1
|
Li Y, Li X, Cournoyer P, Choudhuri S, Guo L, Chen S. Comparing the cannabidiol-induced transcriptomic profiles in human and mouse Sertoli cells. Toxicology 2025:154068. [PMID: 39894194 DOI: 10.1016/j.tox.2025.154068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Cannabidiol (CBD), a major cannabinoid found in Cannabis sativa L., has been used in the treatment of seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex. Recently, concerns have been raised regarding the male reproductive toxicity of CBD in animal models, such as monkeys, rats, and mice. In our previous studies, we reported that CBD inhibited cell proliferation in both primary human Sertoli cells and mouse Sertoli TM4 cells. Transcriptomic analysis revealed that in primary human Sertoli cells CBD disrupted DNA replication, cell cycle, and DNA repair, ultimately causing cellular senescence. In this study, we further investigated the molecular changes induced by CBD in mouse Sertoli TM4 cells using RNA-sequencing analyses and compared the transcriptomic profile with that of primary human Sertoli cells. Our findings demonstrated that, unlike in primary human Sertoli cells, CBD did not induce cellular senescence but caused apoptosis in mouse Sertoli TM4 cells. Through transcriptomic data analysis in mouse Sertoli TM4 cells, immune and cellular stress responses were identified. Moreover, transcriptomic comparisons revealed major differences in molecular changes induced by CBD between mouse Sertoli TM4 and primary human Sertoli cells. This suggests that primary human Sertoli cells and mouse Sertoli cells may respond differently to CBD.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Patrick Cournoyer
- Office of the Commissioner, U S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Supratim Choudhuri
- Division of Food Ingredients, Office of Premarket Additive Safety, Office of Food Chemical Safety, Dietary Supplements, and Innovation, Human Foods Program, U S. Food and Drug Administration, College Park, MD 20740, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
2
|
Al-Husinat L, Obeidat S, Azzam S, Al-Gwairy Y, Obeidat F, Al Sharie S, Haddad D, Haddad F, Rekatsina M, Leoni MLG, Varrassi G. Role of Cannabis in the Management of Chronic Non-Cancer Pain: A Narrative Review. Clin Pract 2025; 15:16. [PMID: 39851799 PMCID: PMC11764316 DOI: 10.3390/clinpract15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic non-cancer pain, defined by the Center for Disease Control and Prevention (CDC) as lasting beyond three months, significantly affects individuals' quality of life and is often linked to various medical conditions or injuries. Its management is complex. Cannabis, containing the key compounds Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), has garnered interest for its potential in pain management, though it remains controversial due to its psychoactive effects and illegal status in many countries. THC provides pain relief by blocking nociceptive stimuli but has psychoactive effects and may potentially induce dependency. CBD has calming and antipsychotic properties. The inhalation of cannabis offers quick relief but poses respiratory risks, while its oral administrations are safer but act more slowly. Short-term cannabis use can impair cognition and motor skills, while long-term use may lead to dependency and cognitive decline, especially if used from an early age. Adverse effects vary by gender and prior use, with addiction mainly linked to THC and influenced by genetics. Despite these risks, patients often report more benefits, such as improved quality of life and reduced opioid use, although the evidence remains inconclusive. The legal landscape for medical cannabis varies globally, with some positive public health outcomes like reduced opioid-related issues in areas where it is legalized. Cannabis shows promise in managing chronic pain, but its psychoactive effects and dependency risks necessitate cautious use. Future research should prioritize long-term clinical trials to establish optimal dosing, efficacy, and safety, aiding in the development of informed guidelines for safe cannabis use in chronic pain management. This review examines the use of cannabis in managing chronic non-cancer pain, focusing on its benefits, drawbacks, mechanisms, delivery methods, and impact on quality of life.
Collapse
Affiliation(s)
- Lou’i Al-Husinat
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Shrouq Obeidat
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Saif Azzam
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Yara Al-Gwairy
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Fatima Obeidat
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Sarah Al Sharie
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan
| | - Deema Haddad
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Fadi Haddad
- Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (S.O.); (S.A.); (Y.A.-G.); (F.O.); (F.H.)
| | - Martina Rekatsina
- Department of Anesthesia, University of Athens, 11528 Athens, Greece;
| | - Matteo Luigi Giuseppe Leoni
- Department of Medical and Surgical Sciences and Translational Medicine, “La Sapienza” University of Rome, 00100 Rome, Italy;
| | | |
Collapse
|
3
|
Kleine-Brueggeney M, Huber M, Theiler L, Priemer F, Greif R. Quantification and time course of subjective psychotropic and somatic effects of tetrahydrocannabinol - a prospective, single-blind, placebo-controlled exploratory trial in healthy volunteers. BMC Psychiatry 2024; 24:902. [PMID: 39696071 DOI: 10.1186/s12888-024-06338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cannabis is increasingly used and debates about the legalisation of the recreational use of cannabis are ongoing. In this prospective, placebo-controlled study in healthy volunteers not regularly consuming cannabis, subjective psychotropic and somatic effects after a single dose of intravenous THC were assessed and quantified over 48 h. METHODS Twenty-five healthy volunteers received a single IV bolus of THC and 6 received normal saline. Psychotropic and somatic effects of THC were assessed by two questionnaires that were completed at up to 14 timepoints from shortly before drug administration to 48 h later. RESULTS Demographic data did not differ between groups. Differences between THC and placebo for all assessed effects, except for euphoria, irritation and headache, were clearly discernible. Subdimensions related to positive mood were less and those related to negative mood were more pronounced in the THC group. Peak plasma concentrations were observed at 1 to 5 min after THC administration while peak effects occurred between 45 and 60 min. Differences between THC and placebo were pronounced and seen for up to 90 to 120 min for most effects, except for "sleepiness" and "deactivation", where the effect of THC was discernible for up to 5 h. At 24 and 48 h, there were no statistically significant difference between THC and placebo group. CONCLUSIONS THC triggers a large range of psychotropic and somatic effects with peak effects at 45 to 60 min after IV administration of THC, much later than plasma peak levels. Most effects are short-lasting with a duration of up to 2 h, but some effects like sleepiness and deactivation can be longer-lasting and persist for 5 h or longer in cannabis-naïve or cannabis-abstinent individuals. Since effects of THC demonstrate a time course that differs from the time course of plasma concentrations it might be important to base the judgment of a possible impairment related to THC consumption on clinical or behavioral tests in addition to THC plasma levels. TRIAL REGISTRATION www.isrctn.com ; registration number ISRCTN53019164.
Collapse
Affiliation(s)
- Maren Kleine-Brueggeney
- Deutsches Herzzentrum der Charité (DHZC), Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Huber
- Statistician, Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Lorenz Theiler
- Department of Anaesthesiology Cantonal Hospital Aarau, Aarau, Switzerland.
| | - Fritz Priemer
- DRES. PRIEMER, Office of Medical Experts, Wonneberg, Germany
| | - Robert Greif
- University of Bern, Bern, Switzerland
- Department of Surgical Science, University of Torino, Torino, Italy
| |
Collapse
|
4
|
Simei JLQ, Souza JDR, Pedrazzi JF, Guimarães FS, Campos AC, Zuardi A, Hallak JEC, Crippa JAS. Research and Clinical Practice Involving the Use of Cannabis Products, with Emphasis on Cannabidiol: A Narrative Review. Pharmaceuticals (Basel) 2024; 17:1644. [PMID: 39770486 PMCID: PMC11677192 DOI: 10.3390/ph17121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Emerging evidence supports cannabidiol (CBD) as a promising therapeutic compound for various health conditions, despite its approval as a medication (product for medical purposes) remaining restricted to a limited range of clinical indications. Simultaneously, the regulation of cannabis-derived products for medicinal and recreational use has expanded their global market availability to meet local community demands. This scenario presents a complex challenge for clinicians, researchers, and industry, as the global appeal of therapeutic uses of CBD is growing more rapidly than the scientific evidence supporting its safety and effectiveness. OUTCOMES A narrative review was conducted to discuss the best evidence regarding the pharmacological profile of CBD, its efficacy, and safety within the context of regulation and perspectives on the development of new cannabinoid-based drugs. Key articles addressing the various facets of this issue were selected for comprehensive analysis. CONCLUSIONS Clinicians and researchers may face unique challenges in understanding the pharmacological profile of CBD and the prospects for developing its clinical indications, given the heterogeneity of clinical terminologies and the quality and composition of cannabis-based medical products available on the market. More basic and clinical research that complies with regulatory agencies' testing guidelines, such as good manufacturing practices (GMPs), good laboratory practices (GLPs), and good clinical practices (GCPs), is needed to obtain approval for CBD or any other cannabinoid as a therapeutic for broader clinical indications.
Collapse
Affiliation(s)
- João Luís Q. Simei
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
| | - José Diogo R. Souza
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
| | - João Francisco Pedrazzi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
| | - Francisco S. Guimarães
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto 14049-900, São Paulo, Brazil;
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil;
| | - Alline Cristina Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil;
| | - Antônio Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto 14049-900, São Paulo, Brazil;
| | - Jaime Eduardo C. Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto 14049-900, São Paulo, Brazil;
| | - José Alexandre S. Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (J.L.Q.S.); (J.D.R.S.); (J.F.P.); (A.Z.); (J.E.C.H.)
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto 14049-900, São Paulo, Brazil;
| |
Collapse
|
5
|
McFee RB. Cannabinoid Hyperemesis Syndrome (CHS) - An emerging gastrointestinal disorder and clinical challenge. Dis Mon 2024; 70:101832. [PMID: 39632124 DOI: 10.1016/j.disamonth.2024.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nausea and vomiting are not uncommon symptoms resulting in emergency department (ED) or primary care visits. One of the emerging etiologies - Cannabinoid Hyperemesis Syndrome (CHS) remains significantly under-diagnosed, often resulting in unnecessary repeat ED visits and testing. This is in part due to lack of experience with and knowledge about CHS by health care professionals. Characterized by cyclic vomiting, often severe and intractable, it is frequently associated with a form of self-treatment; the compulsive need to take hot showers, and in the context of chronic cannabis use. With increased legalization and resultant accessibility to cannabis containing products, the risk of adverse events is significantly rising. Lack of clinical familiarity with the range of potential deleterious physical and mental health effects associated with cannabis leads to delays in appropriate diagnosis and effective treatment of CHS. Moreover, commonly utilized anti-emetics, such as ondansetron, and similar 5 HT drugs may not fully attenuate symptoms of CHS, and other interventions may be necessary; ultimately abstinence being the most effective long term clinical preventive approach. The objective of this review article is to assist the clinician in identifying the specific clinical characteristics of CHS, distinguishing it from other causes of CVS or nausea and vomiting, to facilitate more rapid, effective interventions. Collaboration with substance use professionals should also be considered during CHS treatment.
Collapse
Affiliation(s)
- R B McFee
- Director, Ellis Medical Toxicology Consulting, USA.
| |
Collapse
|
6
|
Aroni S, Sagheddu C, Pistis M, Muntoni AL. Functional Adaptation in the Brain Habenulo-Mesencephalic Pathway During Cannabinoid Withdrawal. Cells 2024; 13:1809. [PMID: 39513916 PMCID: PMC11545051 DOI: 10.3390/cells13211809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The mesolimbic reward system originating from dopamine neurons in the ventral tegmental area (VTA) of the midbrain shows a profound reduction in function during cannabinoid withdrawal. This condition may underlie aversive states that lead to compulsive drug seeking and relapse. The lateral habenula (LHb) exerts negative control over the VTA via the GABA rostromedial tegmental nucleus (RMTg), representing a potential convergence point for drug-induced opponent processes. We hypothesized that the LHb-RMTg pathway might be causally involved in the hypodopaminergic state during cannabinoid withdrawal. To induce Δ9-tetrahydrocannabinol (THC) dependence, adult male Sprague-Dawley rats were treated with THC (15 mg/kg, i.p.) twice daily for 6.5-7 days. Administration of the cannabinoid antagonist rimonabant (5 mg/kg, i.p.) precipitated a robust behavioral withdrawal syndrome, while abrupt THC suspension caused milder signs of abstinence. Extracellular single unit recordings confirmed a marked decrease in the discharge frequency and burst firing of VTA dopamine neurons during THC withdrawal. The duration of RMTg-evoked inhibition was longer in THC withdrawn rats. Additionally, the spontaneous activity of RMTg neurons and of LHb neurons was strongly depressed during cannabinoid withdrawal. These findings support the hypothesis that functional changes in the habenulo-mesencephalic circuit are implicated in the mechanisms underlying substance use disorders.
