1
|
Li J, Ulloa GM, Mayor P, Santolalla Robles ML, Greenwood AD. Nucleic acid degradation after long-term dried blood spot storage. Mol Ecol Resour 2024; 24:e13979. [PMID: 38780145 DOI: 10.1111/1755-0998.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Collecting and preserving biological samples in the field, particularly in remote areas in tropical forests, prior to laboratory analysis is challenging. Blood samples in many cases are used for nucleic acid-based species determination, genomics or pathogen research. In most cases, maintaining a cold chain is impossible and samples remain at ambient temperature for extended periods of time before controlled storage conditions become available. Dried blood spot (DBS) storage, blood stored on cellulose-based paper, has been widely applied to facilitate sample collection and preservation in the field for decades. However, it is unclear how long-term storage on this substrate affects nucleic acid concentration and integrity. We analysed nucleic acid quality from DBS stored on Whatman filter paper no. 3 and FTA cards for up to 15 years in comparison to cold-chain stored samples using four nucleic acid extraction methods. We examined the ability to identify viral sequences from samples of 12 free-ranging primates in the Amazon forest, using targeted hybridization capture, and determined if mitochondrial genomes could be retrieved. The results suggest that even after extended periods of storage, DBS will be suitable for some genomic applications but may be of limited use for viral pathogen research, particularly RNA viruses.
Collapse
Affiliation(s)
- Juan Li
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Gabriela M Ulloa
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil
- Grupo de Enfermedades Infecciosas Re-emergentes, Universidad Científica del Sur (UCSUR), Lima, Peru
| | - Pedro Mayor
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Belém, Pará, Brazil
- ComFauna, Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica, Iquitos, Peru
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Meddly L Santolalla Robles
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Scott AM, Kovach AI. FecalSeq enrichment with RAD Sequencing from non-invasive environmental samples holds promise for genetic monitoring of an imperiled lagomorph. Sci Rep 2024; 14:17575. [PMID: 39080335 PMCID: PMC11289273 DOI: 10.1038/s41598-024-67764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Despite advances in genomic sequencing and bioinformatics, conservation genomics is still often hindered by a reliance on non-invasive samples. The presence of exogenous DNA and the low quantity and poor quality of DNA in non-invasive samples have been a roadblock to sequencing, thereby limiting the potential for genomic monitoring of endangered species. Recent molecular advances, such as host DNA enrichment, hold promise for facilitating sequencing from non-invasive samples. We used the FecalSeq method to enrich DNA extracted from wild-collected fecal pellets of the imperiled New England cottontail and identified SNPs from 3RAD Sequencing. We obtained SNPs from rabbit pellets, including pellets that were collected in poor environmental conditions and samples that performed poorly with microsatellites. Measures of sequencing success improved with greater amounts of starting DNA and 32% of samples generated SNP genotypes that passed quality control filtering. Genotyping error rates were high, however, and the approach was unable to consistently distinguish unique individuals or matching genotypes, while it was suitable for recovering the expected population structure. Pairing FecalSeq enrichment with RADseq is a promising low-cost method for monitoring wild populations using non-invasive samples in an environmental context, but it may be better suited for informing conservation through population genomics.
Collapse
Affiliation(s)
- Amy M Scott
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA.
