1
|
Kesel AJ. Novel Antineoplastic Inducers of Mitochondrial Apoptosis in Human Cancer Cells. Molecules 2024; 29:914. [PMID: 38398665 PMCID: PMC10892984 DOI: 10.3390/molecules29040914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
I propose a new strategy to suppress human cancer completely with two entirely new drug compounds exploiting cancer's Warburg effect characterized by a defective mitochondrial aerobic respiration, substituted by cytosolic aerobic fermentation/glycolysis of D-(+)-glucose into L-(+)-lactic acid. The two essentially new drugs, compound 1 [P(op)T(est)162] and compound 3 (PT167), represent new highly symmetric, four-bladed propeller-shaped polyammonium cations. The in vitro antineoplastic highly efficacious drug compound 3 represents a covalent combination of compound 1 and compound 2 (PT166). The intermediate drug compound 2 is an entirely new colchic(in)oid derivative synthesized from colchicine. Compound 2's structure was determined using X-ray crystallography. Compound 1 and compound 3 were active in vitro versus 60 human cancer cell lines of the National Cancer Institute (NCI) Developmental Therapeutics Program (DTP) 60-cancer cell testing. Compound 1 and compound 3 not only stop the growth of cancer cells to ±0% (cancerostatic effect) but completely kill nearly all 60 cancer cells to a level of almost -100% (tumoricidal effect). Compound 1 and compound 3 induce mitochondrial apoptosis (under cytochrome c release) in all cancer cells tested by (re)activating (in most cancers impaired) p53 function, which results in a decrease in cancer's dysregulated cyclin D1 and an induction of the cell cycle-halting cyclin-dependent kinase inhibitor p21Waf1/p21Cip1.
Collapse
Affiliation(s)
- Andreas J Kesel
- Independent Researcher, Chammünsterstr. 47, D-81827 München, Bavaria, Germany
| |
Collapse
|
2
|
Linkner TR, Ambrus V, Kunkli B, Szojka ZI, Kalló G, Csősz É, Kumar A, Emri M, Tőzsér J, Mahdi M. Comparative Analysis of Differential Cellular Transcriptome and Proteome Regulation by HIV-1 and HIV-2 Pseudovirions in the Early Phase of Infection. Int J Mol Sci 2023; 25:380. [PMID: 38203551 PMCID: PMC10779251 DOI: 10.3390/ijms25010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In spite of the similar structural and genomic organization of human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2), striking differences exist between them in terms of replication dynamics and clinical manifestation of infection. Although the pathomechanism of HIV-1 infection is well characterized, relatively few data are available regarding HIV-2 viral replication and its interaction with host-cell proteins during the early phase of infection. We utilized proteo-transcriptomic analyses to determine differential genome expression and proteomic changes induced by transduction with HIV-1/2 pseudovirions during 8, 12 and 26 h time-points in HEK-293T cells. We show that alteration in the cellular milieu was indeed different between the two pseudovirions. The significantly higher number of genes altered by HIV-2 in the first two time-points suggests a more diverse yet subtle effect on the host cell, preparing the infected cell for integration and latency. On the other hand, GO analysis showed that, while HIV-1 induced cellular oxidative stress and had a greater effect on cellular metabolism, HIV-2 mostly affected genes involved in cell adhesion, extracellular matrix organization or cellular differentiation. Proteomics analysis revealed that HIV-2 significantly downregulated the expression of proteins involved in mRNA processing and translation. Meanwhile, HIV-1 influenced the cellular level of translation initiation factors and chaperones. Our study provides insight into the understudied replication cycle of HIV-2 and enriches our knowledge about the use of HIV-based lentiviral vectors in general.
Collapse
Affiliation(s)
- Tamás Richárd Linkner
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Viktor Ambrus
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Balázs Kunkli
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zsófia Ilona Szojka
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, 22100 Lund, Sweden
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Ajneesh Kumar
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary;
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Miklós Emri
- Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Tőzsér
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.K.); (É.C.)
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.R.L.); (V.A.); (B.K.); (Z.I.S.)
| |
Collapse
|
3
|
Yaseen MM, Abuharfeil NM, Darmani H. The Role of p53 in HIV Infection. Curr HIV/AIDS Rep 2023; 20:419-427. [PMID: 38010468 DOI: 10.1007/s11904-023-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW This review aims to elucidate the multifaceted role of the tumor suppressor protein p53 in the context of HIV infection. We explore how p53, a pivotal regulator of cellular processes, interacts with various facets of the HIV life cycle. Understanding these interactions could provide valuable insights into potential therapeutic interventions and the broader implications of p53 in viral infections. RECENT FINDINGS Recent research has unveiled a complex interplay between p53 and HIV. Several reports have highlighted the involvement of p53 in restricting the replication of HIV within both immune and nonimmune cells. Various mechanisms have been suggested to unveil how p53 enforces this restriction on HIV replication. However, HIV has developed strategies to manipulate p53, benefiting its replication and evading host defenses. In summary, p53 plays a multifaceted role in HIV infection, impacting viral replication and disease progression. Recent findings underscore the importance of understanding the intricate interactions between p53 and HIV for the development of innovative therapeutic approaches. Manipulating p53 pathways may offer potential avenues to suppress viral replication and ameliorate immune dysfunction, ultimately contributing to the management of HIV/AIDS. Further research is warranted to fully exploit the therapeutic potential of p53 in the context of HIV infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
4
|
D’Souza S, Mane A, Patil L, Shaikh A, Thakar M, Saxena V, Fotooh Abadi L, Godbole S, Kulkarni S, Gangakhedkar R, Shastry P, Panda S. HIV-1 exploits Hes-1 expression during pre-existing HPV-16 infection for cancer progression. Virusdisease 2023; 34:29-38. [PMID: 37009256 PMCID: PMC10050651 DOI: 10.1007/s13337-023-00809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023] Open
Abstract
High Risk Human Papilloma Viruses (HR-HPV) persistently infect women with Human Immunodeficiency Virus-1 (HIV-1). HPV-16 escapes immune surveillance in HIV-1 positive women receiving combined antiretroviral therapy (cART). HIV-1 Tat and HPV E6/E7 proteins exploit Notch signaling. Notch-1, a developmentally conserved protein, influences cell fate from birth to death. Notch-1 and its downstream targets, Hes-1 and Hey-1 contribute to invasive and aggressive cancers. Cervical cancer cells utilize Notch-1 and hyper-express CXCR4, a co-receptor of HIV-1. Accumulating evidence shows that HIV-1 affects cell cycle progression in pre-existing HPV infection. Additionally, Tat binds Notch-1 receptor for activation and influences cell proliferation. Oncogenic viruses may interfere or converge together to favor tumor growth. The molecular dialogue during HIV-1/HPV-16+ co-infections in the context of Notch-1 signaling has not been explored thus far. This in vitro study was designed with cell lines (HPV-ve C33A and HPV-16+ CaSki) which were transfected with plasmids (pLEGFPN1 encoding HIV-1 Tat and pNL4-3 encoding HIV-1 [full HIV-1 genome]). HIV-1 Tat and HIV-1 inhibited Notch-1expression, with differential effects on EGFR. Notch-1 inhibition nullified Cyclin D expression with p21 induction and increased G2-M cell population in CaSki cells. On the contrary, HIV-1 infection shuts down p21 expression through interaction of Notch-1 downstream genes Hes-1-EGFR and Cyclin D for G2-M arrest, DDR response and cancer progression. This work lays foundations for future research and interventions, and therefore is necessary. Our results describe for the first time how HIV-1 Tat cancers have an aggressive nature due to the interplay between Notch-1 and EGFR signaling. Notch-1 inhibitor, DAPT used in organ cancer treatment may help rescue HIV-1 induced cancers. Graphical abstract The illustration shows how HIV interacts with HPV-16 to induce Notch 1 suppression for cancer progression (Created with BioRender.com). Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00809-y.
Collapse
Affiliation(s)
- Serena D’Souza
- Indian Council of Medical Research (ICMR)-National AIDS Research Institute (NARI), Pune, India
| | - Arati Mane
- Indian Council of Medical Research (ICMR)-National AIDS Research Institute (NARI), Pune, India
| | - Linata Patil
- Indian Council of Medical Research (ICMR)-National AIDS Research Institute (NARI), Pune, India
| | - Aazam Shaikh
- National Centre for Cell Science (NCCS), Pune, India
| | - Madhuri Thakar
- Indian Council of Medical Research (ICMR)-National AIDS Research Institute (NARI), Pune, India
| | - Vandana Saxena
- Indian Council of Medical Research (ICMR)-National AIDS Research Institute (NARI), Pune, India
| | - Leila Fotooh Abadi
- Indian Council of Medical Research (ICMR)-National AIDS Research Institute (NARI), Pune, India
| | - Sheela Godbole
- Indian Council of Medical Research (ICMR)-National AIDS Research Institute (NARI), Pune, India
| | - Smita Kulkarni
- Indian Council of Medical Research (ICMR)-National AIDS Research Institute (NARI), Pune, India
| | - Raman Gangakhedkar
- Indian Council of Medical Research (ICMR) Headquarters, New Delhi, India
| | - Padma Shastry
- National Centre for Cell Science (NCCS), Pune, India
| | - Samiran Panda
- Indian Council of Medical Research (ICMR) Headquarters, New Delhi, India
| |
Collapse
|
5
|
Kalidasan V, Ravichantar N, Muhd Besari A, Yunus MA, Mohd Yusoff N, Mohamed Z, Theva Das K. Latent HIV-1 provirus in vitro suppression using combinatorial CRISPR/Cas9 strategy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Kawano K, Doucet AJ, Ueno M, Kariya R, An W, Marzetta F, Kuroki M, Turelli P, Sukegawa S, Okada S, Strebel K, Trono D, Ariumi Y. HIV-1 Vpr and p21 restrict LINE-1 mobility. Nucleic Acids Res 2019; 46:8454-8470. [PMID: 30085096 PMCID: PMC6144823 DOI: 10.1093/nar/gky688] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/18/2018] [Indexed: 01/12/2023] Open
Abstract
Long interspersed element-1 (LINE-1, L1) composes ∼17% of the human genome. However, genetic interactions between L1 and human immunodeficiency virus type 1 (HIV-1) remain poorly understood. In this study, we found that HIV-1 suppresses L1 retrotransposition. Notably, HIV-1 Vpr strongly inhibited retrotransposition without inhibiting L1 promoter activity. Since Vpr is known to regulate host cell cycle, we examined the possibility whether Vpr suppresses L1 retrotransposition in a cell cycle dependent manner. We showed that the inhibitory effect of a mutant Vpr (H71R), which is unable to arrest the cell cycle, was significantly relieved compared with that of wild-type Vpr, suggesting that Vpr suppresses L1 mobility in a cell cycle dependent manner. Furthermore, a host cell cycle regulator p21Waf1 strongly suppressed L1 retrotransposition. The N-terminal kinase inhibitory domain (KID) of p21 was required for this inhibitory effect. Another KID-containing host cell cycle regulator p27Kip1 also strongly suppressed L1 retrotransposition. We showed that Vpr and p21 coimmunoprecipitated with L1 ORF2p and they suppressed the L1 reverse transcriptase activity in LEAP assay, suggesting that Vpr and p21 inhibit ORF2p-mediated reverse transcription. Altogether, our results suggest that viral and host cell cycle regulatory machinery limit L1 mobility in cultured cells.
