conserved region surrounding a putative PKC phosphorylation site were the only mutations that abrogated Nef-mediated down-modulation of the TCR/CD3 complex. These findings demonstrate there is a spectrum of associations between SIV, HIV-2, and HIV-1 Nefs, and the TCR/CD3 complex, and suggest that down-modulation of the TCR/CD3 complex occurs via association with subsets of cellular proteins that are different from those involved in CD4 and CD28 down-modulation.
Collapse
Affiliation(s)
- Todd M Schaefer
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Primate lentiviruses encode a small protein designated Nef that has been shown to be a major determinant of virus pathogenicity. Nef regulates multiple host factors in order to optimize the cellular environment for virus replication. The mechanisms by which this small protein modulates distinct host cell properties provide intriguing insight into the intricate interaction between virus and host.
Collapse
Affiliation(s)
- Vivek K Arora
- Department of Internal Medicine, Division of Infectious Diseases Y9.206, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA.
| | | | | |
Collapse
|