Collapse
Affiliation(s)
- Sonia Aroni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, I-09042 Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, I-09123 Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, I-09042 Cagliari, Italy
| |
Collapse
|
7
|
Yabut KCB, Winnie Wen Y, Simon KT, Isoherranen N. CYP2C9, CYP3A and CYP2C19 metabolize Δ9-tetrahydrocannabinol to multiple metabolites but metabolism is affected by human liver fatty acid binding protein (FABP1). Biochem Pharmacol 2024; 228:116191. [PMID: 38583809 PMCID: PMC11410521 DOI: 10.1016/j.bcp.2024.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Δ9-tetrahydrocannabinol (THC) is the psychoactive constituent of cannabis. It is cleared predominantly via metabolism. Metabolism to 11-OH-THC by cytochrome P450 (CYP) 2C9 has been proposed as the main clearance pathway of THC, with the estimated fraction metabolized (fm) about 70%. The remaining clearance pathways are not well established, and it is unknown how THC is eliminated in individuals with reduced CYP2C9 activity. The goal of this study was to systematically identify the CYP enzymes contributing to THC clearance and characterize the metabolites formed. Further, this study aimed to characterize the impact of liver fatty acid binding protein (FABP1) on THC metabolism by human CYPs. THC was metabolized to at least four different metabolites including 11-OH-THC in human liver microsomes (HLMs) and with recombinant CYPs. 11-OH-THC was formed by recombinant CYP2C9 (Km,u = 0.77 nM, kcat = 12 min-1) and by recombinant CYP2C19 (Km,u = 2.2 nM, kcat = 14 min-1). The other three major metabolites were likely hydroxylations in the cyclohexenyl ring and were formed mainly by recombinant CYP3A4/5 (Km,u > 10 nM). HLM experiments confirmed the contributions of CYP2C9, CYP2C19 and CYP3A to THC metabolism. The presence of FABP1 and THC binding to FABP1 altered THC metabolism by recombinant CYPs and HLMs in an enzyme and metabolite specific manner. This suggests that FABP1 may interact with CYP enzymes and alter the fm by CYPs towards THC metabolism. In conclusion, this study is the first to systematically establish the metabolic profile of THC by human CYPs and characterize how FABP1 binding alters CYP mediated THC metabolism.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA United States
| | - Yue Winnie Wen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA United States
| | - Keiann T Simon
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA United States
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA United States.
| |
Collapse
|
8
|
Singh H, Wiscovitch-Russo R, Kuelbs C, Espinoza J, Appel AE, Lyons RJ, Vashee S, Förtsch HE, Foster JE, Ramdath D, Hayes VM, Nelson KE, Gonzalez-Juarbe N. Multiomic Insights into Human Health: Gut Microbiomes of Hunter-Gatherer, Agropastoral, and Western Urban Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611095. [PMID: 39282340 PMCID: PMC11398329 DOI: 10.1101/2024.09.03.611095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Societies with exposure to preindustrial diets exhibit improved markers of health. Our study used a comprehensive multi-omic approach to reveal that the gut microbiome of the Ju/'hoansi hunter-gatherers, one of the most remote KhoeSan groups, exhibit a higher diversity and richness, with an abundance of microbial species lost in the western population. The Ju/'hoansi microbiome showed enhanced global transcription and enrichment of complex carbohydrate metabolic and energy generation pathways. The Ju/'hoansi also show high abundance of short-chain fatty acids that are associated with health and optimal immune function. In contrast, these pathways and their respective species were found in low abundance or completely absent in Western populations. Amino acid and fatty acid metabolism pathways were observed prevalent in the Western population, associated with biomarkers of chronic inflammation. Our study provides the first in-depth multi-omic characterization of the Ju/'hoansi microbiome, revealing uncharacterized species and functional pathways that are associated with health.
Collapse
Affiliation(s)
- Harinder Singh
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Rosana Wiscovitch-Russo
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Claire Kuelbs
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Josh Espinoza
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Amanda E. Appel
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Ruth J. Lyons
- Garvan Institute of Medical Research, New South Wales, Australia
| | - Sanjay Vashee
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Synthetic Biology Group, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Jerome E. Foster
- Faculty of Medical Sciences, University of the West Indies, Trinidad
| | - Dan Ramdath
- Faculty of Medical Sciences, University of the West Indies, Trinidad
| | - Vanessa M. Hayes
- Garvan Institute of Medical Research, New South Wales, Australia
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Karen E. Nelson
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases Group, J. Craig Venter Institute, Rockville, MD, USA
- Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| |
Collapse
|
9
|
Murray CH, Gannon BM, Winsauer PJ, Cooper ZD, Delatte MS. The Development of Cannabinoids as Therapeutic Agents in the United States. Pharmacol Rev 2024; 76:915-955. [PMID: 38849155 PMCID: PMC11331953 DOI: 10.1124/pharmrev.123.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Cannabis is one of the oldest and widely used substances in the world. Cannabinoids within the cannabis plant, known as phytocannabinoids, mediate cannabis' effects through interactions with the body's endogenous cannabinoid system. This endogenous system, the endocannabinoid system, has important roles in physical and mental health. These roles point to the potential to develop cannabinoids as therapeutic agents while underscoring the risks related to interfering with the endogenous system during nonmedical use. This scoping narrative review synthesizes the current evidence for both the therapeutic and adverse effects of the major (i.e., Δ9-tetrahydrocannabinol and cannabidiol) and lesser studied minor phytocannabinoids, from nonclinical to clinical research. We pay particular attention to the areas where evidence is well established, including analgesic effects after acute exposures and neurocognitive risks after acute and chronic use. In addition, drug development considerations for cannabinoids as therapeutic agents within the United States are reviewed. The proposed clinical study design considerations encourage methodological standards for greater scientific rigor and reproducibility to ultimately extend our knowledge of the risks and benefits of cannabinoids for patients and providers. SIGNIFICANCE STATEMENT: This work provides a review of prior research related to phytocannabinoids, including therapeutic potential and known risks in the context of drug development within the United States. We also provide study design considerations for future cannabinoid drug development.
Collapse
Affiliation(s)
- Conor H Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Brenda M Gannon
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Peter J Winsauer
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Ziva D Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Marcus S Delatte
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| |
Collapse
|
10
|
Maglaviceanu A, Peer M, Rockel J, Bonin RP, Fitzcharles MA, Ladha KS, Bhatia A, Leroux T, Kotra L, Kapoor M, Clarke H. The State of Synthetic Cannabinoid Medications for the Treatment of Pain. CNS Drugs 2024; 38:597-612. [PMID: 38951463 DOI: 10.1007/s40263-024-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/03/2024]
Abstract
Synthetic cannabinoids are compounds made in the laboratory to structurally and functionally mimic phytocannabinoids from the Cannabis sativa L. plant, including delta-9-tetrahydrocannabinol (THC). Synthetic cannabinoids (SCs) can signal via the classical endogenous cannabinoid system (ECS) and the greater endocannabidiome network, highlighting their signalling complexity and far-reaching effects. Dronabinol and nabilone, which mimic THC signalling, have been approved by the Food and Drug Administration (FDA) for treating nausea associated with cancer chemotherapy and/or acquired immunodeficiency syndrome (AIDS). However, there is ongoing interest in these two drugs as potential analgesics for a variety of other clinical conditions, including neuropathic pain, spasticity-related pain, and nociplastic pain syndromes including fibromyalgia, osteoarthritis, and postoperative pain, among others. In this review, we highlight the signalling mechanisms of FDA-approved synthetic cannabinoids, discuss key clinical trials that investigate their analgesic potential, and illustrate challenges faced when bringing synthetic cannabinoids to the clinic.
Collapse
Affiliation(s)
- Anca Maglaviceanu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Miki Peer
- Department of Anesthesia and Pain Management, University Health Network, Sinai Health System, and Women's College Hospital, Toronto, ON, Canada
| | - Jason Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Mary-Ann Fitzcharles
- Department of Rheumatology, McGill University, Montreal, Canada
- Alan Edwards Pain Management Unit, McGill University, Montreal, Canada
| | - Karim S Ladha
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Anuj Bhatia
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, Toronto Western Hospital-University Health Network, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Timothy Leroux
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Lakshmi Kotra
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Hance Clarke
- Krembil Research Institute, University Health Network, Toronto, Canada.
- Department of Anesthesia, St. Michael's Hospital, Toronto, Canada.
- Department of Anaesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Centre for Cannabinoid Therapeutics, University Health Network, Toronto, ON, Canada.
- Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada.
- Transitional Pain Service, Pain Research Unit, Department of Anaesthesia and Pain Management, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
11
|
Peng H, Shahidi F. Metabolic, toxicological, chemical, and commercial perspectives on esterification of dietary polyphenols: a review. Crit Rev Food Sci Nutr 2024; 64:7465-7504. [PMID: 36908213 DOI: 10.1080/10408398.2023.2185589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Molecular modifications have been practiced for more than a century and nowadays they are widely applied in food, pharmaceutical, or other industries to manipulate the physicochemical, bioactivity, metabolic/catabolic, and pharmacokinetic properties. Among various structural modifications, the esterification/O-acylation has been well-established in altering lipophilicity and bioactivity of parent bioactive compounds, especially natural polyphenolics, while maintaining their high biocompatibility. Meanwhile, various classic chemical and enzymatic protocols and other recently emerged cell factory technology are being employed as viable esterification strategies. In this contribution, the main motivations of phenolic esterification, including the tendency to replace synthetic alkyl phenolics with safer alternatives in the food industry to improve the bioavailability of phenolics as dietary supplements/pharmaceuticals, are discussed. In addition, the toxicity, metabolism, and commercial application of synthetic and natural phenolics are briefly introduced. Under these contexts, the mechanisms and reaction features of several most prevalent chemical and enzymatic esterification pathways are demonstrated. In addition, insights into the studies of esterification modification of natural phenolic compounds and specific pros/cons of various reaction systems with regard to their practical application are provided.
Collapse
Affiliation(s)
- Han Peng
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
12
|
Powlowski P, Matheson J, Le Foll B, Andreazza AC, Ross RA. Acute Cannabis Administration Transiently Reduces Mitochondrial DNA in Young Adults: Findings from a Secondary Analysis of a Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Cannabis Cannabinoid Res 2024. [PMID: 38923954 DOI: 10.1089/can.2023.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Background: Cannabis is one of the world's most commonly used substances; however, many questions remain unanswered as to how cannabis impacts the body. Recently, there has been a resurgence of research into the effects of plant-derived cannabinoids on mitochondrial health. In particular, a number of studies implicate mitochondrial-Δ9-tetrahydrocannabinol (Δ9-THC) interactions with altered memory, metabolism, and catalepsy in mice. Although the research in this field is expanding rapidly, there is little known about the effects of cannabis on mitochondria health in human subjects either in acute or chronic term use. Methods: Blood samples were obtained from a double-blind, placebo-controlled, parallel-group randomized clinical trial in which adults who regularly use cannabis (1-4 days/week) aged 19-25 years were randomized 2:1 to receive either an active (12.5% Δ9-THC) cigarette or placebo (<0.01% Δ9-THC) cigarette containing 750 mg of cannabis before driving simulator testing. DNA was extracted from whole blood using commercial spin columns, followed by measurement of mt-ND1, mt-ND4, and β2M using quantitative polymerase chain reaction. One-way repeated measures analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test was used to observe changes in mitochondrial DNA (mtDNA) copy number over time. A two-tailed Pearsons R test was used to assess correlations between mtDNA copy number and cannabinoid levels (Δ9-THC and metabolites) in blood. Results: We found that exposure to active cannabis containing Δ9-THC, as opposed to placebo, was associated with an acute reduction in mitochondrial DNA copy number in whole blood at 15 min and 1 h after smoking. The observed decrease in mtDNA copy number negatively correlated with blood concentrations of 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), the two primary metabolites of Δ9-THC, but not Δ9-THC itself. Further, the negative correlation between 11-OH THC and THC-COOH concentrations and mtDNA copy number was found in only a subgroup of participants who use cannabis infrequently, suggesting a tolerance effect. Conclusions: These results illuminate mitochondrial alterations attributed to Δ9-THC consumption, which may be mediated by metabolites. These results appear to suggest stronger effects in individuals who consume cannabis less frequently, suggesting some form of tolerance to the effects of Δ9-THC and its metabolites on mtDNA content in whole blood. Keywords: Mitochondria; mtDNA; cannabis; THC; THC metabolites; blood; THC-COOH; 11-OH-THC.