Collapse
Affiliation(s)
- Koudai Kawano
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Aurélien J Doucet
- Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM U1081, CNRS UMR 7284, Université de Nice-Sophia-Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France
| | - Mikinori Ueno
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryusho Kariya
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Flavia Marzetta
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Misao Kuroki
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Sayaka Sukegawa
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA.,Clinical Research Center, Nagoya Medical Center, Nagoya 460-0001, Japan
| | - Seiji Okada
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Klaus Strebel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Yasuo Ariumi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
7
|
Hepatitis B Virus Deregulates the Cell Cycle To Promote Viral Replication and a Premalignant Phenotype. J Virol 2018; 92:JVI.00722-18. [PMID: 30021897 DOI: 10.1128/jvi.00722-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem worldwide, and chronically infected individuals are at high risk of developing cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms whereby HBV causes HCC are largely unknown. Using a biologically relevant system of HBV infection of primary human hepatocytes (PHHs), we studied how HBV perturbs gene expression and signaling pathways of infected hepatocytes and whether these effects are relevant to productive HBV infection and HBV-associated HCC. Using a human growth factor antibody array, we first showed that HBV infection induced a distinct profile of growth factor production by PHHs, marked particularly by significantly lower levels of the transforming growth factor β (TGF-β) family of proteins in the supernatant. Transcriptome profiling next revealed multiple changes in cell proliferation and cell cycle control pathways in response to HBV infection. A human cell cycle PCR array validated deregulation of more than 20 genes associated with the cell cycle in HBV-infected PHHs. Cell cycle analysis demonstrated that HBV-infected PHHs are enriched in the G2/M phase compared to the predominantly G0/G1 phase of cultured PHHs. HBV proviral host factors, such as PPARA, RXRA, and CEBPB, were upregulated upon HBV infection and particularly enriched in cells in the G2/M phase. Together, these results support the notion that HBV deregulates cell cycle control to render a cellular environment that is favorable for productive HBV infection. By perturbing cell cycle regulation of infected cells, HBV may coincidently induce a premalignant phenotype that predisposes infected hepatocytes to subsequent malignant transformation.IMPORTANCE Hepatitis B virus (HBV) infection is a major health problem with high risk of developing hepatocellular carcinoma (HCC). By using a biologically relevant system of HBV infection of primary human hepatocytes (PHHs), we studied how HBV perturbs gene expression and whether these effects are relevant to HBV-associated HCC. HBV induced a distinct profile of growth factor production, marked particularly by significantly lower levels of the transforming growth factor β (TGF-β) family of proteins. Transcriptome profiling revealed multiple changes in cell proliferation and cell cycle control pathways. Cell cycle analysis demonstrated that HBV-infected PHHs are enriched in the G2/M phase. HBV proviral host factors were upregulated upon infection and particularly enriched in cells in the G2/M phase. Together, these results support the notion that HBV deregulates cell cycle control to render a cellular environment that is favorable for productive infection. This may coincidently induce a premalignant phenotype that predisposes infected hepatocytes to subsequent malignant transformation.
Collapse
|
8
|
Sun P, Wu H, Huang J, Xu Y, Yang F, Zhang Q, Xu X. Porcine epidemic diarrhea virus through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase. Virus Res 2018; 253:1-11. [PMID: 29800601 PMCID: PMC7114671 DOI: 10.1016/j.virusres.2018.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 11/18/2022]
Abstract
PEDV causes Vero cell cycle arrest in the G0/G1 phase. PEDV through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase. Vero cells released from G0/G1 phase are advantageous for PEDV replication. This is the first report that PEDV through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase.
Porcine epidemic diarrhea virus (PEDV), an enteropathogenic Alphacoronavirus, has caused enormous economic losses in the swine industry. p53 protein exists in a wide variety of animal cells, which is involved in cell cycle regulation, apoptosis, cell differentiation and other biological functions. In this study, we investigated the effects of PEDV infection on the cell cycle of Vero cells and p53 activation. The results demonstrated that PEDV infection induces cell cycle arrest at G0/G1 phase in Vero cells, while UV-inactivated PEDV does not cause cell cycle arrest. PEDV infection up-regulates the levels of p21, cdc2, cdk2, cdk4, Cyclin A protein and down-regulates Cyclin E protein. Further research results showed that inhibition of p53 signaling pathway can reverse the cell cycle arrest in G0/G1 phase induced by PEDV infection and cancel out the up-regulation of p21 and corresponding Cyclin/cdk mentioned above. In addition, PEDV infection of the cells synchronized in various stages of cell cycle showed that viral subgenomic RNA and virus titer were higher in the cells released from G0/G1 phase synchronized cells than that in the cells released from the G1/S phase and G2/M phase synchronized or asynchronous cells after 18 h p.i.. This is the first report to demonstrate that the p53-dependent pathway plays an important role in PEDV induced cell cycle arrest and beneficially contributes to viral infection.
Collapse
Affiliation(s)
- Pei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Haoyang Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jiali Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Shi B, Sharifi HJ, DiGrigoli S, Kinnetz M, Mellon K, Hu W, de Noronha CMC. Inhibition of HIV early replication by the p53 and its downstream gene p21. Virol J 2018; 15:53. [PMID: 29587790 PMCID: PMC5870690 DOI: 10.1186/s12985-018-0959-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background The tumor suppressor gene p53 has been found to suppress HIV infection by various mechanisms, but the inhibition of HIV at an early stage of replication by host cell p53 and its downstream gene p21 has not been well studied. Method VSV-G pseudotyped HIV-1 or HIV-2 viruses with GFP or luciferase reporter gene were used to infect HCT116 p53+/+ cells, HCT116 p53−/− cells and hMDMs. The infections were detected by flow cytometry or measured by luciferase assay. Reverse transcription products were quantified by a TaqMan real time PCR. siRNA knockdown experiments were applied to study potential roles of p53 and p21 genes in their restriction to HIV infection. Western blot experiments were used to analyze changes in gene expression. Results The infection of HIV-1 was inhibited in HCT116 p53+/+ cells in comparison to HCT116 p53−/− cells. The fold of inhibition was largely increased when cell cycle switched from cycling to non-cycling status. Further analysis showed that both p53 and p21 expressions were upregulated in non-cycling HCT116 p53+/+ cells and HIV-1 reverse transcription was subsequently inhibited. siRNA knockdown of either p53 or p21 rescued HIV-1 reverse transcription from the inhibition in non-cycling HCT116 p53+/+ cells. It was identified that the observed restrictions by p53 and p21 were associated with the suppression of RNR2 expression and phosphorylation of SAMHD1. These observations were confirmed by using siRNA knockdown experiments. In addition, p53 also inhibited HIV-2 infection in HCT116 p53+/+ cells and siRNA knockdown of p21 increased HIV-2 infection in hMDMs. Finally the expressions of p53 and p21 were found to be induced in hMDMs shortly after HIV-1 infection. Conclusions The p53 and its downstream gene p21 interfere with HIV early stage of replication in non-cycling cells and hMDMs.
Collapse
Affiliation(s)
- Binshan Shi
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA.
| | - Hamayun J Sharifi
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Sara DiGrigoli
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Michaela Kinnetz
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Katie Mellon
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Carlos M C de Noronha
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, Albany, NY, 12208, USA
| |
Collapse
|
10
|
Majumder K, Etingov I, Pintel DJ. Protoparvovirus Interactions with the Cellular DNA Damage Response. Viruses 2017; 9:v9110323. [PMID: 29088070 PMCID: PMC5707530 DOI: 10.3390/v9110323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Protoparvoviruses are simple single-stranded DNA viruses that infect many animal species. The protoparvovirus minute virus of mice (MVM) infects murine and transformed human cells provoking a sustained DNA damage response (DDR). This DDR is dependent on signaling by the ATM kinase and leads to a prolonged pre-mitotic cell cycle block that features the inactivation of ATR-kinase mediated signaling, proteasome-targeted degradation of p21, and inhibition of cyclin B1 expression. This review explores how protoparvoviruses, and specifically MVM, co-opt the common mechanisms regulating the DDR and cell cycle progression in order to prepare the host nuclear environment for productive infection.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Bond Life Sciences Center, Columbia, MO 65211, USA.
| | - Igor Etingov
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Bond Life Sciences Center, Columbia, MO 65211, USA.