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA
| |
Collapse
|
3
|
Wolfenson LI, Pereira JA, Ruzzante DE, Solé-Cava AM, McCracken GR, Gómez-Fernández MJ, Pereyra MD, Mirol PM. Southern marsh deer (Blastocerus dichotomus) populations assessed using Amplicon Sequencing on fecal samples. Sci Rep 2024; 14:16169. [PMID: 39003391 PMCID: PMC11246461 DOI: 10.1038/s41598-024-67062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Populations in isolated and small fragments lose genetic variability very fast and are usually of conservation concern because they are at greater risk of local extinction. The largest native deer in South America, Blastocerus dichotomus (Illiger, 1815), is a Vulnerable species according to the IUCN categorization, which inhabits tropical and subtropical swampy areas. In Argentina, its presence has been restricted to four isolated fragments. Here we examine the genetic diversity and differentiation among three of them, including the three different patches that form the southernmost population, using 18 microsatellite markers genotyped by Amplicon Sequencing of DNA extracted from fecal samples. Genetic diversity was low (HE < 0.45) in all three populations studied. We found three genetic clusters compatible with the geographic location of the samples. We also found a metapopulation dynamics that involves the patches that make up the southernmost population, with evidence of a barrier to gene flow between two of them. Our results point to the creation of a corridor as a necessary and urgent management action. This is the first study, at the population level, employing microsatellite genotyping by Amplicon Sequencing with non-invasive samples in an endangered species.
Collapse
Affiliation(s)
- Laura I Wolfenson
- División de Mastozoología, Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia", Av. Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, CP 1405, Buenos Airesss, Argentina.
| | - Javier A Pereira
- División de Mastozoología, Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia", Av. Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, CP 1405, Buenos Airesss, Argentina
| | | | - Antonio M Solé-Cava
- Departamento de Genetica, Centro Nacional Para a Identificação Molecular do Pescado (CENIMP), Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - María J Gómez-Fernández
- División de Mastozoología, Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia", Av. Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, CP 1405, Buenos Airesss, Argentina
| | - María D Pereyra
- División de Mastozoología, Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia", Av. Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, CP 1405, Buenos Airesss, Argentina
| | - Patricia M Mirol
- División de Mastozoología, Museo Argentino de Ciencias Naturales, "Bernardino Rivadavia", Av. Ángel Gallardo 470, Ciudad Autónoma de Buenos Aires, CP 1405, Buenos Airesss, Argentina
| |
Collapse
|
4
|
Garrett MJ, Nerkowski SA, Kieran S, Campbell NR, Barbosa S, Conway CJ, Hohenlohe PA, Waits LP. Development and validation of a GT-seq panel for genetic monitoring in a threatened species using minimally invasive sampling. Ecol Evol 2024; 14:e11321. [PMID: 38770122 PMCID: PMC11103765 DOI: 10.1002/ece3.11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Minimally invasive samples are often the best option for collecting genetic material from species of conservation concern, but they perform poorly in many genomic sequencing methods due to their tendency to yield low DNA quality and quantity. Genotyping-in-thousands by sequencing (GT-seq) is a powerful amplicon sequencing method that can genotype large numbers of variable-quality samples at a standardized set of single nucleotide polymorphism (SNP) loci. Here, we develop, optimize, and validate a GT-seq panel for the federally threatened northern Idaho ground squirrel (Urocitellus brunneus) to provide a standardized approach for future genetic monitoring and assessment of recovery goals using minimally invasive samples. The optimized panel consists of 224 neutral and 81 putatively adaptive SNPs. DNA collected from buccal swabs from 2016 to 2020 had 73% genotyping success, while samples collected from hair from 2002 to 2006 had little to no DNA remaining and did not genotype successfully. We evaluated our GT-seq panel by measuring genotype discordance rates compared to RADseq and whole-genome sequencing. GT-seq and other sequencing methods had similar population diversity and F ST estimates, but GT-seq consistently called more heterozygotes than expected, resulting in negative F IS values at the population level. Genetic ancestry assignment was consistent when estimated with different sequencing methods and numbers of loci. Our GT-seq panel is an effective and efficient genotyping tool that will aid in the monitoring and recovery of this threatened species, and our results provide insights for applying GT-seq for minimally invasive DNA sampling techniques in other rare animals.