Collapse
Affiliation(s)
- Pavel Powlowski
- Department of Pharmacology & Toxicology, Medical Sciences Building, University of Toronto, Toronto, Canada
| | - Justin Matheson
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Canada
| | - Ana C Andreazza
- Department of Pharmacology & Toxicology, Medical Sciences Building, University of Toronto, Toronto, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, Medical Sciences Building, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Vanderziel A, Maslovich MM, Alshaarawy O. A feasibility study to assess the recruitment and retention of pregnant patients who regularly use cannabis. BMC Res Notes 2024; 17:177. [PMID: 38918795 PMCID: PMC11197186 DOI: 10.1186/s13104-024-06826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE To assess first-trimester recruitment and retention of pregnant patients who regularly used cannabis, but not other substances, measured by willingness to participate in a research study, completion of self-administered electronic questionnaires, and willingness to provide urine samples during each trimester of pregnancy. We designed and launched a prospective feasibility study titled, Cannabis Legalization in Michigan (CALM) - Maternal & Infant Health (MIH), in two Michigan clinics after the recreational use of cannabis became legal for adults 21 years and older. RESULTS Over half (52%) of patients asked to participate in CALM-MIH were consented to the study. Two-thirds (66%) of screened patients initiated prenatal care during their first trimester of pregnancy and 50% used cannabis, of which the majority did not concurrently use other substances. Of those recruited into the prospective study, all participants completed the first-trimester questionnaire and provided urine samples. Study retention was 80% and all participants who completed follow-up assessments were willing to provide urine samples.
Collapse
Affiliation(s)
- Alyssa Vanderziel
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Epidemiology & Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Center for Health Policy & Health Services Research, Henry Ford Health, Detroit, MI, USA
| | - Mark M Maslovich
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Omayma Alshaarawy
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
14
|
Echeverria-Villalobos M, Guevara Y, Mitchell J, Ryskamp D, Conner J, Bush M, Periel L, Uribe A, Weaver TE. Potential perioperative cardiovascular outcomes in cannabis/cannabinoid users. A call for caution. Front Cardiovasc Med 2024; 11:1343549. [PMID: 38978789 PMCID: PMC11228818 DOI: 10.3389/fcvm.2024.1343549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 07/10/2024] Open
Abstract
Background Cannabis is one of the most widely used psychoactive substances. Its components act through several pathways, producing a myriad of side effects, of which cardiovascular events are the most life-threatening. However, only a limited number of studies address cannabis's perioperative impact on patients during noncardiac surgery. Methods Studies were identified by searching the PubMed, Medline, EMBASE, and Google Scholar databases using relevant keyword combinations pertinent to the topic. Results Current evidence shows that cannabis use may cause several cardiovascular events, including abnormalities in cardiac rhythm, myocardial infarction, heart failure, and cerebrovascular events. Additionally, cannabis interacts with anticoagulants and antiplatelet agents, decreasing their efficacy. Finally, the interplay of cannabis with inhalational and intravenous anesthetic agents may lead to adverse perioperative cardiovascular outcomes. Conclusions The use of cannabis can trigger cardiovascular events that may depend on factors such as the duration of consumption, the route of administration of the drug, and the dose consumed, which places these patients at risk of drug-drug interactions with anesthetic agents. However, large prospective randomized clinical trials are needed to further elucidate gaps in the body of knowledge regarding which patient population has a greater risk of perioperative complications after cannabis consumption.
Collapse
Affiliation(s)
| | - Yosira Guevara
- Department of Anesthesiology, St Elizabeth’s Medical Center, Brighton, MA, United States
| | - Justin Mitchell
- Department of Anesthesiology & Perioperative Medicine, UCLA Medical Center, Los Angeles, CA, United States
| | - David Ryskamp
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Joshua Conner
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Margo Bush
- University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States
| | - Luis Periel
- Touro College of Osteopathic Medicine, New York, NW, United States
| | - Alberto Uribe
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tristan E. Weaver
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
15
|
Ward AM, Shokati T, Klawitter J, Klawitter J, Nguyen V, Kozell L, Abbas AI, Jones D, Christians U. Identification and Characterization of Cannabichromene's Major Metabolite Following Incubation with Human Liver Microsomes. Metabolites 2024; 14:329. [PMID: 38921465 PMCID: PMC11206029 DOI: 10.3390/metabo14060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Cannabichromene (CBC) is a minor cannabinoid within the array of over 120 cannabinoids identified in the Cannabis sativa plant. While CBC does not comprise a significant portion of whole plant material, it is available to the public in a purified and highly concentrated form. As minor cannabinoids become more popular due to their potential therapeutic properties, it becomes crucial to elucidate their metabolism in humans. Therefore, the goal of this was study to identify the major CBC phase I-oxidized metabolite generated in vitro following incubation with human liver microsomes. The novel metabolite structure was identified as 2'-hydroxycannabicitran using gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Following the identification, in silico molecular modeling experiments were conducted and predicted 2'-hydroxycannabicitran to fit in the orthosteric site of both the CB1 and CB2 receptors. When tested in vitro utilizing a competitive binding assay, the metabolite did not show significant binding to either the CB1 or CB2 receptors. Further work necessitates the determination of potential activity of CBC and the here-identified phase I metabolite in other non-cannabinoid receptors.
Collapse
Affiliation(s)
- Alexandra M. Ward
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.M.W.); (V.N.)
| | - Touraj Shokati
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| | - Jost Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| | - Jelena Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| | - Vu Nguyen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.M.W.); (V.N.)
| | - Laura Kozell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (L.K.); (A.I.A.)
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
- Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - Atheir I. Abbas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; (L.K.); (A.I.A.)
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA
- Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| | - David Jones
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA (J.K.); (J.K.)
| |
Collapse
|
16
|
Manca A, Valz C, Chiara F, Mula J, Palermiti A, Billi M, Antonucci M, Nicolò AD, Luxardo N, Imperiale D, Vischia F, De Cori D, Cusato J, D'Avolio A. Cannabinoid levels description in a cohort of patients with chronic and neuropathic pain treated with Cannabis decoction: A possible role of TDM. Biomed Pharmacother 2024; 175:116686. [PMID: 38713939 DOI: 10.1016/j.biopha.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
The phytocomplex of Cannabis is made up of approximately 500 substances: terpeno-phenols metabolites, including Δ-9-tetrahydrocannabinol and cannabidiol, exhibit pharmacological activity. Medical Cannabis has several pharmacological potential applications, in particular in the management of chronic and neuropathic pain. In the literature, a few data are available concerning cannabis pharmacokinetics, efficacy and safety. Thus, aim of the present study was the evaluation of cannabinoid pharmacokinetics in a cohort of patients, with chronic and neuropathic pain, treated with inhaled medical cannabis and decoction, as a galenic preparation. In this study, 67 patients were enrolled. Dried flower tops with different THC and CBD concentrations were used: Bedrocan® medical cannabis with THC level standardized at 19% and with a CBD level below 1%, Bediol® medical cannabis with THC and CBD level standardized at similar concentration of 6.5% and 8%, respectively. Cannabis was administered as a decoction in 47 patients and inhaled in 11 patients. The blood withdrawn was obtained before the new dose administration at the steady state and metabolites plasma concentrations were measured with an UHPLC-MS/MS method. Statistically significant differences were found in cannabinoids plasma exposure between inhaled and oral administration of medical cannabis, between male and female and cigarette smokers. For the first time, differences in cannabinoid metabolites exposures between different galenic formulations were suggested in patients. Therapeutic drug monitoring could be useful to allow for dose adjustment, but further studies in larger cohorts of patients are required in order to confirm these data.
Collapse
Affiliation(s)
- Alessandra Manca
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Cristina Valz
- SC Terapia del dolore - ASL Città di Torino, Turin 10144, Italy
| | - Francesco Chiara
- University of Turin, Department of Clinical and Biological Sciences, Laboratory of Clinical Pharmacology San Luigi A.O.U., RegioneGonzole 10, Orbassano, Turin 10043, Italy
| | - Jacopo Mula
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Alice Palermiti
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Martina Billi
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Miriam Antonucci
- SCDU Infectious Diseases, Amedeo di Savoia Hospital, ASL Città di Torino, Turin 10149, Italy
| | - Amedeo De Nicolò
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| | - Nicola Luxardo
- SC Terapia del dolore - ASL Città di Torino, Turin 10144, Italy
| | - Daniele Imperiale
- Neurology Unit, Maria Vittoria Hospital, ASL Città di Torino, Turin 10144, Italy
| | - Flavio Vischia
- Department of Mental Health - Psychiatric Unit West, Turin 10149, Italy
| | - David De Cori
- Department of Mental Health - Psychiatric Unit West, Turin 10149, Italy
| | - Jessica Cusato
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy.
| | - Antonio D'Avolio
- University of Turin, Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics. Amedeo di Savoia Hospital, Corso Svizzera 164, Turin 10149, Italy
| |
Collapse
|
17
|
Villate A, Barreto GP, Nicolás MS, Aizpurua-Olaizola O, Olivares M, Usobiaga A. Development, Characterization and In Vitro Gastrointestinal Release of PLGA Nanoparticles Loaded with Full-Spectrum Cannabis Extracts. AAPS PharmSciTech 2024; 25:120. [PMID: 38816596 DOI: 10.1208/s12249-024-02836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Cannabinoids, such as ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are effective bioactive compounds that improve the quality of life of patients with certain chronic conditions. The copolymer poly(lactic-co-glycolic acid) (PLGA) has been used to encapsulate such compounds separately, providing pharmaceutical grade edible products with unique features. In this work, a variety of PLGA based nanoformulations that maintain the natural cannabinoid profile found in the plant (known as full-spectrum) are proposed and evaluated. Three different cannabis sources were used, representing the three most relevant cannabis chemotypes. PLGA nanocapsules loaded with different amounts of cannabinoids were prepared by nanoemulsion, and were then functionalized with three of the most common coating polymers: pectin, alginate and chitosan. In order to evaluate the suitability of the proposed formulations, all the synthesized nanocapsules were characterized, and their cannabinoid content, size, zeta-potential, morphology and in vitro bioaccessibility was determined. Regardless of the employed cannabis source, its load and the functionalization, high cannabinoid content PLGA nanocapsules with suitable particle size and zeta-potential were obtained. Study of nanocapsules' morphology and in vitro release assays in gastro-intestinal media suggested that high cannabis source load may compromise the structure of nanocapsules and their release properties, and hence, the use of lower content of cannabis source is recommended.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain.
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain.
| | - Gastón Pablo Barreto
- Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires, Av del Valle 5737, CP7400, Olavarría, Buenos Aires, Argentina
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires, CIFICEN (UNCPBA-CICPBA -CONICET), Av. Del Valle 5737, B7400JWI, Olavarría, Buenos Aires, Argentina
| | - Markel San Nicolás
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain
- Sovereign Fields S.L, Larramendi Kalea 3, 20006, Donostia, Basque, Spain
| | | | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain
| | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque, Spain
| |
Collapse
|
18
|
Caprari C, Ferri E, Vandelli MA, Citti C, Cannazza G. An emerging trend in Novel Psychoactive Substances (NPSs): designer THC. J Cannabis Res 2024; 6:21. [PMID: 38702834 PMCID: PMC11067227 DOI: 10.1186/s42238-024-00226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 05/06/2024] Open
Abstract
Since its discovery as one of the main components of cannabis and its affinity towards the cannabinoid receptor CB1, serving as a means to exert its psychoactivity, Δ9-tetrahydrocannabinol (Δ9-THC) has inspired medicinal chemists throughout history to create more potent derivatives. Initially, the goal was to synthesize chemical probes for investigating the molecular mechanisms behind the pharmacology of Δ9-THC and finding potential medical applications. The unintended consequence of this noble intent has been the proliferation of these compounds for recreational use. This review comprehensively covers the most exhaustive number of THC-like cannabinoids circulating on the recreational market. It provides information on the chemistry, synthesis, pharmacology, analytical assessment, and experiences related to the psychoactive effects reported by recreational users on online forums. Some of these compounds can be found in natural cannabis, albeit in trace amounts, while others are entirely artificial. Moreover, to circumvent legal issues, many manufacturers resort to semi-synthetic processes starting from legal products extracted from hemp, such as cannabidiol (CBD). Despite the aim to encompass all known THC-like molecules, new species emerge on the drug users' pipeline each month. Beyond posing a significantly high public health risk due to unpredictable and unknown side effects, scientific research consistently lags behind the rapidly evolving recreational market.