| | - David J Pintel
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Bond Life Sciences Center, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Minute Virus of Mice Inhibits Transcription of the Cyclin B1 Gene during Infection. J Virol 2017; 91:JVI.00428-17. [PMID: 28446681 DOI: 10.1128/jvi.00428-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/22/2017] [Indexed: 12/24/2022] Open
Abstract
Replication of minute virus of mice (MVM) induces a sustained cellular DNA damage response (DDR) which the virus then exploits to prepare the nuclear environment for effective parvovirus takeover. An essential aspect of the MVM-induced DDR is the establishment of a potent premitotic block, which we previously found to be independent of activated p21 and ATR/Chk1 signaling. This arrest, unlike others reported previously, depends upon a significant, specific depletion of cyclin B1 and its encoding RNA, which precludes cyclin B1/CDK1 complex function, thus preventing mitotic entry. We show here that while the stability of cyclin B1 RNA was not affected by MVM infection, the production of nascent cyclin B1 RNA was substantially diminished at late times postinfection. Ectopic expression of NS1 alone did not reduce cyclin B1 expression. MVM infection also reduced the levels of cyclin B1 protein, and RNA levels normally increased in response to DNA-damaging reagents. We demonstrated that at times of reduced cyclin B1 expression during infection, there was a significantly reduced occupancy of RNA polymerase II and the essential mitotic transcription factor FoxM1 on the cyclin B1 gene promoter. Additionally, while total FoxM1 levels remained constant, there was a significant decrease of the phosphorylated, likely active, forms of FoxM1. Targeting of a constitutively active FoxM1 construct or the activation domain of FoxM1 to the cyclin B1 gene promoter via clustered regularly interspaced short palindromic repeats (CRISPR)-enzymatically inactive Cas9 in MVM-infected cells increased both cyclin B1 protein and RNA levels, implicating FoxM1 as a critical target for cyclin B1 inhibition during MVM infection.IMPORTANCE Replication of the parvovirus minute virus of mice (MVM) induces a sustained cellular DNA damage response (DDR) which the virus exploits to prepare the nuclear environment for effective takeover. An essential aspect of the MVM-induced DDR is establishment of a potent premitotic block. This block depends upon a significant, specific depletion of cyclin B1 and its encoding RNA that precludes cyclin B1/CDK1 complex functions necessary for mitotic entry. We show that reduced cyclin B1 expression is controlled primarily at the level of transcription initiation. Additionally, the essential mitotic transcription factor FoxM1 and RNA polymerase II were found to occupy the cyclin B1 gene promoter at reduced levels during infection. Recruiting a constitutively active FoxM1 construct or the activation domain of FoxM1 to the cyclin B1 gene promoter via CRISPR-catalytically inactive Cas9 (dCas9) in MVM-infected cells increased expression of both cyclin B1 protein and RNA, implicating FoxM1 as a critical target mediating MVM-induced cyclin B1 inhibition.
Collapse
|
12
|
de Pablo A, Bogoi R, Bejarano I, Toro C, Valencia E, Moreno V, Martín-Carbonero L, Gómez-Hernando C, Rodés B. Short Communication: p21/CDKN1A Expression Shows Broad Interindividual Diversity in a Subset of HIV-1 Elite Controllers. AIDS Res Hum Retroviruses 2016; 32:232-6. [PMID: 26537458 DOI: 10.1089/aid.2015.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The p21/CDKN1A protein has been described in vitro as well as in a small subset of patients as a restriction factor for HIV infection. We evaluated p21/CDKN1A mRNA expression on CD4(+) T cells from HIV-infected individuals with two outcomes (18 elite controllers and 28 viremic progressors). Our results show broad interindividual variation in this factor, which is unrelated to the patient's phenotype. Considering the gene's genetic surroundings in chromosome 6, such as HLA genotype and single nucleotide polymorphisms (SNPs), there was a positive association with carrying HLA-B2705 alleles and the rs733590 SNP. Thus, this natural variation of p21/CDKN1A alone does not appear to be a prognostic indicator of effective viral control in vivo and other factors must be considered.
Collapse
Affiliation(s)
- Alicia de Pablo
- Foundation for Biomedical Research, University Hospital La Paz, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Roberta Bogoi
- Foundation for Biomedical Research, University Hospital La Paz, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Irene Bejarano
- Foundation for Biomedical Research, Hospital Carlos III, Madrid, Spain
| | - Carlos Toro
- Microbiology Department, University Hospital La Paz - Carlos III, Madrid, Spain
| | - Eulalia Valencia
- Infectious Diseases Department, University Hospital La Paz - Carlos III, Madrid, Spain
| | - Victoria Moreno
- Infectious Diseases Department, University Hospital La Paz - Carlos III, Madrid, Spain
| | - Luz Martín-Carbonero
- Infectious Diseases Department, University Hospital La Paz - Carlos III, Madrid, Spain
| | | | - Berta Rodés
- Foundation for Biomedical Research, University Hospital La Paz, Madrid, Spain
- IdiPAZ, Madrid, Spain
| |
Collapse
|
13
|
Liang Z, Liu R, Lin Y, Liang C, Tan J, Qiao W. HIV-1 Vpr protein activates the NF-κB pathway to promote G2/M cell cycle arrest. Virol Sin 2015; 30:441-8. [PMID: 26676942 DOI: 10.1007/s12250-015-3654-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/24/2015] [Indexed: 12/14/2022] Open
Abstract
Viral protein R (Vpr) plays an important role in the replication and pathogenesis of Human immunodeficiency virus type 1 (HIV-1). Some of the various functions attributed to Vpr, including the induction of G2/M cell cycle arrest, activating the NF-κB pathway, and promoting viral reverse transcription, might be interrelated. To test this hypothesis, a panel of Vpr mutants were investigated for their ability to induce G2/M arrest and to activate the NF-κB pathway. The results showed that the Vpr mutants that failed to activate NF-κB also lost the activity to induce G2/M arrest, which suggests that inducing G2/M arrest via Vpr depends at least partially on the activation of NF-κB. This latter possibility is supported by data showing that knocking down the key factors in the NF-κB pathway-p65, RelB, IKKα, or IKKβ-partially rescued the G2/M arrest induced by Vpr. Our results suggest that the NF-κB pathway is probably involved in Vpr-induced G2/M cell cycle arrest.
Collapse
Affiliation(s)
- Zhibin Liang
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ruikang Liu
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yongquan Lin
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, H3T 1E2, Canada
- Departments of Medicine, McGill University, Montreal, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, H3T 1E2, Canada
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
14
|
Suppression of Foxo1 activity and down-modulation of CD62L (L-selectin) in HIV-1 infected resting CD4 T cells. PLoS One 2014; 9:e110719. [PMID: 25330112 PMCID: PMC4199762 DOI: 10.1371/journal.pone.0110719] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/16/2014] [Indexed: 01/10/2023] Open
Abstract
HIV-1 hijacks and disrupts many processes in the cells it infects in order to suppress antiviral immunity and to facilitate its replication. Resting CD4 T cells are important early targets of HIV-1 infection in which HIV-1 must overcome intrinsic barriers to viral replication. Although resting CD4 T cells are refractory to infection in vitro, local environmental factors within lymphoid and mucosal tissues such as cytokines facilitate viral replication while maintaining the resting state. These factors can be utilized in vitro to study HIV-1 replication in resting CD4 T cells. In vivo, the migration of resting naïve and central memory T cells into lymphoid tissues is dependent upon expression of CD62L (L-selectin), a receptor that is subsequently down-modulated following T cell activation. CD62L gene transcription is maintained in resting T cells by Foxo1 and KLF2, transcription factors that maintain T cell quiescence and which regulate additional cellular processes including survival, migration, and differentiation. Here we report that HIV-1 down-modulates CD62L in productively infected naïve and memory resting CD4 T cells while suppressing Foxo1 activity and the expression of KLF2 mRNA. Partial T cell activation was further evident as an increase in CD69 expression. Several other Foxo1- and KLF2-regulated mRNA were increased or decreased in productively infected CD4 T cells, including IL-7rα, Myc, CCR5, Fam65b, S1P1 (EDG1), CD52, Cyclin D2 and p21CIP1, indicating a profound reprogramming of these cells. The Foxo1 inhibitor AS1842856 accelerated de novo viral gene expression and the sequella of infection, supporting the notion that HIV-1 suppression of Foxo1 activity may be a strategy to promote replication in resting CD4 T cells. As Foxo1 is an investigative cancer therapy target, the development of Foxo1 interventions may assist the quest to specifically suppress or activate HIV-1 replication in vivo.
Collapse
|
15
|
Ertl R, Klein D. Transcriptional profiling of the host cell response to feline immunodeficiency virus infection. Virol J 2014; 11:52. [PMID: 24642186 PMCID: PMC3999937 DOI: 10.1186/1743-422x-11-52] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022] Open
Abstract
Background Feline immunodeficiency virus (FIV) is a widespread pathogen of the domestic cat and an important animal model for human immunodeficiency virus (HIV) research. In contrast to HIV, only limited information is available on the transcriptional host cell response to FIV infections. This study aims to identify FIV-induced gene expression changes in feline T-cells during the early phase of the infection. Illumina RNA-sequencing (RNA-seq) was used identify differentially expressed genes (DEGs) at 24 h after FIV infection. Results After removal of low-quality reads, the remaining sequencing data were mapped against the cat genome and the numbers of mapping reads were counted for each gene. Regulated genes were identified through the comparison of FIV and mock-infected data sets. After statistical analysis and the removal of genes with insufficient coverage, we detected a total of 69 significantly DEGs (44 up- and 25 down-regulated genes) upon FIV infection. The results obtained by RNA-seq were validated by reverse transcription qPCR analysis for 10 genes. Discussion and conclusion Out of the most distinct DEGs identified in this study, several genes are already known to interact with HIV in humans, indicating comparable effects of both viruses on the host cell gene expression and furthermore, highlighting the importance of FIV as a model system for HIV. In addition, a set of new genes not previously linked to virus infections could be identified. The provided list of virus-induced genes may represent useful information for future studies focusing on the molecular mechanisms of virus-host interactions in FIV pathogenesis.
Collapse
Affiliation(s)
- Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria.
| | | |
Collapse
|
16
|
Sun Y, Li F, Sun Z, Zhang X, Li S, Zhang C, Xiang J. Transcriptome analysis of the initial stage of acute WSSV infection caused by temperature change. PLoS One 2014; 9:e90732. [PMID: 24595043 PMCID: PMC3942461 DOI: 10.1371/journal.pone.0090732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
White spot syndrome virus (WSSV) is the most devastating virosis threatening the shrimp culture industry worldwide. Variations of environmental factors in shrimp culture ponds usually lead to the outbreak of white spot syndrome (WSS). In order to know the molecular mechanisms of WSS outbreak induced by temperature variation and the biological changes of the host at the initial stage of WSSV acute infection, RNA-Seq technology was used to analyze the differentially expressed genes (DEGs) in shrimp with a certain amount of WSSV cultured at 18°C and shrimp whose culture temperature were raised to 25°C. To analyze whether the expression changes of the DEGs were due to temperature rising or WSSV proliferation, the expression of selected DEGs was analyzed by real-time PCR with another shrimp group, namely Group T, as control. Group T didn't suffer WSSV infection but was subjected to temperature rising in parallel. At the initial stage of WSSV acute infection, DEGs related to energy production were up-regulated, whereas most DEGs related to cell cycle and positive regulation of cell death and were down-regulated. Triose phosphate isomerase, enolase and alcohol dehydrogenase involved in glycosis were up-regulated, while pyruvate dehydrogenase, citrate synthase and isocitrate dehydrogenase with NAD as the coenzyme involved in TCA pathway were down-regulated. Also genes involved in host DNA replication, including DNA primase, DNA topoisomerase and DNA polymerase showed down-regulated expression. Several interesting genes including crustin genes, acting binding or inhibiting protein genes, a disintegrin and metalloproteinase domain-containing protein 9 (ADAM9) gene and a GRP 78 gene were also analyzed. Understanding the interactions between hosts and WSSV at the initial stage of acute infection will not only help to get a deep insight into the pathogenesis of WSSV but also provide clues for therapies.