Collapse
Affiliation(s)
- Molly J. Garrett
- Department of Fish and Wildlife Sciences, College of Natural ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Stacey A. Nerkowski
- Department of Fish and Wildlife Sciences, College of Natural ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Shannon Kieran
- Department of Fish and Wildlife Sciences, College of Natural ResourcesUniversity of IdahoMoscowIdahoUSA
| | | | - Soraia Barbosa
- Department of Fish and Wildlife Sciences, College of Natural ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Courtney J. Conway
- U.S. Geological Survey, Idaho Cooperative Fish & Wildlife Research UnitUniversity of IdahoMoscowIdahoUSA
| | - Paul A. Hohenlohe
- Department of Biological Sciences, College of ScienceUniversity of IdahoMoscowIdahoUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife Sciences, College of Natural ResourcesUniversity of IdahoMoscowIdahoUSA
| |
Collapse
|
5
|
Peralta DM, Túnez JI, Rodríguez Cruz UE, Ceballos SG. A rapid approach for sex assignment by RAD-seq using a reference genome. PLoS One 2024; 19:e0297987. [PMID: 38578816 PMCID: PMC10997085 DOI: 10.1371/journal.pone.0297987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/14/2024] [Indexed: 04/07/2024] Open
Abstract
Sex identification is a common objective in molecular ecology. While many vertebrates display sexual dimorphism, determining the sex can be challenging in certain situations, such as species lacking clear sex-related phenotypic characteristics or in studies using non-invasive methods. In these cases, DNA analyses serve as valuable tools not only for sex determination but also for validating sex assignment based on phenotypic traits. In this study, we developed a bioinformatic framework for sex assignment using genomic data obtained through GBS, and having an available closely related genome assembled at the chromosome level. Our method consists of two ad hoc indexes that rely on the different properties of the mammalian heteromorphic sex chromosomes. For this purpose, we mapped RAD-seq loci to a reference genome and then obtained missingness and coverage depth values for the autosomes and X and Y chromosomes of each individual. Our methodology successfully determined the sex of 165 fur seals that had been phenotypically sexed in a previous study and 40 sea lions sampled in a non-invasive way. Additionally, we evaluated the accuracy of each index in sequences with varying average coverage depths, with Index Y proving greater reliability and robustness in assigning sex to individuals with low-depth coverage. We believe that the approach presented here can be extended to any animal taxa with known heteromorphic XY/ZW sex chromosome systems and that it can tolerate various qualities of GBS sequencing data.
Collapse
Affiliation(s)
- Diego M. Peralta
- Grupo de Investigación en Ecología Molecular, Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET-UNLu-CIC), Luján, Argentina
- Departamento de Ecología de la Diversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Juan I. Túnez
- Grupo de Investigación en Ecología Molecular, Instituto de Ecología y Desarrollo Sustentable (INEDES-CONICET-UNLu-CIC), Luján, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina
| | - Ulises E. Rodríguez Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Santiago G. Ceballos
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
- Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina
| |
Collapse
|
6
|
De Barba M, Baur M, Boyer F, Fumagalli L, Konec M, Miquel C, Pazhenkova E, Remollino N, Skrbinšek T, Stoffel C, Taberlet P. Individual genotypes from environmental DNA: Fingerprinting snow tracks of three large carnivore species. Mol Ecol Resour 2024; 24:e13915. [PMID: 38099394 DOI: 10.1111/1755-0998.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 03/06/2024]
Abstract
Continued advancements in environmental DNA (eDNA) research have made it possible to access intraspecific variation from eDNA samples, opening new opportunities to expand non-invasive genetic studies of wildlife populations. However, the use of eDNA samples for individual genotyping, as typically performed in non-invasive genetics, still remains elusive. We present successful individual genotyping of eDNA obtained from snow tracks of three large carnivores: brown bear (Ursus arctos), European lynx (Lynx lynx) and wolf (Canis lupus). DNA was extracted using a protocol for isolating water eDNA and genotyped using amplicon sequencing of short tandem repeats (STR), and for brown bear a sex marker, on a high-throughput sequencing platform. Individual genotypes were obtained for all species, but genotyping performance differed among samples and species. The proportion of samples genotyped to individuals was higher for brown bear (5/7) and wolf (7/10) than for lynx (4/9), and locus genotyping success was greater for brown bear (0.88). The sex marker was typed in six out of seven brown bear samples. Results for three species show that reliable individual genotyping, including sex identification, is now possible from eDNA in snow tracks, underlining its vast potential to complement the non-invasive genetic methods used for wildlife. To fully leverage the application of snow track eDNA, improved understanding of the ideal species- and site-specific sampling conditions, as well as laboratory methods promoting genotyping success, is needed. This will also inform efforts to retrieve and type nuclear DNA from other eDNA samples, thereby advancing eDNA-based individual and population-level studies.