Collapse
Affiliation(s)
- Cristian Caprari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, 41125, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy
| | - Elena Ferri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy
| | - Maria Angela Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy
| | - Cinzia Citti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy.
- Institute of Nanotechnology of the National Council of Research - CNR NANOTEC, Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy.
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena, 41125, Italy.
- Institute of Nanotechnology of the National Council of Research - CNR NANOTEC, Campus Ecotekne, Via Monteroni, Lecce, 73100, Italy.
| |
Collapse
|
19
|
Tarlovski S, Bar Kadmon A, Goldberg E, Segal D, Gavish D, Stepensky D. Comparative Pharmacokinetic Assessment of Innovative Sublingual, Rectal and Vaporizer Cannabis Products Versus Approved Cannabis Products in Healthy Volunteers. Cannabis Cannabinoid Res 2024. [PMID: 38656906 DOI: 10.1089/can.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Background: Over the last years, there is a dramatic increase in the use of medical cannabis products for an expanding range of clinical indications. The type of the drug product and its administration route affect substantially the rate and the extent of absorption of cannabinoids and the effects induced by them in the patients. The current challenge for the cannabis pharmaceutical industry is to develop formulations that allow predictable and stable absorption of cannabinoids. This article reports the results of the clinical trial that investigated the pharmacokinetics (PKs) of innovative cannabis products in healthy volunteers. Materials and Methods: This was a single-center study with a single-dose, randomized, crossover, partially blinded controlled design. Each of the 12 healthy volunteers received 8 different products, of the 10 products that were assessed in this trial: novel sublingual (SL) tablet, vaporizer, and rectal products, comparator products (Sativex® and oil-based oromucosal products), and placebo products. Serial blood samples were collected, plasma concentrations of the THC, 11-OH-THC, and CBD were quantified and subjected to noncompartmental PK analysis. Results: Novel medical cannabis products that were investigated in the study induced substantial exposure of the volunteers to the active ingredients, had more rapid absorption, and in some cases also less variable absorption of THC and CBD, in comparison with the approved comparison products. The bioavailability of the novel SL tablet-based and suppositories products was somewhat lower than that of the oromucosal products. The vaporizer provided immediate systemic absorption with highest maximal concentration. The safety profile of the novel cannabis products, namely vaporizer, SL tablets, and suppositories, was not inferior to the Sativex and oil-based oromucosal formulations. Conclusions: The novel cannabis products that were assessed in this study have PK properties that may be advantageous for management of specific medical conditions or in specific subgroups of patients that are prescribed medical cannabis.
Collapse
Affiliation(s)
| | | | | | - Dadi Segal
- Panaxia Pharmaceutical Industries Ltd., Lod, Israel
| | - Dov Gavish
- Department of Medicine, Edith Wolfson Medical Center, Holon, Israel, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - David Stepensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
20
|
Abstract
Cannabidiol (CBD) is one of the most interesting constituents of cannabis, garnering significant attention in the medical community in recent years due to its proven benefit for reducing refractory seizures in pediatric patients. Recent legislative changes in the United States have made CBD readily available to the general public, with up to 14% of adults in the United States having tried it in 2019. CBD is used to manage a myriad of symptoms, including anxiety, pain, and sleep disturbances, although rigorous evidence for these indications is lacking. A significant advantage of CBD over the other more well-known cannabinoid delta-9-tetrahydroncannabinol (THC) is that CBD does not produce a "high." As patients increasingly self-report its use to manage their medical conditions, and as the opioid epidemic continues to drive the quest for alternative pain management approaches, the aims of this narrative review are to provide a broad overview of the discovery, pharmacology, and molecular targets of CBD, its purported and approved neurologic indications, evidence for its analgesic potential, regulatory implications for patients and providers, and future research needs.
Collapse
Affiliation(s)
- Alexandra Sideris
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Hospital for Special Surgery, New York, New York
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York
- HSS Research Institute, New York, New York
| | - Lisa V Doan
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
21
|
Hansen JS, Boix F, Hasselstrøm JB, Sørensen L, Kjolby M, Gustavsen S, Hansen R, Petersen T, Sellebjerg F, Kasch H, Rasmussen PV, Finnerup NB, Sædder EA, Svendsen KB. Pharmacokinetics and pharmacodynamics of cannabis-based medicine in a patient population included in a randomized, placebo-controlled, clinical trial. Clin Transl Sci 2024; 17:e13685. [PMID: 38054364 PMCID: PMC10772478 DOI: 10.1111/cts.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Information on the pharmacokinetics (PK) and pharmacodynamics (PD) of orally administered cannabis-based medicine (CBM) in capsule formulation in patient populations is sparse. In this exploratory study, we aimed to evaluate the PK and PD in a probable steady state of CBM in neuropathic pain and spasticity in a population of patients with multiple sclerosis (MS). Of 134 patients participating in a randomized, double-blinded, placebo-controlled, trial, 23 patients with MS (17 female) mean age 52 years (range 21-67) were enrolled in this substudy. They received oral capsules containing Δ9 -tetrahydrocannabinol (THC, n = 4), cannabidiol (CBD, n = 6), a combination (THC&CBD, n = 4), or placebo (n = 9). Maximum doses were 22.5 mg (THC) and 45 mg (CBD) a day divided into three administrations. PD parameters were evaluated for pain and spasticity. Blood samples were analyzed using an ultra-high-performance liquid chromatography-tandem mass spectrometer after protein precipitation and phospholipid removal. PK parameters were estimated using computerized modeling. The variation in daily dose and PK between individuals was considerable in a steady state, yet comparable with previous reports from healthy controls. Based on a simulation of the best model, the estimated PK parameters (mean) for THC (5 mg) were Cmax 1.21 ng/mL, Tmax 2.68 h, and half-life 2.75 h, and for CBD (10 mg) were Cmax 2.67 ng/mL, Tmax 0.10 h, and half-life 4.95 h, respectively. No effect was found on the PD parameters, but the placebo response was considerable. More immediate adverse events were registered in the active treatment groups compared with the placebo group.
Collapse
Affiliation(s)
- Julie Schjødtz Hansen
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Fernando Boix
- Section for Drug Abuse Research, Department of Forensic Sciences, Division of Laboratory MedicineOslo University HospitalOsloNorway
| | | | | | - Mads Kjolby
- Department of Clinical PharmacologyAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Stefan Gustavsen
- Danish Multiple Sclerosis Center, Department of NeurologyCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | | | - Thor Petersen
- Department of NeurologyHospital of Southern Jutland and Research Unit in NeurologyAabenraaDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of NeurologyCopenhagen University Hospital – RigshospitaletGlostrupDenmark
| | - Helge Kasch
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Nanna Brix Finnerup
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Danish Pain Research Centre, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Eva Aggerholm Sædder
- Department of Clinical PharmacologyAarhus University HospitalAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Kristina Bacher Svendsen
- Department of NeurologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
22
|
Tagen M, Klumpers LE, Peshkovsky A. Pharmacokinetics of Two Nanoemulsion Formulations of Δ 8-Tetrahydrocannabinol in Rats. AAPS PharmSciTech 2023; 24:239. [PMID: 37989959 DOI: 10.1208/s12249-023-02699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
The use of Δ8-tetrahydrocannabinol (Δ8-THC) has increased in recent years. Given that the oral absorption of cannabinoids in oil formulations is typically slow and variable, nanoemulsions may be an improved delivery vehicle. Therefore, we characterized the pharmacokinetics (PK) in Sprague-Dawley rats following the administration of three different oral formulations containing 10 mg/kg Δ8-THC: a translucent liquid nanoemulsion, a reconstituted powder nanoemulsion, and a medium chain triglyceride (MCT) oil solution for comparison. Δ8-THC was also administered intravenously at 0.6 mg/kg. Plasma samples were quantified for Δ8-THC and two metabolites, 11-hydroxy-Δ8-THC (11-OH-Δ8-THC) and 11-carboxy-Δ8-THC (COOH-Δ8-THC). Non-compartmental PK parameters were calculated, and a PK model was developed based on pooled data. Despite a smaller median droplet size of the translucent liquid nanoemulsion (26.9 nm) compared to the reconstituted powder nanoemulsion (168 nm), the PK was similar for both. The median Tmax values of Δ8-THC for the nanoemulsions (0.667 and 1 h) were significantly shorter than the median Tmax of Δ8-THC in MCT oil (6 h). This resulted in an approximately 4-fold higher Δ8-THC exposure over the first 4 h for the nanoemulsions relative to the MCT oil solution. The active 11-OH-Δ8-THC metabolite followed a similar pattern to Δ8-THC. The non-compartmental bioavailability estimates of Δ8-THC for the nanoemulsions (11-16.5%) were lower than for the MCT oil solution (>21.5%). However, a model-based analysis indicated similar bioavailability for all three oral formulations. These results demonstrate favorable absorption properties of both nanoemulsions, despite the difference in droplet sizes, compared to an MCT oil formulation.
Collapse
Affiliation(s)
| | - Linda E Klumpers
- Verdient Science LLC, Denver, Colorado, USA
- University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | | |
Collapse
|
23
|
Vikingsson S, Hart ED, Winecker RE, Cone EJ, Kuntz DJ, Clark M, Jacques M, Hayes ED, Flegel RR. Prevalence of ∆8-tetrahydrocannabinol carboxylic acid in workplace drug testing. J Anal Toxicol 2023; 47:719-725. [PMID: 37697897 DOI: 10.1093/jat/bkad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/03/2023] [Indexed: 09/13/2023] Open
Abstract
∆8-Tetrahydrocannabinol (∆8-THC) recently became widely available as an alternative to cannabis. ∆8-THC is likely impairing and poses a threat to workplace and traffic safety. In the present study, the prevalence of ∆8-THC in workplace drug testing was investigated by analyzing 1,504 urine specimens with a positive immunoassay cannabinoid initial test using a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method quantifying 15 cannabinoid analytes after hydrolysis. ∆8-tetrahydrocannabinol-9-carboxylic acid (∆8-THC-COOH) was detected in 378 urine specimens (15 ng/mL cutoff), compared to 1,144 specimens containing ∆9-THC-COOH. The data could be divided into three general groups. There were 964 (76%) ∆9-THC-COOH-dominant (<10% ∆8-THC-COOH) and 139 (11%) ∆8-THC-COOH-dominant (>90% ∆8-THC-COOH) specimens, with the remaining 164 (13%) specimens showing a mixture of both analytes (>90% ∆8-THC-COOH). Similar concentrations of ∆9-THC-COOH (median 187 ng/mL) and ∆8-THC-COOH (150 ng/mL) as the dominant species support the use of similar cutoffs and decision rules for both analytes. Apart from the carboxylic acid metabolites, 11-hydroxy-∆9-tetrahydrocannabinol (11-OH-∆9-THC, n = 1,282), ∆9-tetrahydrocannabivarin-9-carboxylic acid (∆9-THCV-COOH, n = 1,058), ∆9-THC (n = 746) and 7-hydroxy-cannabidiol (7-OH-CBD, n = 506) were the most prevalent analytes. Two specimens (0.13%) contained ≥140 ng/mL ∆9-THC without ∆9-THC-COOH, which could be due to genetic variability in the drug-metabolizing enzyme CYP2C9 or an adulterant targeting ∆9-THC-COOH. The cannabinoid immunoassay was repeated, and five specimens (0.33%) generated negative initial tests despite ∆9-THC-COOH concentrations of 54-1,000 ng/mL, potentially indicative of adulteration. The use of ∆8-THC is widespread in the US population, and all forensic laboratories should consider adding ∆8-THC and/or ∆8-THC-COOH to their scope of testing. Similar urinary concentrations were observed for both analytes, indicating that the decision rules used for ∆9-THC-COOH are also appropriate for ∆8-THC-COOH.