Collapse
Affiliation(s)
- Yumiao Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zheng Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chengsong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
17
|
Ding L, Huang Y, Du Q, Dong F, Zhao X, Zhang W, Xu X, Tong D. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling. Biochem Biophys Res Commun 2014; 445:497-503. [PMID: 24548406 PMCID: PMC7092941 DOI: 10.1016/j.bbrc.2014.02.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/07/2014] [Indexed: 12/26/2022]
Abstract
TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis.
Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.
Collapse
Affiliation(s)
- Li Ding
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Feng Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
18
|
Maudet C, Sourisce A, Dragin L, Lahouassa H, Rain JC, Bouaziz S, Ramirez BC, Margottin-Goguet F. HIV-1 Vpr induces the degradation of ZIP and sZIP, adaptors of the NuRD chromatin remodeling complex, by hijacking DCAF1/VprBP. PLoS One 2013; 8:e77320. [PMID: 24116224 PMCID: PMC3792905 DOI: 10.1371/journal.pone.0077320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/06/2013] [Indexed: 01/02/2023] Open
Abstract
The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered.
Collapse
Affiliation(s)
- Claire Maudet
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Adèle Sourisce
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Loïc Dragin
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Hichem Lahouassa
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | | | - Serge Bouaziz
- University Paris Descartes, Paris, France
- CNRS UMR8015, Paris, France
| | - Bertha Cécilia Ramirez
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
| | - Florence Margottin-Goguet
- Institut National de la Sante et de la recherche Medicale Inserm U1016, Institut Cochin, Paris, France
- CNRS UMR8104, Paris, France
- University Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Ding L, Huang Y, Dai M, Zhao X, Du Q, Dong F, Wang L, Huo R, Zhang W, Xu X, Tong D. Transmissible gastroenteritis virus infection induces cell cycle arrest at S and G2/M phases via p53-dependent pathway. Virus Res 2013; 178:241-51. [PMID: 24095767 PMCID: PMC7114465 DOI: 10.1016/j.virusres.2013.09.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 09/22/2013] [Accepted: 09/24/2013] [Indexed: 11/28/2022]
Abstract
TGEV induced cell cycle arrest at S and G2/M phase in PK-15 and ST cells. p53 might play key roles in mediation of TGEV-induced cell cycle arrest. The host cells staying at S or G2/M phase is beneficial for TGEV replication.
p53 signaling pathway plays an important role in the regulation of cell cycle. Our previous studies have demonstrated that TGEV infection induces the activation of p53 signaling pathway. In this study we investigated the effects of TGEV infection on the cell cycle of host cells and the roles of p53 activation in this process. The results showed that TGEV infection induced cell cycle arrest at S and G2/M phases in both asynchronous and synchronized PK-15 and ST cells, while UV-inactivated TGEV lost the ability of induction of cell cycle arrest. TGEV infection promoted p21 accumulation, down-regulated cell cycle-regulatory proteins cyclins B1, cdc2, cdk2 and PCNA. Further studies showed that inhibition of p53 signaling could attenuate the TGEV-induced S- and G2/M-phase arrest by reversing the expression of p21 and corresponding cyclin/cdk. In addition, TGEV infection of the cells synchronized in various stages of cell cycle showed that viral genomic RNA and subgenomic RNA, and virus titer were higher in the cells released from S-phase- or G2/M phase-synchronized cells than that in the cells released from the G0/G1 phase-synchronized or asynchronous cells after 18 h p.i. Taken together, our data suggested that TGEV infection induced S and G2/M phase arrest in host cells, which might provide a favorable condition for viral replication.
Collapse
Affiliation(s)
- Li Ding
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Casey Klockow L, Sharifi HJ, Wen X, Flagg M, Furuya AKM, Nekorchuk M, de Noronha CMC. The HIV-1 protein Vpr targets the endoribonuclease Dicer for proteasomal degradation to boost macrophage infection. Virology 2013; 444:191-202. [PMID: 23849790 DOI: 10.1016/j.virol.2013.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/09/2013] [Indexed: 12/13/2022]
Abstract
The HIV-1 protein Vpr enhances macrophage infection, triggers G2 cell cycle arrest, and targets cells for NK-cell killing. Vpr acts through the CRL4(DCAF1) ubiquitin ligase complex to cause G2 arrest and trigger expression of NK ligands. Corresponding ubiquitination targets have not been identified. UNG2 and SMUG1 are the only known substrates for Vpr-directed depletion through CRL4(DCAF1). Here we identify the endoribonuclease Dicer as a target of HIV-1 Vpr-directed proteasomal degradation through CRL4(DCAF1). We show that HIV-1 Vpr inhibits short hairpin RNA function as expected upon reduction of Dicer levels. Dicer inhibits HIV-1 replication in T cells. We demonstrate that Dicer also restricts HIV-1 replication in human monocyte-derived macrophages (MDM) and that reducing Dicer expression in MDMs enhances HIV-1 infection in a Vpr-dependent manner. Our results support a model in which Vpr complexes with human Dicer to boost its interaction with the CRL4(DCAF1) ubiquitin ligase complex and its subsequent degradation.
Collapse
Affiliation(s)
- Laurieann Casey Klockow
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang S, Zhang B, Xu X, Wang L, Feng X, Wang Q, Huang H, Wu J, Li P, Wang J. HIV-1 viral protein R downregulates Ebp1 and stabilizes p53 in glioblastoma U87MG cells. Clin Transl Oncol 2013; 16:293-300. [PMID: 23828502 DOI: 10.1007/s12094-013-1072-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/20/2013] [Indexed: 11/29/2022]
Abstract
PURPOSE HIV-1 viral protein R (Vpr) inhibits cell growth and induces apoptosis in a wide range of cancers. However, the mechanism by which Vpr induces cell cycle arrest and apoptosis in GBM cell lines is unclear. The present work was taken to detect the proteins interacted with Vpr in U87MG cells. METHODS We analyzed the differential expression of proteins between glioblastoma cell U87MG treated with Ad-Vpr and untreated by 2-DE. We used antibody array analysis to analyze the common molecules in the apoptosis of U87MG induced by Vpr. RESULTS We analyzed the differential expression of proteins between U87MG cell treated with Ad-Vpr and untreated, and found that proteins related to DNA damage repair or different apoptosis pathways were involved in the G2 arrest and apoptosis mediated by Vpr. In addition, proliferation-associated protein 2G4 (PA2G4), also known as Ebp1, was down-regulated and p53 was up-regulated in U87MG cells treated with Ad-Vpr. CONCLUSIONS Our data suggest that Vpr may inhibit Ebp1 to stabilize p53, which in turn leads to G2 arrest and apoptosis in U87MG cells.
Collapse
Affiliation(s)
- S Zhang
- Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300060, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ferrucci A, Nonnemacher MR, Wigdahl B. Human immunodeficiency virus viral protein R as an extracellular protein in neuropathogenesis. Adv Virus Res 2012; 81:165-99. [PMID: 22094081 DOI: 10.1016/b978-0-12-385885-6.00010-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous studies published in the past two decades have identified the viral protein R (Vpr) as one of the most versatile proteins in the life cycle of human immunodeficiency virus type 1 (HIV-1). In this regard, more than a thousand Vpr molecules are present in extracellular viral particles. Subsequent to viral entry, Vpr participates in early replicative events by assisting in viral genome nuclear import and, during the viral life cycle, by shuttling between the nucleus and the cytoplasm to accomplish its functions within the context of other replicative functions. Additionally, several studies have implicated Vpr as a proapoptotic protein because it promotes formation of permeability transition pores in mitochondria, which in turn affects transmembrane potential and adenosine triphosphate synthesis. Recent studies have identified Vpr as a virion-free protein in the serum and cerebrospinal fluid of patients infected with HIV-1 whose plasma viremia directly correlates with the extracellular concentration of Vpr. These observations pointed to a new role for Vpr as an additional weapon in the HIV-1 arsenal, involving the use of an extracellular protein to target and possibly inhibit HIV-1-uninfected bystander cells to enable them to escape immune surveillance. In addition, extracellular Vpr decreases adenosine triphosphate levels and affects the intracellular redox balance in neurons, ultimately causing their apoptosis. Herein, we review the role of Vpr as an extracellular protein and its downstream effects on cellular metabolism, functionality, and survival, with particular emphasis on how extracellular Vpr-induced oxidative stress might aggravate HIV-1-induced symptoms, thus affecting pathogenesis and disease progression.
Collapse
Affiliation(s)
- Adriano Ferrucci
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
23
|
Maudet C, Bertrand M, Le Rouzic E, Lahouassa H, Ayinde D, Nisole S, Goujon C, Cimarelli A, Margottin-Goguet F, Transy C. Molecular insight into how HIV-1 Vpr protein impairs cell growth through two genetically distinct pathways. J Biol Chem 2011; 286:23742-52. [PMID: 21566118 DOI: 10.1074/jbc.m111.220780] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vpr, a small HIV auxiliary protein, hijacks the CUL4 ubiquitin ligase through DCAF1 to inactivate an unknown cellular target, leading to cell cycle arrest at the G(2) phase and cell death. Here we first sought to delineate the Vpr determinants involved in the binding to DCAF1 and to the target. On the one hand, the three α-helices of Vpr are necessary and sufficient for binding to DCAF1; on the other hand, nonlinear determinants in Vpr are required for binding to the target, as shown by using protein chimeras. We also underscore that a SRIG motif conserved in the C-terminal tail of Vpr proteins from HIV-1/SIVcpz and HIV-2/SIVsmm lineages is critical for G(2) arrest. Our results suggest that this motif may be predictive of the ability of Vpr proteins from other SIV lineages to mediate G(2) arrest. We took advantage of the characterization of a subset of G(2) arrest-defective, but DCAF1 binding-proficient mutants, to investigate whether Vpr interferes with cell viability independently of its ability to induce G(2) arrest. These mutants inhibited cell colony formation in HeLa cells and are cytotoxic in lymphocytes, unmasking a G(2) arrest-independent cytopathic effect of Vpr. Furthermore these mutants do not block cell cycle progression at the G(1) or S phases but trigger apoptosis through caspase 3. Disruption of DCAF1 binding restored efficiency of colony formation. However, DCAF1 binding per se is not sufficient to confer cytopathicity. These data support a model in which Vpr recruits DCAF1 to induce the degradation of two host proteins independently required for proper cell growth.