Collapse
Affiliation(s)
- Marta De Barba
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- DivjaLabs Ltd., Ljubljana, Slovenia
| | - Molly Baur
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Boyer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, Grenoble, France
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- University Center of Legal Medicine Lausanne and Geneva, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Marjeta Konec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- DivjaLabs Ltd., Ljubljana, Slovenia
| | - Christian Miquel
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, Grenoble, France
| | - Elena Pazhenkova
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nadège Remollino
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Tomaž Skrbinšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- DivjaLabs Ltd., Ljubljana, Slovenia
| | - Céline Stoffel
- Laboratory for Conservation Biology, Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Pierre Taberlet
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, Grenoble, France
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| |
Collapse
|
7
|
Lawal RA, Mathis VL, Barter ME, Charette JR, Garretson A, Dumont BL. Taxonomic assessment of two wild house mouse subspecies using whole-genome sequencing. Sci Rep 2022; 12:20866. [PMID: 36460842 PMCID: PMC9718808 DOI: 10.1038/s41598-022-25420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
The house mouse species complex (Mus musculus) is comprised of three primary subspecies. A large number of secondary subspecies have also been suggested on the basis of divergent morphology and molecular variation at limited numbers of markers. While the phylogenetic relationships among the primary M. musculus subspecies are well-defined, relationships among secondary subspecies and between secondary and primary subspecies remain less clear. Here, we integrate de novo genome sequencing of museum-stored specimens of house mice from one secondary subspecies (M. m. bactrianus) and publicly available genome sequences of house mice previously characterized as M. m. helgolandicus, with whole genome sequences from diverse representatives of the three primary house mouse subspecies. We show that mice assigned to the secondary M. m. bactrianus and M. m. helgolandicus subspecies are not genetically differentiated from M. m. castaneus and M. m. domesticus, respectively. Overall, our work suggests that the M. m. bactrianus and M. m. helgolandicus subspecies are not well-justified taxonomic entities, emphasizing the importance of leveraging whole-genome sequence data to inform subspecies designations. Additionally, our investigation provides tailored experimental procedures for generating whole genome sequences from air-dried mouse skins, along with key genomic resources to inform future genomic studies of wild mouse diversity.
Collapse
Affiliation(s)
| | - Verity L Mathis
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL, 32611, USA
| | - Mary E Barter
- The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, USA
| | | | - Alexis Garretson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
8
|
Wolfenson LI, McCracken GR, Ruzzante DE, Mirol P, Solé-Cava A. Low STR variability in the threatened marsh deer, Blastocerus dichotomus, detected through amplicon sequencing in non-invasive samples. Genet Mol Biol 2022; 45:e20220105. [PMID: 36288451 PMCID: PMC9601240 DOI: 10.1590/1678-4685-gmb-2022-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/24/2022] [Indexed: 11/04/2022] Open
Abstract
Blastocerus dichotomus is the largest deer in South America. We have used 25 microsatellite markers detected and genotyped by Next Generation Sequencing to estimate the genetic variability of B. dichotomus in Argentina, where most of its populations are threatened. Primer design was based on the sequence of a shallow partial genome (15,967,456 reads; 16.66% genome coverage, mean depth 1.64) of a single individual. From the thousands of microsatellite loci found, even under high stringency selection, we chose and tested a set of 80 markers on 30 DNA samples extracted from tissue and feces from three Argentinean populations. Heterozygosity levels were low across all loci in all populations (H=0.31 to 0.40). Amplicon sequencing is a fast, easy, and affordable technique that can be very useful for the characterization of microsatellite marker sets for the conservation genetics of non-model organisms. This work is also one of the first ones to use amplicon sequencing in non-invasive samples and represents an important development for the study of threatened species.