Collapse
Affiliation(s)
- Svante Vikingsson
- Center for Forensic Science Application and Advancement, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - E Dale Hart
- Center for Forensic Science Application and Advancement, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Ruth E Winecker
- Center for Forensic Science Application and Advancement, RTI International, 3040 East Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Edward J Cone
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr., Baltimore, MD 21224, USA
| | - David J Kuntz
- Clinical Reference Laboratory, 8433 Quivira Rd, Lenexa, KS 66214, USA
| | - Michael Clark
- Clinical Reference Laboratory, 8433 Quivira Rd, Lenexa, KS 66214, USA
| | - Martin Jacques
- Clinical Reference Laboratory, 8433 Quivira Rd, Lenexa, KS 66214, USA
| | - Eugene D Hayes
- Division of Workplace Programs, Substance Abuse and Mental Health Services Administration, 5600 Fishers Lane, Rockville, MD 20857, USA
| | - Ronald R Flegel
- Division of Workplace Programs, Substance Abuse and Mental Health Services Administration, 5600 Fishers Lane, Rockville, MD 20857, USA
| |
Collapse
|
24
|
Moore CF, Weerts EM, Kulpa J, Schwotzer D, Dye W, Jantzi J, McDonald JD, Lefever TW, Bonn-Miller MO. Pharmacokinetics of Oral Minor Cannabinoids in Blood and Brain. Cannabis Cannabinoid Res 2023; 8:S51-S61. [PMID: 37721988 DOI: 10.1089/can.2023.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Introduction: Minor cannabinoids are increasingly being consumed in oral formulations (i.e., edibles, tinctures) for medical and nonmedical purposes. This study examined the pharmacokinetics (PKs) of cannabinoids tetrahydrocannabivarin (THCV), cannabichromene (CBC), cannabinol (CBN), and delta-8-tetrahydrocannabinol (D8-THC) after the first and last oral dose during a 14-day administration period. Materials and Methods: Sprague-Dawley rats (N=6 animals/dose, 50% female) were given an assigned dose of one of four cannabinoids (THCV=3.2-100 mg/kg, CBC=3.2-100 mg/kg, CBN=1-100 mg/kg, or D8-THC=0.32-10 mg/kg) or vehicle (medium-chain triglyceride oil) through oral gavage once daily for 14 days. Blood was collected 45 min and 1.5, 3, and 24 h following the first dose (day 1) and the last dose (day 14) of repeated oral cannabinoid treatment for PK analysis. Outcomes of interest included time to maximum concentration (Tmax), maximum concentration (Cmax), and area under the concentration versus time curve (AUClast). Dose-normalized (DN) Cmax and DN AUClast were also calculated. Brain tissue was collected 24 h post-administration of the first (day 1) and the last (day 14) dose of each cannabinoid to determine concentrations in brain. Results: All cannabinoids tested were detectable in plasma after single and 14-day repeated dosing. DN Cmax and DN AUClast were highest for D8-THC, followed by CBC, CBN, and THCV. There was no sex difference observed in cannabinoid kinetics. Accumulation of D8-THC in plasma was observed after 14 days of administration. THCV levels in plasma were lower on day 14 compared to day 1, indicating potential adaptation of metabolic pathways and increased drug elimination. Cannabinoids were detected in brain tissue 24 h post-administration of the first and the last dose of 17-100 mg/kg THCV, 3.2-100 mg/kg CBC, 10-100 mg/kg CBN, and 10 mg/kg D8-THC. Conclusions: THCV, CBC, CBN, and D8-THC produced detectable levels in plasma and translocated to brain tissue after the first dose (day 1) and the last dose (day 14) of repeated oral dosing. Examination of PKs of these minor cannabinoids in blood and brain provides a critical step for informing target dose ranges and dosing schedules in future studies that evaluate the potential effects of these compounds.
Collapse
Affiliation(s)
- Catherine F Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elise M Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justyna Kulpa
- Canopy Growth Corporation, Smiths Falls, Ontario, Canada
| | | | - Wendy Dye
- Lovelace Biomedical, Albuquerque, New Mexico, USA
| | - Jacob Jantzi
- Lovelace Biomedical, Albuquerque, New Mexico, USA
| | | | | | | |
Collapse
|
25
|
Jenkins BW, Moore CF, Covey D, McDonald JD, Lefever TW, Bonn-Miller MO, Weerts EM. Evaluating Potential Anxiolytic Effects of Minor Cannabinoids and Terpenes After Acute and Chronic Oral Administration in Rats. Cannabis Cannabinoid Res 2023; 8:S11-S24. [PMID: 37721993 DOI: 10.1089/can.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Background: Cannabis and its primary psychoactive constituent delta-9-tetrahydrocannabinol (D9-THC) produce biphasic, dose-dependent effects on anxiety. In addition to D9-THC, cannabis contains other "minor" cannabinoids and terpenes with purported therapeutic potential for the treatment of anxiety. Empirical data on potential therapeutic effects of these compounds is limited. The current study evaluated the effects of selected minor cannabinoids and terpenes in a battery of tests sensitive to anxiolytic and anxiogenic drugs. Methods: In Experiment 1, adult male Sprague Dawley rats (N=7-8/group) were administered acute oral doses of one of five minor cannabinoids: delta-8-tetrahydrocannabinol (D8-THC; 10 mg/kg), tetrahydrocannabivarin (32 mg/kg), cannabidiolic acid (32 mg/kg), cannabidivarin (32 mg/kg), and cannabigerol (100 mg/kg), or one of five terpenes: D-limonene (17 mg/kg), ⍺-pinene (100 mg/kg), ⍺-terpineol (10 mg/kg), bisabolol (100 mg/kg), and β-caryophyllene (17 mg/kg), or vehicle (medium-chain triglycerides [MCT] oil). Ethyl alcohol was tested as an active comparator. Thirty minutes post-administration, the marble burying test, the three-chamber social interaction test, and the novelty-induced hypophagia test were completed; motor activity was assessed throughout testing. Experiment 2 examined the potential anxiolytic effects of minor cannabinoids when administered chronically; rats administered MCT oil or minor cannabinoids in Experiment 1 continued receiving once-daily doses for 21 days and were assessed using the same test battery after 7, 14, and 21 days of administration. Results and Conclusions: When compared to vehicle, acute administration of bisabolol and D-limonene increased the amount of food consumed and bisabolol-, D-limonene-, ⍺-pinene-, and β-caryophyllene decreased percent time spent in the outer zone in the novelty-induced hypophagia test, suggestive of an anxiolytic effect. Only ethanol increased social interaction. After acute administration, anxiogenic effects in the marble burying test were observed for D8-THC, but not for other minor cannabinoids and terpenes. Throughout chronic administration, only D8-THC displayed anxiogenic effects in the novelty-induced hypophagia test. The other cannabinoids did not show anxiolytic or anxiogenic effects in any of the tests at the doses or times tested. The minor cannabinoids and terpenes did not impair or stimulate general motor activity. These data provide a foundation for future studies investigating cannabinoid/terpene interactions.
Collapse
Affiliation(s)
- Bryan W Jenkins
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Catherine F Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dan Covey
- Lovelace Biomedical, Albuquerque, New Mexico, USA
| | | | | | | | - Elise M Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Brstilo L, Reyes Valenzuela G, Caraballo R, Pérez Montilla C, García Bournissen F, Cáceres Guido P, Schaiquevich P. Real-World Evidence of Factors Affecting Cannabidiol Exposure in Children with Drug-Resistant Developmental and Epileptic Encephalopathies. Pharmaceutics 2023; 15:2120. [PMID: 37631333 PMCID: PMC10459683 DOI: 10.3390/pharmaceutics15082120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The identification of factors that affect cannabidiol (CBD) systemic exposure may aid in optimizing treatment efficacy and safety in clinical practice. In this study, we aimed to correlate CBD plasma concentrations at a steady state to demographic, clinical, and pharmacological characteristics as well as seizure frequency after the administration of a purified CBD oil solution in a real-world setting of children with drug-resistant developmental and epileptic encephalopathies (DEEs). Patients receiving oral CBD pharmaceutical products at maintenance were enrolled. Venous blood samples were drawn before the CBD morning dose, 12 h apart from the last evening dose (C0 or CBD trough concentration). A linear mixed-effect analysis was implemented to assess the correlation between C0 and clinical, laboratory, pharmacological, and lifestyle factors. Fifteen females and seven males with a median age of 12.8 years (ranging between 4.7 and 17.2) were included. The median CBD dose was 8.8 mg/kg/day (ranging between 2.6 and 22.5), and the CBD C0 median (range) was 48.2 ng/mL (3.5-366.3). The multivariate model showed a 109.6% increase in CBD C0 in patients with concomitant levothyroxine (β = 0.74 ± 0.1649, p < 0.001), 56.8% with food (β = 0.45 ± 0.1550, p < 0.01), and 116.0% after intake of a ketogenic diet (β = 0.77 ± 0.3141, p < 0.05). All patients included were responders without evidence of an association between C0 and response status. In children with DEEs, systemic concentrations of CBD may be significantly increased when co-administered with levothyroxine, food, or a ketogenic diet.
Collapse
Affiliation(s)
- Lucas Brstilo
- Unit of Innovative Treatments, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires C1245AAM, Argentina;
- National Scientific and Technological Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Gabriela Reyes Valenzuela
- Neurology Service, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires C1245AAM, Argentina; (G.R.V.); (R.C.)
| | - Roberto Caraballo
- Neurology Service, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires C1245AAM, Argentina; (G.R.V.); (R.C.)
| | - Carlos Pérez Montilla
- Multidisciplinary Institute for Research on Pediatric Diseases, Parasitology and Chagas Service, Buenos Aires Children’s Hospital Ricardo Gutierrez, Buenos Aires C1425EFD, Argentina;
| | - Facundo García Bournissen
- Division of Pediatric Clinical Pharmacology, Department of Pediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Paulo Cáceres Guido
- Pharmacokinetics and Research in Clinical Pharmacology Unit, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires C1245AAM, Argentina;
| | - Paula Schaiquevich
- Unit of Innovative Treatments, Hospital de Pediatría Prof. Dr. JP Garrahan, Buenos Aires C1245AAM, Argentina;
- National Scientific and Technological Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
27
|
Nouh RA, Kamal A, Abdelnaser A. Cannabinoids and Multiple Sclerosis: A Critical Analysis of Therapeutic Potentials and Safety Concerns. Pharmaceutics 2023; 15:1151. [PMID: 37111637 PMCID: PMC10146800 DOI: 10.3390/pharmaceutics15041151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
Multiple sclerosis (MS) is a complicated condition in which the immune system attacks myelinated axons in the central nervous system (CNS), destroying both myelin and axons to varying degrees. Several environmental, genetic, and epigenetic factors influence the risk of developing the disease and how well it responds to treatment. Cannabinoids have recently sparked renewed interest in their therapeutic applications, with growing evidence for their role in symptom control in MS. Cannabinoids exert their roles through the endogenous cannabinoid (ECB) system, with some reports shedding light on the molecular biology of this system and lending credence to some anecdotal medical claims. The double nature of cannabinoids, which cause both positive and negative effects, comes from their actions on the same receptor. Several mechanisms have been adopted to evade this effect. However, there are still numerous limitations to using cannabinoids to treat MS patients. In this review, we will explore and discuss the molecular effect of cannabinoids on the ECB system, the various factors that affect the response to cannabinoids in the body, including the role of gene polymorphism and its relation to dosage, assessing the positive over the adverse effects of cannabinoids in MS, and finally, exploring the possible functional mechanism of cannabinoids in MS and the current and future progress of cannabinoid therapeutics.
Collapse
Affiliation(s)
- Roua A. Nouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Kamal
- Biochemistry Department, Faculty of Science, Suez University, P.O. Box 43518, Suez 43533, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
28
|
Kitdumrongthum S, Trachootham D. An Individuality of Response to Cannabinoids: Challenges in Safety and Efficacy of Cannabis Products. Molecules 2023; 28:molecules28062791. [PMID: 36985763 PMCID: PMC10058560 DOI: 10.3390/molecules28062791] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Since legalization, cannabis/marijuana has been gaining considerable attention as a functional ingredient in food. ∆-9 tetrahydrocannabinol (THC), cannabidiol (CBD), and other cannabinoids are key bioactive compounds with health benefits. The oral consumption of cannabis transports much less hazardous chemicals than smoking. Nevertheless, the response to cannabis is biphasically dose-dependent (hormesis; a low-dose stimulation and a high-dose inhibition) with wide individuality in responses. Thus, the exact same dose and preparation of cannabis may be beneficial for some but toxic to others. The purpose of this review is to highlight the concept of individual variations in response to cannabinoids, which leads to the challenge of establishing standard safe doses of cannabis products for the general population. The mechanisms of actions, acute and chronic toxicities, and factors affecting responses to cannabis products are updated. Based on the literature review, we found that the response to cannabis products depends on exposure factors (delivery route, duration, frequency, and interactions with food and drugs), individual factors (age, sex), and susceptibility factors (genetic polymorphisms of cannabinoid receptor gene, N-acylethanolamine-hydrolyzing enzymes, THC-metabolizing enzymes, and epigenetic regulations). Owing to the individuality of responses, the safest way to use cannabis-containing food products is to start low, go slow, and stay low.