Collapse
|
24
|
Casey L, Wen X, de Noronha CMC. The functions of the HIV1 protein Vpr and its action through the DCAF1.DDB1.Cullin4 ubiquitin ligase. Cytokine 2010; 51:1-9. [PMID: 20347598 DOI: 10.1016/j.cyto.2010.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 01/30/2010] [Accepted: 02/24/2010] [Indexed: 01/21/2023]
Abstract
Among the proteins encoded by human and simian immunodeficiency viruses (HIV and SIV) at least three, Vif, Vpu and Vpr, subvert cellular ubiquitin ligases to block the action of anti-viral defenses. This review focuses on Vpr and its HIV2/SIV counterparts, Vpx and Vpr, which all engage the DDB1.Cullin4 ubiquitin ligase complex through the DCAF1 adaptor protein. Here, we discuss the multiple functions that have been linked to Vpr expression and summarize the current knowledge on the role of the ubiquitin ligase complex in carrying out a subset of these activities.
Collapse
Affiliation(s)
- Laurieann Casey
- Center for Immunology and Microbial Disease, Albany Medical College, 43 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
25
|
Endogenous HIV-1 Vpr-mediated apoptosis and proteome alteration of human T-cell leukemia virus-1 transformed C8166 cells. Apoptosis 2010; 14:1212-26. [PMID: 19655254 DOI: 10.1007/s10495-009-0380-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
HIV-1 viral protein R (Vpr) can induce cell cycle arrest and cell death, and may be beneficial in cancer therapy to suppress malignantly proliferative cell types, such as adult T-cell leukemia (ATL) cells. In this study, we examined the feasibility of employing the HIV-vpr gene, via targeted gene transfer, as a potential new therapy to kill ATL cells. We infected C8166 cells with a recombinant adenovirus carrying both vpr and GFP genes (rAd-vpr), as well as the vector control virus (rAd-vector). G(2)/M phase cell cycle arrest was observed in the rAd-vpr infected cells. Typical characteristics of apoptosis were detected in rAd-vpr infected cells, including sub-diploid peak exhibition in DNA content assay, the Hoechst 33342 accumulation, apoptotic body formation, mitochondrial membrane potential and plasma membrane integrity loss. The proteomic assay revealed apoptosis related protein changes, exhibiting the regulation of caspase-3 activity indicator proteins (vimentin and Rho GDP-dissociation inhibitor 2), mitochondrial protein (prohibitin) and other regulatory proteins. In addition, the up-regulation of anti-inflammatory redox protein, thioredoxin, was identified in the rAd-vpr infected group. Further supporting these findings, the increase of caspase 3&7 activity in the rAd-vpr infected group was observed. In conclusion, endogenous Vpr is able to kill HTLV-1 transformed C8166 cells, and may avoid the risks of inducing severe inflammatory responses through apoptosis-inducing and anti-inflammatory activities.
Collapse
|
26
|
Bergamaschi A, David A, Le Rouzic E, Nisole S, Barré-Sinoussi F, Pancino G. The CDK inhibitor p21Cip1/WAF1 is induced by FcgammaR activation and restricts the replication of human immunodeficiency virus type 1 and related primate lentiviruses in human macrophages. J Virol 2009; 83:12253-65. [PMID: 19759136 PMCID: PMC2786717 DOI: 10.1128/jvi.01395-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/10/2009] [Indexed: 12/26/2022] Open
Abstract
Macrophages are major targets of human immunodeficiency virus type 1 (HIV-1). We have previously shown that aggregation of activating immunoglobulin G Fc receptors (FcgammaR) by immune complexes inhibits reverse transcript accumulation and integration of HIV-1 and related lentiviruses in monocyte-derived macrophages. Here, we show that FcgammaR-mediated restriction of HIV-1 is not due to enhanced degradation of incoming viral proteins or cDNA and is associated to the induction of the cyclin-dependent kinase inhibitor p21(Cip1/WAF1) (p21). Small interfering RNA-mediated p21 knockdown rescued viral replication in FcgammaR-activated macrophages and enhanced HIV-1 infection in unstimulated macrophages by increasing reverse transcript and integrated DNA levels. p21 induction by other stimuli, such as phorbol myristate acetate and the histone deacetylase inhibitor MS-275, was also associated with preintegrative blocks of HIV-1 replication in macrophages. Binding of p21 to reverse transcription/preintegration complex-associated HIV-1 proteins was not detected in yeast two-hybrid, pulldown, or coimmunoprecipitation assays, suggesting that p21 may affect viral replication independently of a specific interaction with an HIV-1 component. Consistently, p21 silencing rescued viral replication from the FcgammaR-mediated restriction also in simian immunodeficiency virus SIV(mac)- and HIV-2-infected macrophages. Our results point to a role of p21 as an inhibitory factor of lentiviral infection in macrophages and to its implication in FcgammaR-mediated restriction.
Collapse
Affiliation(s)
- Anna Bergamaschi
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Annie David
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Erwann Le Rouzic
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Sébastien Nisole
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Françoise Barré-Sinoussi
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| | - Gianfranco Pancino
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Département des Maladies Infectieuses, Paris, France, INSERM, U567, 27 Rue du Faubourg St. Jacques, 75014 Paris, France
| |
Collapse
|
27
|
B5, a novel pyrrole-substituted indolinone, exerts potent antitumor efficacy through G2/M cell cycle arrest. Invest New Drugs 2009; 28:26-34. [DOI: 10.1007/s10637-008-9211-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 12/16/2008] [Indexed: 01/12/2023]
|
28
|
Samba-Louaka A, Nougayrède JP, Watrin C, Jubelin G, Oswald E, Taieb F. Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21waf1and p27kip1. Cell Microbiol 2008; 10:2496-508. [DOI: 10.1111/j.1462-5822.2008.01224.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Olivares I, Ballester A, Lombardia L, Dominguez O, López-Galíndez C. Human immunodeficiency virus type 1 chronic infection is associated with different gene expression in MT-4, H9 and U937 cell lines. Virus Res 2008; 139:22-31. [PMID: 19000723 DOI: 10.1016/j.virusres.2008.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 12/23/2022]
Abstract
To investigate cellular factors involved in HIV-1 chronic infection, three cell lines chronically infected with the same HIV-1 viral isolate (s61) were studied by cDNA microarray analysis. Two T cell lines, H61 and M61, showed the characteristics of a persistent infection whereas U61 cell line displayed a latent infection pattern. Analysis of genes with altered expression in the three cell lines revealed evidence of apoptosis control by up-regulation of anti-apoptotic genes and down-regulation of pro-apoptotic genes. In addition, cell cycle control was affected in the two persistent T cell lines particularly through the down-regulation of cyclin-dependent kinase inhibitor 1A (CDKN1A/p21). Moreover, each cell line showed specific characteristics, like in M61 cells, genes related with cellular activation and with cell migration and motility. In U61 cells, genes associated with immune response were activated. Genes with altered expression in our experiments, and not previously related with HIV such as ANXA 1 or CFLAR were detected and validated. This work revealed that different cell mechanism such as control of apoptosis and cell cycle are important for "in vitro" HIV-1 chronic infections, and discovered new genes previously not related with HIV-1 replication.
Collapse
Affiliation(s)
- Isabel Olivares
- Servicio de Virología Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Gutierrez-Sanmartin D, Varela-Ledo E, Aguilera A, Romero-Yuste S, Romero-Jung P, Gomez-Tato A, Regueiro BJ. Implication of p38 mitogen-activated protein kinase isoforms (alpha, beta, gamma and delta) in CD4+ T-cell infection with human immunodeficiency virus type I. J Gen Virol 2008; 89:1661-1671. [PMID: 18559936 DOI: 10.1099/vir.0.82971-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CD4(+) T-cell reduction characteristic of human immunodeficiency virus type 1 (HIV-1) infection is thought to result, in addition to infected T-cell death, mainly from uninfected bystander T-cell apoptosis. Nevertheless, the immunological and virological mechanisms leading to T-cell death during HIV-1 infection are not yet fully understood. In the present study, we analysed the individual implication of the p38 mitogen-activated protein kinase (MAPK) isoforms (p38alpha, p38beta, p38gamma and p38delta) during apoptosis induced by HIV-1, taking into account that HIV-1 replication is known to be blocked by p38 inhibitors. For this purpose, we used the SupT1 cell line, where death induced by HIV-1 mainly occurs by uninfected bystander cell apoptosis. A variety of SupT1-based cell lines were constructed constitutively expressing, under the control of cytomegalovirus promoter (PCMV), each dominant-negative (dn) p38 isoform and each wild-type p38 isoform as a control. An enhanced green fluorescent protein marker gene, under the control of the HIV-1 promoter, was inserted in all of them. These cell lines were infected with HIV-1 and analysed by flow cytometry. We found that survival in SupT1-based cell lines infected by HIV-1 was increased by the p38alphadn, p38gammadn and p38deltadn isoforms, but not by the p38betadn isoform. HIV-1 replication was delayed most by p38deltadn and to a lesser extent by p38alphadn and p38gammadn. Moreover, these three isoforms, p38alphadn, p38gammadn and p38deltadn, reduced apoptosis induced by HIV-1. These results suggest that, in SupT1-based cell lines, p38alpha, p38gamma and p38delta, but not p38beta, are implicated in both HIV-1 induced replication and apoptosis in infected and uninfected bystander cells.