Collapse
Affiliation(s)
- Laura Irene Wolfenson
- Museo Argentino de Ciencias Naturales, “Bernardino Rivadavia”, División de Mastozoología, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Daniel E. Ruzzante
- Dalhousie University, Department of Biology, Halifax, Nova Scotia, Canada
| | - Patricia Mirol
- Museo Argentino de Ciencias Naturales, “Bernardino Rivadavia”, División de Mastozoología, Ciudad Autónoma de Buenos Aires, Argentina
| | - Antonio Solé-Cava
- Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Genetica, Centro Nacional para a Identificação Molecular do Pescado (CENIMP), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Burgess BT, Irvine RL, Russello MA. A genotyping-in-thousands by sequencing panel to inform invasive deer management using noninvasive fecal and hair samples. Ecol Evol 2022; 12:e8993. [PMID: 35784067 PMCID: PMC9185734 DOI: 10.1002/ece3.8993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Studies in ecology, evolution, and conservation often rely on noninvasive samples, making it challenging to generate large amounts of high-quality genetic data for many elusive and at-risk species. We developed and optimized a Genotyping-in-Thousands by sequencing (GT-seq) panel using noninvasive samples to inform the management of invasive Sitka black-tailed deer (Odocoileus hemionus sitkensis) in Haida Gwaii (Canada). We validated our panel using paired high-quality tissue and noninvasive fecal and hair samples to simultaneously distinguish individuals, identify sex, and reconstruct kinship among deer sampled across the archipelago, then provided a proof-of-concept application using field-collected feces on SGang Gwaay, an island of high ecological and cultural value. Genotyping success across 244 loci was high (90.3%) and comparable to that of high-quality tissue samples genotyped using restriction-site associated DNA sequencing (92.4%), while genotyping discordance between paired high-quality tissue and noninvasive samples was low (0.50%). The panel will be used to inform future invasive species operations in Haida Gwaii by providing individual and population information to inform management. More broadly, our GT-seq workflow that includes quality control analyses for targeted SNP selection and a modified protocol may be of wider utility for other studies and systems where noninvasive genetic sampling is employed.
Collapse
Affiliation(s)
- Brock T. Burgess
- Department of BiologyThe University of British ColumbiaKelownaCanada
| | - Robyn L. Irvine
- Ecosystem Conservation TeamProtected Areas Establishment and Conservation DirectorateParks Canada AgencyGatineauCanada
| | | |
Collapse
|
10
|
Targeted genome-wide SNP genotyping in feral horses using non-invasive fecal swabs. CONSERV GENET RESOUR 2022; 14:203-213. [PMID: 35673611 PMCID: PMC9162989 DOI: 10.1007/s12686-022-01259-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
The development of high-throughput sequencing has prompted a transition in wildlife genetics from using microsatellites toward sets of single nucleotide polymorphisms (SNPs). However, genotyping large numbers of targeted SNPs using non-invasive samples remains challenging due to relatively large DNA input requirements. Recently, target enrichment has emerged as a promising approach requiring little template DNA. We assessed the efficacy of Tecan Genomics’ Allegro Targeted Genotyping (ATG) for generating genome-wide SNP data in feral horses using DNA isolated from fecal swabs. Total and host-specific DNA were quantified for 989 samples collected as part of a long-term individual-based study of feral horses on Sable Island, Nova Scotia, Canada, using dsDNA fluorescence and a host-specific qPCR assay, respectively. Forty-eight samples representing 44 individuals containing at least 10 ng of host DNA (ATG’s recommended minimum input) were genotyped using a custom multiplex panel targeting 279 SNPs. Genotyping accuracy and consistency were assessed by contrasting ATG genotypes with those obtained from the same individuals with SNP microarrays, and from multiple samples from the same horse, respectively. 62% of swabs yielded the minimum recommended amount of host DNA for ATG. Ignoring samples that failed to amplify, ATG recovered an average of 88.8% targeted sites per sample, while genotype concordance between ATG and SNP microarrays was 98.5%. The repeatability of genotypes from the same individual approached unity with an average of 99.9%. This study demonstrates the suitability of ATG for genome-wide, non-invasive targeted SNP genotyping, and will facilitate further ecological and conservation genetics research in equids and related species.