Collapse
|
29
|
Shah S, Schwenk ES, Sondekoppam RV, Clarke H, Zakowski M, Rzasa-Lynn RS, Yeung B, Nicholson K, Schwartz G, Hooten WM, Wallace M, Viscusi ER, Narouze S. ASRA Pain Medicine consensus guidelines on the management of the perioperative patient on cannabis and cannabinoids. Reg Anesth Pain Med 2023; 48:97-117. [PMID: 36596580 DOI: 10.1136/rapm-2022-104013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND The past two decades have seen an increase in cannabis use due to both regulatory changes and an interest in potential therapeutic effects of the substance, yet many aspects of the substance and their health implications remain controversial or unclear. METHODS In November 2020, the American Society of Regional Anesthesia and Pain Medicine charged the Cannabis Working Group to develop guidelines for the perioperative use of cannabis. The Perioperative Use of Cannabis and Cannabinoids Guidelines Committee was charged with drafting responses to the nine key questions using a modified Delphi method with the overall goal of producing a document focused on the safe management of surgical patients using cannabinoids. A consensus recommendation required ≥75% agreement. RESULTS Nine questions were selected, with 100% consensus achieved on third-round voting. Topics addressed included perioperative screening, postponement of elective surgery, concomitant use of opioid and cannabis perioperatively, implications for parturients, adjustment in anesthetic and analgesics intraoperatively, postoperative monitoring, cannabis use disorder, and postoperative concerns. Surgical patients using cannabinoids are at potential increased risk for negative perioperative outcomes. CONCLUSIONS Specific clinical recommendations for perioperative management of cannabis and cannabinoids were successfully created.
Collapse
Affiliation(s)
- Shalini Shah
- Dept of Anesthesiology & Perioperative Care, UC Irvine Health, Orange, California, USA
| | - Eric S Schwenk
- Anesthesiology and Perioperative Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Hance Clarke
- Anesthesiology and Pain Medicine, Univ Toronto, Toronto, Ontario, Canada
| | - Mark Zakowski
- Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Brent Yeung
- Anesthesiology and Perioperative Care, University of California Irvine, Irvine, California, USA
| | | | - Gary Schwartz
- AABP Integrative Pain Care, Melville, New York, USA.,Anesthesiology, Maimonides Medical Center, Brooklyn, New York, USA
| | | | - Mark Wallace
- Anesthesiology, Division of Pain Medicine, University of California San Diego, La Jolla, California, USA
| | - Eugene R Viscusi
- Anesthesiology and Perioperative Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Samer Narouze
- Center for Pain Medicine, Western Reserve Hospital, Cuyahoga Falls, Ohio, USA
| |
Collapse
|
30
|
Applied Clinical Tandem Mass Spectrometry-Based Quantification Methods for Lipid-Derived Biomarkers, Steroids and Cannabinoids: Fit-for-Purpose Validation Methods. Biomolecules 2023; 13:biom13020383. [PMID: 36830753 PMCID: PMC9953102 DOI: 10.3390/biom13020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
The emergence of metabolomics and quantification approaches is revealing new biomarkers applied to drug discovery. In this context, tandem mass spectrometry is the method of choice, requiring a specific validation process for preclinical and clinical applications. Research on the two classes of lipid mediators, steroids and cannabinoids, has revealed a potential interaction in cannabis addiction and metabolism-related disorders. Here we present the development of GC-MS/MS and LC-MS/MS methods for routine quantification of targeted steroids and cannabinoids, respectively. The methods were developed using an isotopic approach, including validation for linearity, selectivity, LLOQ determination, matrix effect, carryover, between- and within-run accuracy and precision, and stability tests to measure 11 steroids and seven cannabinoids in human plasma. These methods were satisfactory for most validity conditions, although not all met the acceptance criteria for all analytes. A comparison of calibration curves in biological and surrogate matrices and in methanol showed that the latter condition was more applicable for our quantification of endogenous compounds. In conclusion, the validation of our methods met the criteria for GLP-qualified rather than GLP-validated methods, which can be used for routine analytical studies for dedicated preclinical and clinical purposes, by combining appropriate system suitability testing, including quality controls in the biological matrix.
Collapse
|
31
|
Sadaka AH, Canuel J, Febo M, Johnson CT, Bradshaw HB, Ortiz R, Ciumo F, Kulkarni P, Gitcho MA, Ferris CF. Effects of inhaled cannabis high in Δ9-THC or CBD on the aging brain: A translational MRI and behavioral study. Front Aging Neurosci 2023; 15:1055433. [PMID: 36819730 PMCID: PMC9930474 DOI: 10.3389/fnagi.2023.1055433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
With the recent legalization of inhaled cannabis for medicinal and recreational use, the elderly represents one of the newest, rapidly growing cohorts of cannabis users. To understand the neurobiological effects of cannabis on the aging brain, 19-20 months old mice were divided into three groups exposed to vaporized cannabis containing ~10% Δ9-THC, ~10% CBD, or placebo for 30 min each day. Voxel based morphometry, diffusion weighted imaging, and resting state functional connectivity data were gathered after 28 days of exposure and following a two-week washout period. Tail-flick, open field, and novel object preference tests were conducted to explore analgesic, anxiolytic, and cognitive effects of cannabis, respectively. Vaporized cannabis high in Δ9-THC and CBD achieved blood levels reported in human users. Mice showed antinociceptive effects to chronic Δ9-THC without tolerance while the anxiolytic and cognitive effects of Δ9-THC waned with treatment. CBD had no effect on any of the behavioral measures. Voxel based morphometry showed a decrease in midbrain dopaminergic volume to chronic Δ9-THC followed but an increase after a two-week washout. Fractional anisotropy values were reduced in the same area by chronic Δ9-THC, suggesting a reduction in gray matter volume. Cannabis high in CBD but not THC increased network strength and efficiency, an effect that persisted after washout. These data would indicate chronic use of inhaled cannabis high in Δ9-THC can be an effective analgesic but not for treatment of anxiety or cognitive decline. The dopaminergic midbrain system was sensitive to chronic Δ9-THC but not CBD showing robust plasticity in volume and water diffusivity prior to and following drug cessation an effect possibly related to the abuse liability of Δ9-THC. Chronic inhaled CBD resulted in enhanced global network connectivity that persisted after drug cessation. The behavioral consequences of this sustained change in brain connectivity remain to be determined.
Collapse
Affiliation(s)
- Aymen H. Sadaka
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Justin Canuel
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Marcelo Febo
- Department of Psychiatry and Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Clare T. Johnson
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Heather B. Bradshaw
- Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Richard Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Federica Ciumo
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Michael A. Gitcho
- Department of Biological Sciences, Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, United States
| | - Craig F. Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
32
|
Singh C, Rao K, Yadav N, Vashist Y, Chugh P, Bansal N, Minocha N. Current Cannabidiol Safety: A Review. Curr Drug Saf 2023; 18:465-473. [PMID: 36056846 DOI: 10.2174/1574886317666220902100511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Marijuana, also known as cannabis, is the second most widely used illegal psychoactive substance smoked worldwide after tobacco, mainly due to the psychoactive effects induced by D-9-tetrahydrocannabinol (9-THC). Cannabidiol (CBD) is extracted from cannabis and may be used as an anti-inflammatory agent. Some patents on cannabidiol are discussed in this review. The cannabinoid is a non-psychoactive isomer of the more infamous tetrahydrocannabinol (THC); and is available in several administration modes, most known as CBD oil. OBJECTIVES This study aims to provide an enhanced review of cannabidiol properties used in treating inflammation. This review also emphasises the current safety profile of cannabidiol. METHODS Cannabis is also called Marijuana. It is the second most commonly used illegal psychoactive substance in the universe after tobacco. D-9-tetrahydrocannabinol (9-THC) present in cannabis produces psychoactive effects. Cannabidiol (CBD) extracted from cannabis is used for antiinflammatory purposes. Cannabis smoking causes various types of cancer, such as lung, tongue, and jaw. The current review took literature from Google Scholar, PubMed, and Google Patents. Many clinical investigations are included in this review. RESULT After analysing the literature on cannabis, it has been suggested that although cannabis is banned in some countries, it may be included in the treatment and mitigation of some diseases and symptoms like pain management, epilepsy, cancer, and anxiety disorder. Mild side effects were frequently observed in cannabis medications, which included infertility in females, liver damage, etc. Conclusion: Cannabis contains chemical compounds such as the cannabinoids delta-9- tetrahydrocannabinol (THC), a psychoactive substance, and non-psychoactive cannabidiol (CBD). Cannabidiol has been confirmed as an efficient treatment of epilepsy in several clinical trials, with one pure CBD product named Epidiolex. It is also used in treating anxiety and acne, as a pain reliever, and has anti-inflammatory properties.
Collapse
Affiliation(s)
- Chander Singh
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Komal Rao
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Nikita Yadav
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Yogesh Vashist
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Palak Chugh
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Nidhi Bansal
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| | - Neha Minocha
- School of Medical & Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram- 122103, Haryana, India
| |
Collapse
|
33
|
Hajjar ER, Lungen JM, Worster BK. Therapeutic Benefits of Medical Cannabis. PHYSICIAN ASSISTANT CLINICS 2022. [DOI: 10.1016/j.cpha.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Bardhi K, Coates S, Watson CJ, Lazarus P. Cannabinoids and drug metabolizing enzymes: potential for drug-drug interactions and implications for drug safety and efficacy. Expert Rev Clin Pharmacol 2022; 15:1443-1460. [DOI: 10.1080/17512433.2022.2148655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Keti Bardhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Shelby Coates
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Christy J.W. Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
35
|
Skopp G, Graw M, Musshoff F. Cannabidiol – berauschend unberauschend? Rechtsmedizin (Berl) 2022. [DOI: 10.1007/s00194-022-00595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Yakimavets V, Qiu T, Panuwet P, D'Souza PE, Brennan PA, Dunlop AL, Barry Ryan P, Boyd Barr D. Simultaneous quantification of urinary tobacco and marijuana metabolites using solid-supported liquid-liquid extraction coupled with liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123378. [PMID: 35908438 PMCID: PMC10317196 DOI: 10.1016/j.jchromb.2022.123378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
Co-exposure to tobacco and marijuana has become common in areas where recreational marijuana use is legal. To assist in the determination of the combined health risks of this co-exposure, an analytical method capable of simultaneously measuring tobacco and marijuana metabolites is needed to reduce laboratory costs and the required sample volume. So far, no such analytical method exists. Thus, we developed and validated a method to simultaneously quantify urinary levels of trans-3'-hydroxycotinine (3OH-COT), cotinine (COT), and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (COOH-THC) to assess co-exposure to tobacco and marijuana. Urine (200 µL) was spiked with labelled internal standards and enzymatically hydrolyzed to liberate the conjugated analytes before extraction using solid-supported liquid-liquid extraction (SLE) with ethyl acetate serving as an eluent. The target analytes were separated on a C18 (4.6 × 100 mm, 5 μm) analytical column with a gradient mobile phase elution and analyzed using tandem mass spectrometry with multiple reaction monitoring of target ion transitions. Positive electrospray ionization (ESI) was used for 3OH-COT and COT, while negative ESI was used for COOH-THC. The total run time was 13 min. The extraction recoveries were 18.4-23.9 % (3OH-COT), 65.1-96.8 % (COT), and 80.6-95.4 % (COOH-THC). The method limits of quantification were 5.0 ng/mL (3OH-COT) and 2.5 ng/mL (COT and COOH-THC). The method showed good accuracy (82.5-98.5 %) and precision (1.22-6.21 % within-day precision and 1.42-6.26 % between-day precision). The target analytes were stable for at least 144 h inside the autosampler (10 °C). The analyses of reference materials and 146 urine samples demonstrated good method performance. The use of a 96-well plate for preparation makes the method useful for the analysis of large numbers of samples.