Collapse
Affiliation(s)
- Dolores Gutierrez-Sanmartin
- Clinical Microbiology, Hospital de Conxo, Complejo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain
| | - Eduardo Varela-Ledo
- Clinical Microbiology, Hospital de Conxo, Complejo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain
| | - Antonio Aguilera
- Clinical Microbiology, Hospital de Conxo, Complejo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain
| | - Susana Romero-Yuste
- Rheumatology, Hospital Provincial, Complejo Hospitalario de Pontevedra (CHOP), Pontevedra, Spain
| | - Patricia Romero-Jung
- Clinical Microbiology, Hospital de Conxo, Complejo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain
| | - Antonio Gomez-Tato
- Facultad de Matematicas, Universidad de Santiago (Campus Sur), Santiago de Compostela, Spain
| | - Benito J Regueiro
- Clinical Microbiology, Hospital de Conxo, Complejo Hospitalario Universitario de Santiago (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
31
|
Cosenza-Nashat M, Zhao ML, Marshall HD, Si Q, Morgello S, Lee SC. Human immunodeficiency virus infection inhibits granulocyte-macrophage colony-stimulating factor-induced microglial proliferation. J Neurovirol 2008; 13:536-48. [PMID: 18097885 DOI: 10.1080/13550280701549417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is well known that infection by the human immunodeficiency virus (HIV) dysregulates cell physiology, but little information is available on the consequences of HIV infection in primary macrophages and microglia. The authors examined the relationship between cell proliferation and HIV infection in primary cultures of microglia and in human central nervous system (CNS). In cultures infected with HIV (ADA and BaL), granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated cell proliferation was reduced in productively infected (p24+) cells as compared to p24- cells. The reduction was observed with both Ki67 and BrdU labeling, suggesting a G1/S block. The reduction was insignificant when microglia were infected with a Vpr- mutant virus. In human CNS, proliferating (Ki67+) cells were rare but were increased in the HIV+ and HIV encephalitis (HIVE) groups compared to the HIV- group. A positive correlation between GM-CSF immunoreactivity and Ki67 counts, implicating GM-CSF as a growth factor in human CNS was found. The relationship between total macrophage (CD68+) proliferation and infected macrophage (p24+) proliferation was assessed in HIVE by double labeling. Whereas 1.2% of total CD68+ cells were Ki67+, only 0.5% of HIV p24+ cells were Ki67+ (P < .05). Furthermore, staining for CD45RB (as opposed to CD68) facilitated the identification of Ki67+ microglia, indicating that CD68 could underestimate proliferating microglia. The authors conclude that although there is increased expression of GM-CSF and increased cell proliferation in the CNS of HIV-seropositive individuals, cell proliferation in the productively infected population is actually suppressed. These data suggest that there might be a viral gain in the suppressed host cell proliferation.
Collapse
Affiliation(s)
- Melissa Cosenza-Nashat
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
32
|
Bronner C, Achour M, Arima Y, Chataigneau T, Saya H, Schini-Kerth VB. The UHRF family: Oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther 2007; 115:419-34. [PMID: 17658611 DOI: 10.1016/j.pharmthera.2007.06.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 12/21/2022]
Abstract
In this paper, we review the current literature about the UHRF family that in particular includes the UHRF1 and UHRF2 genes. Its members play a fundamental role in cell proliferation through different structural domains. These domains include a ubiquitin-like domain (NIRF_N), a plant homeodomain (PHD) domain, a SRA domain and a RING domain. The SRA domain has only been observed in this family probably conferring unique properties to it. The unique enzymatic activity so far identified in this family involves the RING finger that contains a ubiquitin E3 ligase activity toward, for instance, histones. The physiological roles played by the UHRF family are most likely exerted during embryogenic development and when proliferation is required in adults. Interestingly, UHRF members are putative oncogenes regulated by tumor suppressor genes, but they exert also a feedback control on these latter. Finally, we propose some new roles for this family, including regulation and/or inheritance of the epigenetic code. Alteration of these regulatory mechanisms, such as those occurring in cancer cells, may be involved in carcinogenesis. The reasons why the UHRF family could be an interesting target for developing anticancer drugs is also developed.
Collapse
Affiliation(s)
- Christian Bronner
- CNRS UMR 7175, Département de Pharmacologie et Pharmacochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | | | | | | | | | | |
Collapse
|
33
|
Davy C, Doorbar J. G2/M cell cycle arrest in the life cycle of viruses. Virology 2007; 368:219-26. [PMID: 17675127 PMCID: PMC7103309 DOI: 10.1016/j.virol.2007.05.043] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 03/29/2007] [Accepted: 05/23/2007] [Indexed: 11/30/2022]
Abstract
There is increasing evidence that viral infection, expression of viral protein or the presence of viral DNA causes the host cell cycle to arrest during G2/M. The mechanisms used by viruses to cause arrest vary widely; some involve the activation of the cellular pathways that induce arrest in response to DNA damage, while others use completely novel means. The analysis of virus-mediated arrest has not been proven easy, and in most cases the consequences of arrest for the virus life cycle are not well defined. However, a number of effects of arrest are being investigated and it will be interesting to see to what extent perturbation of the G2/M transition is involved in viral infections.
Collapse
|
34
|
Giri MS, Nebozhyn M, Showe L, Montaner LJ. Microarray data on gene modulation by HIV-1 in immune cells: 2000-2006. J Leukoc Biol 2006; 80:1031-43. [PMID: 16940334 DOI: 10.1189/jlb.0306157] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here, we review 34 HIV microarray studies in human immune cells over the period of 2000-March 2006 with emphasis on analytical approaches used and conceptual advances on HIV modulation of target cells (CD4 T cell, macrophage) and nontargets such as NK cell, B cell, and dendritic cell subsets. Results to date address advances on gene modulation associated with immune dysregulation, susceptibility to apoptosis, virus replication, and viral persistence following in vitro or in vivo infection/exposure to HIV-1 virus or HIV-1 accessory proteins. In addition to gene modulation associated with known functional correlates of HIV infection and replication (e.g., T cell apoptosis), microarray data have yielded novel, potential mechanisms of HIV-mediated pathogenesis such as modulation of cholesterol biosynthetic genes in CD4 T cells (relevant to virus replication and infectivity) and modulation of proteasomes and histone deacetylases in chronically infected cell lines (relevant to virus latency). Intrinsic challenges in summarizing gene modulation studies remain in development of sound approaches for comparing data obtained using different platforms and analytical tools, deriving unifying concepts to distil the large volumes of data collected, and the necessity to impose a focus for validation on a small fraction of genes. Notwithstanding these challenges, the field overall continues to demonstrate progress in expanding the pool of target genes validated to date in in vitro and in vivo datasets and understanding the functional correlates of gene modulation to HIV-1 pathogenesis in vivo.
Collapse
Affiliation(s)
- Malavika S Giri
- HIV Immunopathogenesis Laboratory, Wistar Institute, 3601 Spruce St., Room 480, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
35
|
Zelivianski S, Liang D, Chen M, Mirkin BL, Zhao RY. Suppressive effect of elongation factor 2 on apoptosis induced by HIV-1 viral protein R. Apoptosis 2006; 11:377-88. [PMID: 16520893 DOI: 10.1007/s10495-006-4030-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rapid CD4+ lymphocyte depletion due to cell death caused by HIV infection is one of the hallmarks of acquired immunodeficiency syndrome. HIV-1 viral protein R (Vpr) induces apoptosis and is believed to contribute to CD4+ lymphocyte depletion. Thus, identification of cellular factors that potentially counteract this detrimental viral effect will not only help us to understand the molecular action of Vpr but also to design future antiviral therapies. In this report, we describe identification of elongation factor 2 (EF2) as such a cellular factor. Specifically, EF2 protein level is responsive to vpr gene expression; it is able to suppress Vpr-induced apoptosis when it is overproduced beyond its physiological level. EF2 was initially identified through a genome-wide multicopy suppressor search for Vpr-induced apoptosis in a fission yeast model system. Overproduction of fission yeast Ef2 completely abolishes Vpr-induced cell killing in fission yeast. Similarly, overexpression of the human homologue of yeast Ef2 in a neuroblastoma SKN-SH cell line and two CD4+ H9 and CEM-SS T-cell lines also blocked Vpr-induced apoptosis. The anti-apoptotic property of EF2 is demonstrated by its ability to suppress caspase 9 and caspase 3-mediated apoptosis induced by Vpr. In addition, it also reduces cytochrome c release induced by Vpr, staurosporine and TNFalpha. The fact that overproduction of EF2 blocks Vpr-induced cell death both in fission yeast and human cells, suggested that EF2 posses a highly conserved anti-apoptotic activity. Moreover, the responsive elevation of EF2 to Vpr suggests a possible host innate antiviral response.
Collapse
Affiliation(s)
- S Zelivianski
- Children's Memorial Research Center, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | | | | | | | | |
Collapse
|
36
|
Yoshizuka N, Yoshizuka-Chadani Y, Krishnan V, Zeichner SL. Human immunodeficiency virus type 1 Vpr-dependent cell cycle arrest through a mitogen-activated protein kinase signal transduction pathway. J Virol 2005; 79:11366-81. [PMID: 16103188 PMCID: PMC1193619 DOI: 10.1128/jvi.79.17.11366-11381.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vpr protein has important functions in advancing HIV pathogenesis via several effects on the host cell. Vpr mediates nuclear import of the preintegration complex, induces host cell apoptosis, and inhibits cell cycle progression at G(2), which increases HIV gene expression. Some of Vpr's activities have been well described, but some functions, such as cell cycle arrest, are not yet completely characterized, although components of the ATR DNA damage repair pathway and the Cdc25C and Cdc2 cell cycle control mechanisms clearly play important roles. We investigated the mechanisms underlying Vpr-mediated cell cycle arrest by examining global cellular gene expression profiles in cell lines that inducibly express wild-type and mutant Vpr proteins. We found that Vpr expression is associated with the down-regulation of genes in the MEK2-ERK pathway and with decreased phosphorylation of the MEK2 effector protein ERK. Exogenous provision of excess MEK2 reverses the cell cycle arrest associated with Vpr, confirming the involvement of the MEK2-ERK pathway in Vpr-mediated cell cycle arrest. Vpr therefore appears to arrest the cell cycle at G(2)/M through two different mechanisms, the ATR mechanism and a newly described MEK2 mechanism. This redundancy suggests that Vpr-mediated cell cycle arrest is important for HIV replication and pathogenesis. Our findings additionally reinforce the idea that HIV can optimize the host cell environment for viral replication.