Collapse
|
11
|
Aase K, Jensen H, Muff S. Genomic estimation of quantitative genetic parameters in wild admixed populations. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kenneth Aase
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Stefanie Muff
- Centre for Biodiversity Dynamics, Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Department of Mathematical Sciences, Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
12
|
Setzke C, Wong C, Russello MA. Genotyping-in-Thousands by sequencing of archival fish scales reveals maintenance of genetic variation following a severe demographic contraction in kokanee salmon. Sci Rep 2021; 11:22798. [PMID: 34815428 PMCID: PMC8611073 DOI: 10.1038/s41598-021-01958-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Historical DNA analysis of archival samples has added new dimensions to population genetic studies, enabling spatiotemporal approaches for reconstructing population history and informing conservation management. Here we tested the efficacy of Genotyping-in-Thousands by sequencing (GT-seq) for collecting targeted single nucleotide polymorphism genotypic data from archival scale samples, and applied this approach to a study of kokanee salmon (Oncorhynchus nerka) in Kluane National Park and Reserve (KNPR; Yukon, Canada) that underwent a severe 12-year population decline followed by a rapid rebound. We genotyped archival scales sampled pre-crash and contemporary fin clips collected post-crash, revealing high coverage (> 90% average genotyping across all individuals) and low genotyping error (< 0.01% within-libraries, 0.60% among-libraries) despite the relatively poor quality of recovered DNA. We observed slight decreases in expected heterozygosity, allelic diversity, and effective population size post-crash, but none were significant, suggesting genetic diversity was retained despite the severe demographic contraction. Genotypic data also revealed the genetic distinctiveness of a now extirpated population just outside of KNPR, revealing biodiversity loss at the northern edge of the species distribution. More broadly, we demonstrated GT-seq as a valuable tool for collecting genome-wide data from archival samples to address basic questions in ecology and evolution, and inform applied research in wildlife conservation and fisheries management.
Collapse
Affiliation(s)
- Christopher Setzke
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Carmen Wong
- Parks Canada Yukon Field Unit, Suite 205 - 300 Main St, Whitehorse, YT, Y1A 2B5, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
13
|
Burgess BT, Irvine RL, Howald GR, Russello MA. The Promise of Genetics and Genomics for Improving Invasive Mammal Management on Islands. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Invasive species are major contributors to global biodiversity decline. Invasive mammalian species (IMS), in particular, have profound negative effects in island systems that contain disproportionally high levels of species richness and endemism. The eradication and control of IMS have become important conservation tools for managing species invasions on islands, yet these management operations are often subject to failure due to knowledge gaps surrounding species- and system-specific characteristics, including invasion pathways and contemporary migration patterns. Here, we synthesize the literature on ways in which genetic and genomic tools have effectively informed IMS management on islands, specifically associated with the development and modification of biosecurity protocols, and the design and implementation of eradication and control programs. In spite of their demonstrated utility, we then explore the challenges that are preventing genetics and genomics from being implemented more frequently in IMS management operations from both academic and non-academic perspectives, and suggest possible solutions for breaking down these barriers. Finally, we discuss the potential application of genome editing to the future management of invasive species on islands, including the current state of the field and why islands may be effective targets for this emerging technology.