Collapse
Affiliation(s)
- Volha Yakimavets
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tian Qiu
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Parinya Panuwet
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Priya E D'Souza
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Patricia A Brennan
- Department of Psychology, College of Arts and Sciences, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology & Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Laboratory of Exposure Assessment and Development of Environmental Research (LEADER), Rollins School of Public Health, Emory University, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
37
|
Promising Nanocarriers to Enhance Solubility and Bioavailability of Cannabidiol for a Plethora of Therapeutic Opportunities. Molecules 2022; 27:molecules27186070. [PMID: 36144803 PMCID: PMC9502382 DOI: 10.3390/molecules27186070] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
In recent years, the interest in cannabidiol (CBD) has increased because of the lack of psychoactive properties. However, CBD has low solubility and bioavailability, variable pharmacokinetics profiles, poor stability, and a pronounced presystemic metabolism. CBD nanoformulations include nanosuspensions, polymeric micelles and nanoparticles, hybrid nanoparticles jelled in cross-linked chitosan, and numerous nanosized lipid formulations, including nanostructured lipid carriers, vesicles, SNEEDS, nanoemulsions, and microemulsions. Nanoformulations have resulted in high CBD solubility, encapsulation efficiency, and stability, and sustained CBD release. Some studies assessed the increased Cmax and AUC and decreased Tmax. A rational evaluation of the studies reported in this review evidences how some of them are very preliminary and should be completed before performing clinical trials. Almost all the developed nanoparticles have simple architectures, are well-known and safe nanocarriers, or are even simple nanosuspensions. In addition, the conventional routes of administration are generally investigated. As a consequence, many of these studies are almost ready for forthcoming clinical translations. Some of the developed nanosystems are very promising for a plethora of therapeutic opportunities because of the versatility in terms of the release, the crossing of physiological barriers, and the number of possible routes of administration.
Collapse
|
38
|
Zagzoog A, Cabecinha A, Abramovici H, Laprairie RB. Modulation of type 1 cannabinoid receptor activity by cannabinoid by-products from Cannabis sativa and non-cannabis phytomolecules. Front Pharmacol 2022; 13:956030. [PMID: 36091813 PMCID: PMC9458935 DOI: 10.3389/fphar.2022.956030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabis sativa contains more than 120 cannabinoids and 400 terpene compounds (i.e., phytomolecules) present in varying amounts. Cannabis is increasingly available for legal medicinal and non-medicinal use globally, and with increased access comes the need for a more comprehensive understanding of the pharmacology of phytomolecules. The main transducer of the intoxicating effects of Cannabis is the type 1 cannabinoid receptor (CB1R). ∆9-tetrahydrocannabinolic acid (∆9-THCa) is often the most abundant cannabinoid present in many cultivars of Cannabis. Decarboxylation converts ∆9-THCa to ∆9-THC, which is a CB1R partial agonist. Understanding the complex interplay of phytomolecules—often referred to as “the entourage effect”—has become a recent and major line of inquiry in cannabinoid research. Additionally, this interest is extending to other non-Cannabis phytomolecules, as the diversity of available Cannabis products grows. Here, we chose to focus on whether 10 phytomolecules (∆8-THC, ∆6a,10a-THC, 11-OH-∆9-THC, cannabinol, curcumin, epigallocatechin gallate, olivetol, palmitoylethanolamide, piperine, and quercetin) alter CB1R-dependent signaling with or without a co-treatment of ∆9-THC. Phytomolecules were screened for their binding to CB1R, inhibition of forskolin-stimulated cAMP accumulation, and βarrestin2 recruitment in Chinese hamster ovary cells stably expressing human CB1R. Select compounds were assessed further for cataleptic, hypothermic, and anti-nociceptive effects on male mice. Our data revealed partial agonist activity for the cannabinoids tested, as well as modulation of ∆9-THC-dependent binding and signaling properties of phytomolecules in vitro and in vivo. These data represent a first step in understanding the complex pharmacology of Cannabis- and non-Cannabis-derived phytomolecules at CB1R and determining whether these interactions may affect the physiological outcomes, adverse effects, and abuse liabilities associated with the use of these compounds.
Collapse
Affiliation(s)
- Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ashley Cabecinha
- Office of Cannabis Science and Surveillance, Controlled Substances and Cannabis Branch, Health Canada, Ottawa, ON, Canada
| | - Hanan Abramovici
- Office of Cannabis Science and Surveillance, Controlled Substances and Cannabis Branch, Health Canada, Ottawa, ON, Canada
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Robert B. Laprairie,
| |
Collapse
|
39
|
Fontana S, Panahi L, Udeani G, Surani S, Desai D. Case Report Highlighting Cardiovascular Effects of Concomitant Use of Methamphetamine and Marijuana. Cureus 2022; 14:e27866. [PMID: 36110480 PMCID: PMC9462887 DOI: 10.7759/cureus.27866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
We present the case of a 51-year-old male admitted for cardiovascular complications in the face of concomitant chronic methamphetamine and cannabis use. Upon further assessment, the patient exhibited cardiotoxicity, including acute to chronic congestive heart failure (CHF) exacerbation, hypercoagulable state, and electrolyte abnormalities. Cardiotoxicity secondary to chronic methamphetamine use has been established. However, marijuana's cardiovascular effects have not been well established. Even less information exists about the simultaneous use of methamphetamine and cannabis. With increasing interest in the use of marijuana for medical purposes, it is imperative to study any corresponding toxicity and adverse effect profile. The worldwide pattern of drug co-administration also brings the importance of this topic to light. This case report serves to provide insight into this information gap.
Collapse
|
40
|
Lavender I, McGregor IS, Suraev A, Grunstein RR, Hoyos CM. Cannabinoids, Insomnia, and Other Sleep Disorders. Chest 2022; 162:452-465. [PMID: 35537535 DOI: 10.1016/j.chest.2022.04.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/20/2023] Open
Abstract
Sleep disturbances are often cited as a primary reason for medicinal cannabis use, and there is increasing clinical interest in the therapeutic potential of cannabinoids in treating sleep disorders. Burgeoning evidence suggests a role of the endocannabinoid system in regulating the circadian sleep-wake cycle, highlighting a potential avenue for developing novel therapeutics. Despite widespread use of cannabis products as sleep aids globally, robustly designed studies verifying efficacy in sleep-disordered populations are limited. Although some study outcomes have suggested cannabinoid utility in insomnia disorder and sleep apnea, most studies to date are limited by small sample sizes, lack of rigorously controlled study designs, and high risk of bias. This critical review summarizes the current evidence for the use of cannabinoids as a treatment for sleep disorders and provides an overview of endocannabinoid modulation of sleep-wake cycles, as well as the sleep-modulating effects of plant-derived cannabinoids such as delta-9-tetrahydrocannbinol, cannabidiol, and cannabinol. The review also discusses practical considerations for clinicians regarding cannabinoid formulations, routes of administration, respiratory concerns, dosing, potential side effects, drug interactions, and effects relevant to driving, tolerance, and withdrawal. Although current interest in, and uptake of, medicinal cannabis use for sleep disorders may have surpassed the evidence base, there is a strong rationale for continued investigation into the therapeutic potential of cannabinoids.
Collapse
Affiliation(s)
- Isobel Lavender
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia; Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Iain S McGregor
- Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia; Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Anastasia Suraev
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia; Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Ronald R Grunstein
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Camilla M Hoyos
- Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Faculty of Science, School of Psychology, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
41
|
Procaccia S, Lewitus GM, Lipson Feder C, Shapira A, Berman P, Meiri D. Cannabis for Medical Use: Versatile Plant Rather Than a Single Drug. Front Pharmacol 2022; 13:894960. [PMID: 35548332 PMCID: PMC9081504 DOI: 10.3389/fphar.2022.894960] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Medical Cannabis and its major cannabinoids (−)-trans-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are gaining momentum for various medical purposes as their therapeutic qualities are becoming better established. However, studies regarding their efficacy are oftentimes inconclusive. This is chiefly because Cannabis is a versatile plant rather than a single drug and its effects do not depend only on the amount of THC and CBD. Hundreds of Cannabis cultivars and hybrids exist worldwide, each with a unique and distinct chemical profile. Most studies focus on THC and CBD, but these are just two of over 140 phytocannabinoids found in the plant in addition to a milieu of terpenoids, flavonoids and other compounds with potential therapeutic activities. Different plants contain a very different array of these metabolites in varying relative ratios, and it is the interplay between these molecules from the plant and the endocannabinoid system in the body that determines the ultimate therapeutic response and associated adverse effects. Here, we discuss how phytocannabinoid profiles differ between plants depending on the chemovar types, review the major factors that affect secondary metabolite accumulation in the plant including the genotype, growth conditions, processing, storage and the delivery route; and highlight how these factors make Cannabis treatment highly complex.
Collapse
|
42
|
Ortiz YT, McMahon LR, Wilkerson JL. Medicinal Cannabis and Central Nervous System Disorders. Front Pharmacol 2022; 13:881810. [PMID: 35529444 PMCID: PMC9070567 DOI: 10.3389/fphar.2022.881810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 01/02/2023] Open
Abstract
Cannabinoids, including those found in cannabis, have shown promise as potential therapeutics for numerous health issues, including pathological pain and diseases that produce an impact on neurological processing and function. Thus, cannabis use for medicinal purposes has become accepted by a growing majority. However, clinical trials yielding satisfactory endpoints and unequivocal proof that medicinal cannabis should be considered a frontline therapeutic for most examined central nervous system indications remains largely elusive. Although cannabis contains over 100 + compounds, most preclinical and clinical research with well-controlled dosing and delivery methods utilize the various formulations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the two most abundant compounds in cannabis. These controlled dosing and delivery methods are in stark contrast to most clinical studies using whole plant cannabis products, as few clinical studies using whole plant cannabis profile the exact composition, including percentages of all compounds present within the studied product. This review will examine both preclinical and clinical evidence that supports or refutes the therapeutic utility of medicinal cannabis for the treatment of pathological pain, neurodegeneration, substance use disorders, as well as anxiety-related disorders. We will predominately focus on purified THC and CBD, as well as other compounds isolated from cannabis for the aforementioned reasons but will also include discussion over those studies where whole plant cannabis has been used. In this review we also consider the current challenges associated with the advancement of medicinal cannabis and its derived potential therapeutics into clinical applications.
Collapse
Affiliation(s)
- Yuma T. Ortiz
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Lance R. McMahon
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Jenny L. Wilkerson
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
- *Correspondence: Jenny L. Wilkerson,
| |
Collapse
|
43
|
Abstract
Cannabinoids, including those found in cannabis, have shown promise as potential therapeutics for numerous health issues, including pathological pain and diseases that produce an impact on neurological processing and function. Thus, cannabis use for medicinal purposes has become accepted by a growing majority. However, clinical trials yielding satisfactory endpoints and unequivocal proof that medicinal cannabis should be considered a frontline therapeutic for most examined central nervous system indications remains largely elusive. Although cannabis contains over 100 + compounds, most preclinical and clinical research with well-controlled dosing and delivery methods utilize the various formulations of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the two most abundant compounds in cannabis. These controlled dosing and delivery methods are in stark contrast to most clinical studies using whole plant cannabis products, as few clinical studies using whole plant cannabis profile the exact composition, including percentages of all compounds present within the studied product. This review will examine both preclinical and clinical evidence that supports or refutes the therapeutic utility of medicinal cannabis for the treatment of pathological pain, neurodegeneration, substance use disorders, as well as anxiety-related disorders. We will predominately focus on purified THC and CBD, as well as other compounds isolated from cannabis for the aforementioned reasons but will also include discussion over those studies where whole plant cannabis has been used. In this review we also consider the current challenges associated with the advancement of medicinal cannabis and its derived potential therapeutics into clinical applications.
Collapse
|
44
|
Sempio C, Huestis MA, Kaplan B, Klawitter J, Christians U, Henthorn TK. Urinary Clearance of 11-Nor-9-Carboxy-Δ 9 -Tetrahydrocannabinol (THCCOOH): A Detailed Pharmacokinetic Analysis. Drug Test Anal 2022; 14:1368-1376. [PMID: 35332698 DOI: 10.1002/dta.3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Urine is a common matrix for screening for cannabis use. Urine assays typically measure total THCCOOH concentrations after hydrolysis cleaves the glucuronide. Urine THCCOOH concentration is adjusted by urine creatinine concentration or specific gravity, to account for variable hydration states. Therefore, we performed a population pharmacokinetic analysis of the urinary THCCOOH excretion, urinary flow rate, and creatinine excretion rate data. METHODS Urine was obtained over 168 hours from 6 subjects who smoked low (15.8 mg) and high dose (33.8 mg) THC cigarettes on two occasions. Samples were analyzed for THCCOOH concentration by GC/MS and volume, time and creatinine concentration measured. A population pharmacokinetic model of the urinary clearance of THCCOOH was created from these data and potential covariates of urine creatinine concentration and urine creatinine excretion rate were assessed. RESULTS Elimination clearance of THCCOOH was estimated as 0.104 ± 0.088 L/min and its urinary clearance was 0.0022 ± 0.0015 L/min. Total urine excretion of THCCOOH was estimated a 2.3%. Urine flow rate and urine creatinine concentrations were significantly correlated, r2 0.35. Creatinine excretion rate was 129.6 ± 71.0 mL/min and the intra-subject variability was 31-52% (SD%) during the week. Urinary creatinine excretion rate was a significant covariate for the urinary clearance of THCCOOH. CONCLUSIONS Creatinine Clearance is a significant covariate for urinary THCCOOH clearance. Only 2-3% of bioavailable THC is excreted as THCCOOH and THCCOO-glucuronide via the urine. Correction of urine drug and/or metabolite concentration with urine creatinine concentration or specific gravity may be more problematic than previously appreciated.