Collapse
Affiliation(s)
- Naoto Yoshizuka
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | | | | | | |
Collapse
|
37
|
Groschel B, Bushman F. Cell cycle arrest in G2/M promotes early steps of infection by human immunodeficiency virus. J Virol 2005; 79:5695-704. [PMID: 15827184 PMCID: PMC1082730 DOI: 10.1128/jvi.79.9.5695-5704.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have identified four small molecules that boost transduction of cells by human immunodeficiency virus (HIV) and investigated their mechanism of action. These molecules include etoposide and camptothecin, which induce DNA damage by inhibiting religation of cleaved topoisomerase-DNA complexes, taxol, which interferes with the function of microtubules, and aphidicolin, which inhibits DNA polymerases. All four compounds arrest the cell cycle at G2/M, though in addition high concentrations of aphidicolin arrest in G1. We find that early events of HIV replication, including synthesis of late reverse transcription products, two-long terminal repeat circles, and integrated proviruses, were increased after treatment of cells with concentrations of each compound that arrested in G2/M. Stimulation was seen for both transformed cell lines (293T and HeLa cells) and primary cells (IMR90 lung fibroblasts). Arrest in G1 with high concentrations of aphidicolin boosted transduction, though not much as with lower concentrations that arrested in G2/M. Arrest of IMR90 cells in G1 by serum starvation and contact inhibition reduced transduction. Previously, the proteasome inhibitor MG132 was reported to increase HIV infection-here we investigated the effects of combinations of the cell cycle inhibitors with MG132 and obtained data suggesting that MG132 may also boost transduction by causing G2/M cell cycle arrest. These data document that cell cycle arrest in G2/M boosts the early steps of HIV infection and suggests methods for increasing transduction with HIV-based vectors.
Collapse
Affiliation(s)
- Bettina Groschel
- University of Pennsylvania School of Medicine, Department of Microbiology, 3610 Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | |
Collapse
|
38
|
Vázquez N, Greenwell-Wild T, Marinos NJ, Swaim WD, Nares S, Ott DE, Schubert U, Henklein P, Orenstein JM, Sporn MB, Wahl SM. Human immunodeficiency virus type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation. J Virol 2005; 79:4479-91. [PMID: 15767448 PMCID: PMC1061522 DOI: 10.1128/jvi.79.7.4479-4491.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In contrast to CD4+ T cells, human immunodeficiency virus type 1 (HIV-1)-infected macrophages typically resist cell death, support viral replication, and consequently, may facilitate HIV-1 transmission. To elucidate how the virus commandeers the macrophage's intracellular machinery for its benefit, we analyzed HIV-1-infected human macrophages for virus-induced gene transcription by using multiple parameters, including cDNA expression arrays. HIV-1 infection induced the transcriptional regulation of genes associated with host defense, signal transduction, apoptosis, and the cell cycle, among which the cyclin-dependent kinase inhibitor 1A (CDKN1A/p21) gene was the most prominent. p21 mRNA and protein expression followed a bimodal pattern which was initially evident during the early stages of infection, and maximum levels occurred concomitant with active HIV-1 replication. Mechanistically, viral protein R (Vpr) independently regulates p21 expression, consistent with the reduced viral replication and lack of p21 upregulation by a Vpr-negative virus. Moreover, the treatment of macrophages with p21 antisense oligonucleotides or small interfering RNAs reduced HIV-1 infection. In addition, the synthetic triterpenoid and peroxisome proliferator-activated receptor gamma ligand, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), which is known to influence p21 expression, suppressed viral replication. These data implicate p21 as a pivotal macrophage facilitator of the viral life cycle. Moreover, regulators of p21, such as CDDO, may provide an interventional approach to modulate HIV-1 replication.
Collapse
Affiliation(s)
- Nancy Vázquez
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Turriziani O, Butera O, Gianotti N, Parisi SG, Mazzi R, Girardi E, Iaiani G, Antonelli L, Lazzarin A, Antonelli G. Thymidine kinase and deoxycytidine kinase activity in mononuclear cells from antiretroviral-naive HIV-infected patients. AIDS 2005; 19:473-9. [PMID: 15764852 DOI: 10.1097/01.aids.0000162335.12815.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate whether an inter-individual variability in the activity of thymidine kinase (TK) and deoxycytidine kinase (dCK), which are involved in the first step of phosphorylation of some nucleoside analogues, exists in antiretroviral-naive, HIV-seropositive patients. DESIGN Forty-five randomly selected antiretroviral-naive HIV-infected patients were recruited, together with 26 healthy volunteers with no concurrent infection and under no pharmacological treatment. METHODS Peripheral blood mononuclear cells (PBMC) were isolated from venous blood and their TK and dCK activities evaluated. CD4 T cells and HIV-RNA were measured in HIV-infected patients, too. RESULTS There was a broad range of variability in TK activity in HIV-infected individuals. Furthermore, the activity in PBMC was significantly higher in HIV-infected individuals than in healthy volunteers. dCK activity in seropositive patients was significantly lower than in healthy volunteers. A marked inter-individual variability in dCK levels was observed in the HIV-infected group. No correlations were found between TK or dCK activities and plasma viral load, CD4 cell count, sex or age of patients. CONCLUSIONS A marked range of inter-individual variability of TK and dCK activities in PBMC exists in HIV-infected individuals but not in healthy volunteers, indicating that the activity of enzymes with key roles in drug activation could vary greatly from one patient to another. Furthermore, TK expression is greater in HIV-infected individuals than in healthy volunteers. Better understanding of the viral or cellular factors that contribute to this variability, as well as their effect on responses to antiretroviral treatment, may aid optimization of the management of HIV-infected patients.
Collapse
Affiliation(s)
- Ombretta Turriziani
- Department of Experimental Medicine and Pathology, Virology Section, University La Sapienza, 28 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liang WS, Maddukuri A, Teslovich TM, de la Fuente C, Agbottah E, Dadgar S, Kehn K, Hautaniemi S, Pumfery A, Stephan DA, Kashanchi F. Therapeutic targets for HIV-1 infection in the host proteome. Retrovirology 2005; 2:20. [PMID: 15780141 PMCID: PMC1087880 DOI: 10.1186/1742-4690-2-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 03/21/2005] [Indexed: 12/20/2022] Open
Abstract
Background Despite the success of HAART, patients often stop treatment due to the inception of side effects. Furthermore, viral resistance often develops, making one or more of the drugs ineffective. Identification of novel targets for therapy that may not develop resistance is sorely needed. Therefore, to identify cellular proteins that may be up-regulated in HIV infection and play a role in infection, we analyzed the effects of Tat on cellular gene expression during various phases of the cell cycle. Results SOM and k-means clustering analyses revealed a dramatic alteration in transcriptional activity at the G1/S checkpoint. Tat regulates the expression of a variety of gene ontologies, including DNA-binding proteins, receptors, and membrane proteins. Using siRNA to knock down expression of several gene targets, we show that an Oct1/2 binding protein, an HIV Rev binding protein, cyclin A, and PPGB, a cathepsin that binds NA, are important for viral replication following induction from latency and de novo infection of PBMCs. Conclusion Based on exhaustive and stringent data analysis, we have compiled a list of gene products that may serve as potential therapeutic targets for the inhibition of HIV-1 replication. Several genes have been established as important for HIV-1 infection and replication, including Pou2AF1 (OBF-1), complement factor H related 3, CD4 receptor, ICAM-1, NA, and cyclin A1. There were also several genes whose role in relation to HIV-1 infection have not been established and may also be novel and efficacious therapeutic targets and thus necessitate further study. Importantly, targeting certain cellular protein kinases, receptors, membrane proteins, and/or cytokines/chemokines may result in adverse effects. If there is the presence of two or more proteins with similar functions, where only one protein is critical for HIV-1 transcription, and thus, targeted, we may decrease the chance of developing treatments with negative side effects.
Collapse
Affiliation(s)
- Winnie S Liang
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Anil Maddukuri
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Tanya M Teslovich
- Institute for Genetic Medicine, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Cynthia de la Fuente
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Emmanuel Agbottah
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Shabnam Dadgar
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Kylene Kehn
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Sampsa Hautaniemi
- Institute of Signal Processing, Tampere University of Technology, PO Box 553, 33101, Tampere, Finland
| | - Anne Pumfery
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Dietrich A Stephan
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Fatah Kashanchi
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC 20037, USA
- The Institute for Genomic Research, TIGR, Rockville, MD 20850, USA
| |
Collapse
|
41
|
Le Rouzic E, Benichou S. The Vpr protein from HIV-1: distinct roles along the viral life cycle. Retrovirology 2005; 2:11. [PMID: 15725353 PMCID: PMC554975 DOI: 10.1186/1742-4690-2-11] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 02/22/2005] [Indexed: 12/30/2022] Open
Abstract
The genomes of human and simian immunodeficiency viruses (HIV and SIV) encode the gag, pol and env genes and contain at least six supplementary open reading frames termed tat, rev, nef, vif, vpr, vpx and vpu. While the tat and rev genes encode regulatory proteins absolutely required for virus replication, nef, vif, vpr, vpx and vpu encode for small proteins referred to "auxiliary" (or "accessory"), since their expression is usually dispensable for virus growth in many in vitro systems. However, these auxiliary proteins are essential for viral replication and pathogenesis in vivo. The two vpr- and vpx-related genes are found only in members of the HIV-2/SIVsm/SIVmac group, whereas primate lentiviruses from other lineages (HIV-1, SIVcpz, SIVagm, SIVmnd and SIVsyk) contain a single vpr gene. In this review, we will mainly focus on vpr from HIV-1 and discuss the most recent developments in our understanding of Vpr functions and its role during the virus replication cycle.