Collapse
|
14
|
Barbosa S, Andrews KR, Goldberg AR, Gour DS, Hohenlohe PA, Conway CJ, Waits LP. The role of neutral and adaptive genomic variation in population diversification and speciation in two ground squirrel species of conservation concern. Mol Ecol 2021; 30:4673-4694. [PMID: 34324748 DOI: 10.1111/mec.16096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Understanding the neutral (demographic) and adaptive processes leading to the differentiation of species and populations is a critical component of evolutionary and conservation biology. In this context, recently diverged taxa represent a unique opportunity to study the process of genetic differentiation. Northern and southern Idaho ground squirrels (Urocitellus brunneus - NIDGS, and U. endemicus - SIDGS, respectively) are a recently diverged pair of sister species that have undergone dramatic declines in the last 50 years and are currently found in metapopulations across restricted spatial areas with distinct environmental pressures. Here we genotyped single-nucleotide polymorphisms (SNPs) from buccal swabs with restriction site-associated DNA sequencing (RADseq). With these data we evaluated neutral genetic structure at both theinter- and intraspecific level, and identified putatively adaptive SNPs using population structure outlier detection and genotype-environment association (GEA) analyses. At the interspecific level, we detected a clear separation between NIDGS and SIDGS, and evidence for adaptive differentiation putatively linked to torpor patterns. At the intraspecific level, we found evidence of both neutral and adaptive differentiation. For NIDGS, elevation appears to be the main driver of adaptive differentiation, while neutral variation patterns match and expand information on the low connectivity between some populations identified in previous studies using microsatellite markers. For SIDGS, neutral substructure generally reflected natural geographic barriers, while adaptive variation reflected differences in land cover and temperature, as well as elevation. These results clearly highlight the roles of neutral and adaptive processes for understanding the complexity of the processes leading to species and population differentiation, which can have important conservation implications in susceptible and threatened species.
Collapse
Affiliation(s)
- Soraia Barbosa
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Kimberly R Andrews
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA
| | - Amanda R Goldberg
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Digpal S Gour
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Paul A Hohenlohe
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA.,Department of Biological Sciences, College of Science, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-3051, USA
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish & Wildlife Research Unit, Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844-1141, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| |
Collapse
|
15
|
Yuan SC, Malekos E, Hawkins MTR. Assessing genotyping errors in mammalian museum study skins using high-throughput genotyping-by-sequencing. CONSERV GENET RESOUR 2021. [DOI: 10.1007/s12686-021-01213-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe use of museum specimens held in natural history repositories for population and conservation genetic research is increasing in tandem with the use of massively parallel sequencing technologies. Short Tandem Repeats (STRs), or microsatellite loci, are commonly used genetic markers in wildlife and population genetic studies. However, they traditionally suffered from a host of issues including length homoplasy, high costs, low throughput, and difficulties in reproducibility across laboratories. Massively parallel sequencing technologies can address these problems, but the incorporation of museum specimen derived DNA suffers from significant fragmentation and exogenous DNA contamination. Combatting these issues requires extra measures of stringency in the lab and during data analysis, yet there have not been any high-throughput sequencing studies evaluating microsatellite allelic dropout from museum specimen extracted DNA. In this study, we evaluate genotyping errors derived from mammalian museum skin DNA extracts for previously characterized microsatellites across PCR replicates utilizing high-throughput sequencing. We found it useful to classify samples based on DNA concentration, which determined the rate by which genotypes were accurately recovered. Longer microsatellites performed worse in all museum specimens. Allelic dropout rates across loci were dependent on sample quantity, with high concentration museum specimens performing as well and recovering quality metrics nearly as high as the frozen tissue sample. Based on our results, we provide a set of best practices for quality assurance and incorporation of reliable genotypes from museum specimens.