Collapse
Affiliation(s)
- Cristina Sempio
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Marilyn A Huestis
- The Lambert Center for the Study of Medicinal Cannabis and Hemp, The Institute for Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Bruce Kaplan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Uwe Christians
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Thomas K Henthorn
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
45
|
Detection of Eight Cannabinoids and One Tracer in Wastewater and River Water by SPE-UPLC–ESI-MS/MS. WATER 2022. [DOI: 10.3390/w14040588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The consumption of illicit drugs represents a global social and economic problem. Using suitable analytical methods, monitoring, and detection of different illegal drugs residues and their metabolites in wastewater samples can help combat this problem. Our article defines a method to develop, validate, and practically applicate a rapid and robust analytical process for the evaluation of six naturally occurring cannabinoids (CBG, CBD, CBDV, CBN, THC, THCV), two cannabinoids in acidic form (CBDA, THCA-A), and the major cannabis-related human metabolite (THC-COOH). After SPE offline enrichment, we used a UPLC–ESI-MS/MS system, which permitted the determination of several by-products. Studied matrices were samples of different origins: (i) effluent water from a wastewater treatment plant in the Porto urban area; (ii) environmental water from Febros River, the last left-bank tributary of the Douro River. The multi-residue approach was substantiated and successfully employed to analyze the water samples collected in the above locations. The rapid and precise quantification of nine different cannabinoids in different water samples occurred within nine minutes at the ng L−1 level. The appearance of dozens of ng L−1 of some cannabis secondary metabolites, such as CBD, CBDA, CBN, THCA-A, indicates this plant species’ widespread usage among the general population in the considered area.
Collapse
|
46
|
Silva M, Kwok RKH. Use of Computational Toxicology Tools to Predict In Vivo Endpoints Associated with Mode of Action and the Endocannabinoid System: A Case Study with Chlorpyrifos, Chlorpyrifos-oxon and Δ9Tetrahydrocannabinol. Curr Res Toxicol 2022; 3:100064. [PMID: 35243363 PMCID: PMC8860916 DOI: 10.1016/j.crtox.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 01/04/2023] Open
|
47
|
Kirkland AE, Fadus MC, Gruber SA, Gray KM, Wilens TE, Squeglia LM. A scoping review of the use of cannabidiol in psychiatric disorders. Psychiatry Res 2022; 308:114347. [PMID: 34952255 PMCID: PMC8799523 DOI: 10.1016/j.psychres.2021.114347] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023]
Abstract
Cannabidiol (CBD) has become a fast-growing avenue for research in psychiatry, and clinicians are challenged with understanding the implications of CBD for treating mental health disorders. The goal of this review is to serve as a guide for mental health professionals by providing an overview of CBD and a synthesis the current evidence within major psychiatric disorders. PubMed and PsycINFO were searched for articles containing the terms "cannabidiol" in addition to major psychiatric disorders and symptoms, yielding 2952 articles. Only randomized controlled trials or within-subject studies investigating CBD as a treatment option for psychiatric disorders (N = 16) were included in the review. Studies were reviewed for psychotic disorders (n = 6), anxiety disorders (n = 3), substance use disorders (tobacco n = 3, cannabis n = 2, opioid n = 1), and insomnia (n = 1). There were no published studies that met inclusion criteria for alcohol or stimulant use disorder, PTSD, ADHD, autism spectrum disorder, or mood disorders. Synthesis of the CBD literature indicates it is generally safe and well tolerated. The most promising preliminary findings are related to the use of CBD in psychotic symptoms and anxiety. There is currently not enough high-quality evidence to suggest the clinical use of CBD for any psychiatric disorder.
Collapse
Affiliation(s)
- Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States.
| | - Matthew C Fadus
- Division of Child and Adolescent Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Staci A Gruber
- Cognitive and Clinical Neuroimaging Core, Marijuana Investigations for Neuroscientific Discovery (MIND) Program, McLean Hospital, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Kevin M Gray
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Timothy E Wilens
- Division of Child and Adolescent Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Center for Addiction Medicine Co-Director, Massachusetts General Hospital, Boston, MA, United States
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
48
|
Baglot SL, Hume C, Petrie GN, Aukema RJ, Lightfoot SHM, Grace LM, Zhou R, Parker L, Rho JM, Borgland SL, McLaughlin RJ, Brechenmacher L, Hill MN. Pharmacokinetics and central accumulation of delta-9-tetrahydrocannabinol (THC) and its bioactive metabolites are influenced by route of administration and sex in rats. Sci Rep 2021; 11:23990. [PMID: 34907248 PMCID: PMC8671514 DOI: 10.1038/s41598-021-03242-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Up to a third of North Americans report using cannabis in the prior month, most commonly through inhalation. Animal models that reflect human consumption are critical to study the impact of cannabis on brain and behaviour. Most animal studies to date utilize injection of delta-9-tetrahydrocannabinol (THC; primary psychoactive component of cannabis). THC injections produce markedly different physiological and behavioural effects than inhalation, likely due to distinctive pharmacokinetics. The current study directly examined if administration route (injection versus inhalation) alters metabolism and central accumulation of THC and metabolites over time. Adult male and female Sprague–Dawley rats received either an intraperitoneal injection or a 15-min session of inhaled exposure to THC. Blood and brains were collected at 15, 30, 60, 90 and 240-min post-exposure for analysis of THC and metabolites. Despite achieving comparable peak blood THC concentrations in both groups, our results indicate higher initial brain THC concentration following inhalation, whereas injection resulted in dramatically higher 11-OH-THC concentration, a potent THC metabolite, in blood and brain that increased over time. Our results provide evidence of different pharmacokinetic profiles following inhalation versus injection. Accordingly, administration route should be considered during data interpretation, and translational animal work should strongly consider using inhalation models.
Collapse
Affiliation(s)
- Samantha L Baglot
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada. .,Graduate Program in Neurscience, University of Calgary, Calgary, AB, Canada.
| | - Catherine Hume
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology & Anatomy
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Graduate Program in Neurscience, University of Calgary, Calgary, AB, Canada
| | - Robert J Aukema
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Graduate Program in Neurscience, University of Calgary, Calgary, AB, Canada
| | - Savannah H M Lightfoot
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Graduate Program in Neurscience, University of Calgary, Calgary, AB, Canada
| | - Laine M Grace
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada
| | - Ruokun Zhou
- Southern Alberta Mass Spectrometry (SAMS) Facility, University of Calgary, Calgary, AB, Canada
| | - Linda Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Jong M Rho
- Departments of Neurosciences and Pediatrics, University of California San Diego, and Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Stephanie L Borgland
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Ryan J McLaughlin
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Laurent Brechenmacher
- Southern Alberta Mass Spectrometry (SAMS) Facility, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute
- Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, AB, Canada. .,Department of Cell Biology & Anatomy
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
49
|
Baglot SL, VanRyzin JW, Marquardt AE, Aukema RJ, Petrie GN, Hume C, Reinl EL, Bieber JB, McLaughlin RJ, McCarthy MM, Hill MN. Maternal-fetal transmission of delta-9-tetrahydrocannabinol (THC) and its metabolites following inhalation and injection exposure during pregnancy in rats. J Neurosci Res 2021; 100:713-730. [PMID: 34882838 DOI: 10.1002/jnr.24992] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 11/09/2022]
Abstract
Cannabis use during pregnancy has increased over the past few decades, with recent data indicating that, in youth and young adults especially, up to 22% of people report using cannabis during pregnancy. Animal models provide the ability to study prenatal cannabis exposure (PCE) with control over timing and dosage; however, these studies utilize both injection and inhalation approaches. While it is known that Δ9-tetrahydrocannabinol (THC; primary psychoactive component of cannabis) can cross the placenta, examination of the transmission and concentration of THC and its metabolites from maternal blood into the placenta and fetal brain remains relatively unknown, and the influence of route of administration has never been examined. Pregnant female rats were exposed to either vaporized THC-dominant cannabis extract for pulmonary consumption or subcutaneous injection of THC repeatedly during the gestational period. Maternal blood, placenta, and fetal brains were collected following the final administration of THC for analysis of THC and its metabolites, as well as endocannabinoid concentrations, through mass spectrometry. Both routes of administration resulted in the transmission of THC and its metabolites in placenta and fetal brain. Repeated exposure to inhaled THC vapor resulted in fetal brain THC concentrations that were about 30% of those seen in maternal blood, whereas repeated injections resulted in roughly equivalent concentrations of THC in maternal blood and fetal brain. Neither inhalation nor injection of THC during pregnancy altered fetal brain endocannabinoid concentrations. Our data provide the first characterization of maternal-fetal transmission of THC and its metabolites following both vaporized delivery and injection routes of administration. These data are important to establish the maternal-fetal transmission in preclinical injection and inhalation models of PCE and may provide insight into predicting fetal exposure in human studies.
Collapse
Affiliation(s)
- Samantha L Baglot
- Graduate Program in Neuroscience, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ashley E Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert J Aukema
- Graduate Program in Neuroscience, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gavin N Petrie
- Graduate Program in Neuroscience, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Hume
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin L Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John B Bieber
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ryan J McLaughlin
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Cell Biology and Anatomy, Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
50
|
Gelmi TJ, Weinmann W, Pfäffli M. Impact of smoking cannabidiol (CBD)-rich marijuana on driving ability. Forensic Sci Res 2021; 6:195-207. [PMID: 34868711 PMCID: PMC8635612 DOI: 10.1080/20961790.2021.1946924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
To investigate effects of smoking cannabidiol (CBD)-rich marijuana on driving ability and determine free CBD and Δ9-tetrahydrocannabinol (THC) concentrations in capillary blood samples, a randomised, double-blind, placebo-controlled, two-way crossover pilot study was conducted with 33 participants. Participants smoked a joint containing 500 mg of tobacco and either 500 mg of CBD-rich marijuana (16.6% total CBD; 0.9% total THC) or 500 mg of a placebo substance, then performed three different dimensions of the Vienna Test System TRAFFIC examining reaction time, behaviour under stress, and concentration performance. For further assessment of participants' fitness to drive, three tests of balance and coordination were evaluated and vital signs (blood pressure and pulse) were measured. Dried blood spot samples of capillary blood were taken after smoking and after completion of the tests to determine the cannabinoid concentrations (CBD, THC and THC-metabolites). The results revealed no significant differences between the effects of smoking CBD-rich marijuana and placebo on reaction time, motor time, behaviour under stress, or concentration performance. Maximum free CBD and THC concentrations in capillary blood were detected shortly after smoking, ranging between 2.6-440.0 ng/mL and 6.7-102.0 ng/mL, respectively. After 45 min, capillary blood concentrations had already declined and were in the range of 1.9-135.0 ng/mL (free CBD) and 0.9-38.0 ng/mL (free THC). Although the observed levels of free THC concentrations have been reported to cause symptoms of impairment in previous studies in which THC-rich marijuana was smoked, no signs of impairment were found in the current study. This finding suggests that higher CBD concentrations cause a negative allosteric effect in the endocannabinoid system, preventing the formation of such symptoms. Nevertheless, it is recommended that consumers refrain from driving for several hours after smoking CBD-rich marijuana, as legal THC concentration limits may be exceeded. Supplemental data for this article is available online at https://doi.org/10.1080/20961790.2021.1946924 .
Collapse
Affiliation(s)
- Tim J Gelmi
- Department of Forensic Toxicology and Chemistry, Institute of Forensic Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Wolfgang Weinmann
- Department of Forensic Toxicology and Chemistry, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Matthias Pfäffli
- Department of Traffic Sciences, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|