Collapse
Affiliation(s)
- Erwann Le Rouzic
- Institut Cochin, Department of Infectious Diseases, INSERM U567, CNRS UMR8104, Université Paris 5, Paris, France
| | - Serge Benichou
- Institut Cochin, Department of Infectious Diseases, INSERM U567, CNRS UMR8104, Université Paris 5, Paris, France
| |
Collapse
|
42
|
Zimmerman ES, Chen J, Andersen JL, Ardon O, Dehart JL, Blackett J, Choudhary SK, Camerini D, Nghiem P, Planelles V. Human immunodeficiency virus type 1 Vpr-mediated G2 arrest requires Rad17 and Hus1 and induces nuclear BRCA1 and gamma-H2AX focus formation. Mol Cell Biol 2004; 24:9286-94. [PMID: 15485898 PMCID: PMC522272 DOI: 10.1128/mcb.24.21.9286-9294.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic cells have evolved a complex mechanism for sensing DNA damage during genome replication. Activation of this pathway prevents entry into mitosis to allow for either DNA repair or, in the event of irreparable damage, commitment to apoptosis. Under conditions of replication stress, the damage signal is initiated by the ataxia-telangiectasia-mutated and Rad3-related kinase ATR. We recently demonstrated that the human immunodeficiency virus type 1 (HIV-1) gene product viral protein R (Vpr) arrests infected cells in the G(2) phase via the activation of ATR. In the present study, we show that the activation of ATR by Vpr is analogous to activation by certain genotoxic agents, both mechanistically and in its downstream consequences. Specifically, we show a requirement for Rad17 and Hus1 to induce G(2) arrest as well as Vpr-induced phosphorylation of histone 2A variant X (H2AX) and formation of nuclear foci containing H2AX and breast cancer susceptibility protein 1. These results demonstrate that G(2) arrest mediated by the HIV-1 gene product Vpr utilizes the cellular signaling pathway whose physiological function is to recognize replication stress. These findings should contribute to a greater understanding of how HIV-1 manipulates the CD4(+)-lymphocyte cell cycle and apoptosis induction in the progressive CD4(+)-lymphocyte depletion characteristic of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Erik S Zimmerman
- Department of Pathology, School of Medicine, University of Utah, 30 N. 1900 East, SOM 5C210, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Perfettini JL, Roumier T, Castedo M, Larochette N, Boya P, Raynal B, Lazar V, Ciccosanti F, Nardacci R, Penninger J, Piacentini M, Kroemer G. NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope. ACTA ACUST UNITED AC 2004; 199:629-40. [PMID: 14993250 PMCID: PMC2213296 DOI: 10.1084/jem.20031216] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.
Collapse
Affiliation(s)
- Jean-Luc Perfettini
- Centre National de la Recherche Scientifique, UMR 8125, Institut Gustave Roussy, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Cell cycle is one of the most complex processes in the life of a dividing cell. It involves numerous regulatory proteins, which direct the cell through a specific sequence of events for the production of two daughter cells. Cyclin-dependent kinases (cdks), which complex with the cyclin proteins, are the main players in the cell cycle. They can regulate the progression of the cells through different stages regulated by several proteins including p53, p21(WAF1), p19, p16, and cdc25. Downstream targets of cyclin-cdk complexes include pRB and E2F. A cell cycle can be altered to the advantage of many viral agents, most notably polyomaviruses, papillomaviruses, adenoviruses, and retroviruses. In addition, viral protein R (Vpr) is a protein encoded by the human immunodeficiency virus type 1 (HIV-1). HIV-1, the causative agent of acquired immunodeficiency syndrome (AIDS), is a member of the lentivirus class of retroviruses. This accessory protein plays an important role in the regulation of the cell cycle by causing G(2) arrest and affecting cell cycle regulators. Vpr prevents infected cells from proliferating, and collaborates with the matrix protein (MA) to enable HIV-1 to enter the nucleus of nondividing cells. Studies from different labs including ours showed that Vpr affects the functions of cell cycle proteins, including p53 and p21(WAF1). Thus, the replication of HIV-1, and ultimately its pathogenesis, are intrinsically tied to cell-cycle control.
Collapse
Affiliation(s)
- Shohreh Amini
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | |
Collapse
|
45
|
Tungaturthi PK, Sawaya BE, Ayyavoo V, Murali R, Srinivasan A. HIV-1 Vpr: Genetic Diversity and Functional Features from the Perspective of Structure. DNA Cell Biol 2004; 23:207-22. [PMID: 15142378 DOI: 10.1089/104454904773819798] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA viruses are well known for the enormous genetic variation. Retroviruses share this feature with other RNA viruses, and human immunodeficiency virus type 1 (HIV-1) has been extensively investigated in this regard. Based on the DNA sequence analysis, HIV-1 has been classified into three groups; M, N, and O, with viral subtypes in each group. While the genetic variation between viral isolates has been documented throughout the genome, specifically, the env gene exhibits high variation. Analysis of the env gene from the sequential samples from HIV-1-infected patients reveals variation in the range of 1% per year. The variation observed in individual HIV-1 genes in the form of changes at the nucleotide level, as expected, should result in one of the possible scenarios: (1) no change in the amino acid, (2) conservative change in the amino acid, (3) nonconservative change in the amino acid, and (4) premature stop codon resulting in a truncated protein. Hence, it is likely that the variation may impact on the function of the protein, depending on the nature of the mutation. The goal of this review is to summarize the polymorphisms in Vpr using the available sequence information and discuss their effects on the functions of Vpr from the point of view of its structure. The data generated by several groups provide a base for understanding the consequences of natural polymorphisms in specific regions of the Vpr molecule. However, it is also clear that secondary changes (second site or compensatory mutations) may modify the effect of a specific mutation and a comprehensive analysis is needed to delineate the role of specific residues in Vpr molecule. This is an area which, we hope, will attract investigators for further studies, and may provide information for understanding the molecular basis of Vpr functions.
Collapse
Affiliation(s)
- Parithosh K Tungaturthi
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
46
|
Chaves MMS, Kallas EG. Cell cycle distribution of CD4+ lymphocytes in HIV-1-infected subjects. ACTA ACUST UNITED AC 2004; 62:46-51. [PMID: 15476192 DOI: 10.1002/cyto.b.20029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Apoptosis is one of the possible explanations for the progressive loss of CD4(+) T lymphocytes in infection with the human immunodeficiency virus (HIV), which may interfere with cell cycle distribution. This study evaluated the cell cycle of CD4(+) and CD8(+) lymphocytes in HIV-infected subjects and controls. METHODS Two methods to identify lymphocytes for cell cycle analysis were evaluated, magnetic beads and concurrent staining, and both were followed by propidium iodide DNA labeling. The chosen method was used to evaluate the cell cycle of lymphocytes in HIV-1-infected subjects and controls. RESULTS There was no significant difference between the two methods, although a higher variability was observed with the magnetic bead cell separation method. A higher proportion of cells in the S phase was observed in HIV-1 patients (2.69% vs. 1.19%, P = 0.016), coupled with a decrease in G(1) (96.11% vs. 98.10%, P = 0.005) in CD4(+) lymphocytes, a phenomenon not observed in CD8(+) lymphocytes. No correlation was detected between the different cell cycle phases and T-lymphocyte counts or viral load. CONCLUSIONS The present work developed a new approach to evaluate lymphocyte cell cycle distribution, applied in the setting of HIV-1 infection. It may contribute to the understanding of the CD4(+) T-lymphocytes depletion seen in these patients.
Collapse
|
47
|
Wahl SM, Greenwell-Wild T, Peng G, Ma G, Orenstein JM, Vazquez N. Viral and host cofactors facilitate HIV-1 replication in macrophages. J Leukoc Biol 2003; 74:726-35. [PMID: 12960226 DOI: 10.1189/jlb.0503220] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of CD4+ T lymphocytes leads to their progressive loss, whereas HIV-1-infected macrophages appear to resist HIV-1-mediated apoptotic death. The differential response of these two host-cell populations may be critical in the development of immunodeficiency and long-term persistence of the virus. Multiple contributing factors may favor the macrophage as a resilient host, not only supporting infection by HIV-1 but also promoting replication and persistence of this member of the lentivirus subfamily of primate retroviruses. An encounter between macrophages and R5 virus engages a signal cascade eventuating in transcriptional regulation of multiple genes including those associated with host defense, cell cycle, nuclear factor-kappaB regulation, and apoptosis. It is important that enhanced gene expression is transient, declining to near control levels, and during this quiescent state, the virus continues its life cycle unimpeded. However, when viral replication becomes prominent, an increase in host genes again occurs under the orchestration of viral gene products. This biphasic host response must fulfill the needs of the parasitic virus as viral replication activity occurs and leads to intracellular and cell surface-associated viral budding. Inroads into understanding how HIV-1 co-opts host factors to generate a permissive environment for viral replication and transmission to new viral hosts may provide opportunities for targeted interruption of this lethal process.
Collapse
Affiliation(s)
- Sharon M Wahl
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD 20892-4352, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Chowdhury IH, Farhadi A, Wang XF, Robb ML, Birx DL, Kim JH. Human T-cell leukemia virus type 1 Tax activates cyclin-dependent kinase inhibitor p21/Waf1/Cip1 expression through a p53-independent mechanism: Inhibition of cdk2. Int J Cancer 2003; 107:603-11. [PMID: 14520699 DOI: 10.1002/ijc.11316] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We investigated the possible involvement of HTLV-1 Tax in the transcriptional activation of p21/Waf1/Cip1 (hereafter p21), a potent inhibitor of cyclin-dependent kinases and cell growth. Tax transfection resulted in enhanced expression of p21 protein in T and fibroblastoid cells. Similarly, Tax-expressing cells have higher amounts of endogenous p21 protein and RNA. However, neither Tax-negative, HTLV-1 transformed cells or HTLV-1-negative T cell lines had detectable levels of p21 protein and RNA. Cotransfection of Tax strongly activated the p21 promoter. CREB/ATF defective Tax mutant (M47) activated the p21 promoter significantly less efficiently. Tax activated wild type (wt) p21 promoter in p53-negative Jurkat and p53-positive A301cells, irrespective of endogenous p53 status, and activated a mutant p21 promoter containing a p53 responsive element (p53RE) deletion as strongly as wt promoter. Of importance, cdk2 activity was almost completely abolished in Tax-induced p21-expressing MT-2 cells, suggesting that Tax-induced p21 predominantly affects the activity of cdk2, a late G1 and S phase kinase. Taken together, these findings suggest that HTLV-1 Tax activates p21/Waf1/Cip1, a cell growth inhibitor, in a p53-independent mechanism through CREB/ATF-related transcription factors, and inhibits cdk2. Tax induction of p21 may balance the T-cell proliferation function of Tax and may contribute to the long clinical latency of HTLV-1 infection and the delayed development of adult T-cell leukemia.
Collapse
Affiliation(s)
- Iqbal H Chowdhury
- Department of Vaccine Development and Research, Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
HIV produces structural, regulatory, and accessory proteins during viral replication in host cells. The accessory proteins include Nef, viral infectivity factor (Vif), viral protein R, and viral protein U or viral protein X. Although these accessory proteins are generally dispensable for viral replication in vitro, they are essential for viral pathogenesis in vivo. Consequently, there has been much interest in understanding how these accessory proteins function because this research may yield new antiviral targets to curb HIV pathogenesis in vivo. Therefore, this review highlights recent advances in understanding the HIV accessory proteins and emphasizes breakthrough insights into the elusive Vif protein and potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jenny L. Anderson
- Department of Microbiology and Immunology, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|