Collapse
|
16
|
Andrews KR, Epstein B, Leslie MS, Fiedler P, Morin PA, Hoelzel AR. Genomic signatures of divergent selection are associated with social behaviour for spinner dolphin ecotypes. Mol Ecol 2021; 30:1993-2008. [PMID: 33645853 DOI: 10.1111/mec.15865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/16/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Understanding the genomic basis of adaptation is critical for understanding evolutionary processes and predicting how species will respond to environmental change. Spinner dolphins in the eastern tropical Pacific (ETP) present a unique system for studying adaptation. Within this large geographical region are four spinner dolphin ecotypes with weak neutral genetic divergence and no obvious barriers to gene flow, but strong spatial variation in morphology, behaviour and habitat. These ecotypes have large population sizes, which could reduce the effects of drift and facilitate selection. To identify genomic regions putatively under divergent selective pressures between ecotypes, we used genome scans with 8994 RADseq single nucleotide polymorphisms (SNPs) to identify population differentiation outliers and genotype-environment association outliers. Gene ontology enrichment analyses indicated that outlier SNPs from both types of analyses were associated with multiple genes involved in social behaviour and hippocampus development, including 15 genes associated with the human social disorder autism. Evidence for divergent selection on social behaviour is supported by previous evidence that these spinner dolphin ecotypes differ in mating systems and associated social behaviours. In particular, three of the ETP ecotypes probably have a polygynous mating system characterized by strong premating competition among males, whereas the fourth ecotype probably has a polygynandrous mating system characterized by strong postmating competition such as sperm competition. Our results provide evidence that selection for social behaviour may be an evolutionary force driving diversification of spinner dolphins in the ETP, potentially as a result of divergent sexual selection associated with different mating systems. Future studies should further investigate the potential adaptive role of the candidate genes identified here, and could probably find further signatures of selection using whole genome sequence data.
Collapse
Affiliation(s)
- Kimberly R Andrews
- School of Biosciences, Durham University, Durham, UK.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, USA
| | - Brendan Epstein
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | - Paul Fiedler
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - A Rus Hoelzel
- School of Biosciences, Durham University, Durham, UK
| |
Collapse
|
17
|
Factors influencing genotyping success and genotyping error rate of Eurasian otter (Lutra lutra) faeces collected in temperate Central Europe. EUR J WILDLIFE RES 2020. [DOI: 10.1007/s10344-020-01444-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe use of non-invasively collected DNA source material for genetic and genomic applications is usually characterized by low target DNA concentration and quality, genotyping errors and cost-intensive lab procedures. However, for otters (Lutrinae) as elusive species of conservation concern, genetic non-invasive sampling has become an important tool to study their ecology and demography. To increase cost-efficiency of monitoring programmes and to promote the expansion of genomic approaches to non-invasive samples, we aimed to refine sample collection and preparation. Therefore, we examined the effects of intrinsic sample characteristics (including diet), environmental conditions in the field and sample treatment in the molecular laboratory on the success of genotyping and allelic dropout (ADO) rates using microsatellite markers in 1970 fresh Eurasian otter (Lutra lutra) scats. Using fresh samples only, we probably eliminated one of the most important impediments of genotyping DNA from otter faecal samples beforehand. But, we observed higher genotyping success and lower ADO rates for anal glad secretions and faecal samples containing high proportions of mucus. Moist conditions during sample collection may promote DNA degradation and PCR inhibition, leading to decreased genotyping success rates. ADO was further affected by the type of extraction kit. However, a high proportion of variance remaining unexplained by our models implied that additional parameters were acting (amount of PCR inhibitors, non-uniform distribution of intestinal cells, efficiency of PCRs, specific microclimate at marking sites). We summarized influential factors maximizing genotyping quality of otter scats and give recommendations for sample collection, storage and DNA extraction based on our results and current literature.
Collapse
|