1
|
Role of the Brain's Reward Circuitry in Depression: Transcriptional Mechanisms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:151-70. [PMID: 26472529 DOI: 10.1016/bs.irn.2015.07.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Increasing evidence supports an important role for the brain's reward circuitry in controlling mood under normal conditions and contributing importantly to the pathophysiology and symptomatology of a range of mood disorders, such as depression. Here we focus on the nucleus accumbens (NAc), a critical component of the brain's reward circuitry, in depression and other stress-related disorders. The prominence of anhedonia, reduced motivation, and decreased energy level in most individuals with depression supports the involvement of the NAc in these conditions. We concentrate on several transcription factors (CREB, ΔFosB, SRF, NFκB, and β-catenin), which are altered in the NAc in rodent depression models--and in some cases in the NAc of depressed humans, and which produce robust depression- or antidepressant-like effects when manipulated in the NAc in animal models. These studies of the NAc have established novel approaches toward modeling key symptoms of depression in animals and could enable the development of antidepressant medications with fundamentally new mechanisms of action.
Collapse
|
2
|
Regulator of calcineurin 1 modulates expression of innate anxiety and anxiogenic responses to selective serotonin reuptake inhibitor treatment. J Neurosci 2013; 33:16930-44. [PMID: 24155299 DOI: 10.1523/jneurosci.3513-12.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulator of calcineurin 1 (RCAN1) controls the activity of calcium/calmodulin-dependent phosphatase calcineurin (CaN), which has been implicated in human anxiety disorders. Previously, we reported that RCAN1 functioned as an inhibitor of CaN activity in the brain. However, we now find enhanced phosphorylation of a CaN substrate, cAMP response element-binding protein (CREB), in the brains of Rcan1 knock-out (KO) mice. Consistent with enhanced CREB activation, we also observe enhanced expression of a CREB transcriptional target, brain-derived neurotrophic factor (BDNF) in Rcan1 KO mice. We also discovered that RCAN1 deletion or blockade of RCAN1-CaN interaction reduced CaN and protein phosphatase-1 localization to nuclear-enriched protein fractions and promoted CREB activation. Because of the potential links between CREB, BDNF, and anxiety, we examined the role of RCAN1 in the expression of innate anxiety. Rcan1 KO mice displayed reduced anxiety in several tests of unconditioned anxiety. Acute pharmacological inhibition of CaN rescued these deficits while transgenic overexpression of human RCAN1 increased anxiety. Finally, we found that Rcan1 KO mice lacked the early anxiogenic response to the selective serotonin reuptake inhibitor (SSRI) fluoxetine and had improved latency for its therapeutic anxiolytic effects. Together, our study suggests that RCAN1 plays an important role in the expression of anxiety-related and SSRI-related behaviors through CaN-dependent signaling pathways. These results identify RCAN1 as a mediator of innate emotional states and possible therapeutic target for anxiety.
Collapse
|
3
|
Daskalakis NP, Yehuda R, Diamond DM. Animal models in translational studies of PTSD. Psychoneuroendocrinology 2013; 38:1895-911. [PMID: 23845512 DOI: 10.1016/j.psyneuen.2013.06.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 01/29/2023]
Abstract
Understanding the neurobiological mechanisms of post-traumatic stress disorder (PTSD) is of vital importance for developing biomarkers and more effective pharmacotherapy for this disorder. The design of bidirectional translational studies addressing all facets of PTSD is needed. Animal models of PTSD are needed not only to capture the complexity of PTSD behavioral characteristics, but also to address experimentally the influence of variety of factors which might determine an individual's vulnerability or resilience to trauma, e.g., genetic predisposition, early-life experience and social support. The current review covers recent translational approaches to bridge the gap between human and animal PTSD research and to create a framework for discovery of biomarkers and novel therapeutics.
Collapse
Affiliation(s)
- Nikolaos P Daskalakis
- Traumatic Stress Studies Division & Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Mental Health Care Center, PTSD Clinical Research Program & Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center, Bronx, USA
| | | | | |
Collapse
|
4
|
Fox AS, Oler JA, Shelton SE, Nanda SA, Davidson RJ, Roseboom PH, Kalin NH. Central amygdala nucleus (Ce) gene expression linked to increased trait-like Ce metabolism and anxious temperament in young primates. Proc Natl Acad Sci U S A 2012; 109:18108-13. [PMID: 23071305 PMCID: PMC3497741 DOI: 10.1073/pnas.1206723109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Children with anxious temperament (AT) are particularly sensitive to new social experiences and have increased risk for developing anxiety and depression. The young rhesus monkey is optimal for studying the origin of human AT because it shares with humans the genetic, neural, and phenotypic underpinnings of complex social and emotional functioning. In vivo imaging in young monkeys demonstrated that central nucleus of the amygdala (Ce) metabolism is relatively stable across development and predicts AT. Transcriptome-wide gene expression, which reflects combined genetic and environmental influences, was assessed within the Ce. Results support a maladaptive neurodevelopmental hypothesis linking decreased amygdala neuroplasticity to early-life dispositional anxiety. For example, high AT individuals had decreased mRNA expression of neurotrophic tyrosine kinase, receptor, type 3 (NTRK3). Moreover, variation in Ce NTRK3 expression was inversely correlated with Ce metabolism and other AT-substrates. These data suggest that altered amygdala neuroplasticity may play a role the early dispositional risk to develop anxiety and depression.
Collapse
Affiliation(s)
- Andrew S. Fox
- Departments of Psychology and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI 53705
| | - Jonathan A. Oler
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
| | - Steven E. Shelton
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
| | | | - Richard J. Davidson
- Departments of Psychology and
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI 53705
| | | | - Ned H. Kalin
- Departments of Psychology and
- Psychiatry and
- HealthEmotions Research Institute, University of Wisconsin, Madison, WI 53719; and
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
5
|
AMBATI S, DUAN J, HARTZELL DL, CHOI YH, DELLA-FERA MA, BAILE CA. GIP-Dependent Expression of Hypothalamic Genes. Physiol Res 2011; 60:941-50. [DOI: 10.33549/physiolres.932151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
GIP (glucose dependent insulinotrophic polypeptide), originally identified as an incretin peptide synthesized in the gut, has recently been identified, along with its receptors (GIPR), in the brain. Our objective was to investigate the role of GIP in hypothalamic gene expression of biomarkers linked to regulating energy balance and feeding behavior related neurocircuitry. Rats with lateral cerebroventricular cannulas were administered 10 μg GIP or 10 μl artificial cerebrospinal fluid (aCSF) daily for 4 days, after which whole hypothalami were collected. Real time Taqman™ RT-PCR was used to quantitatively compare the mRNA expression levels of a set of genes in the hypothalamus. Administration of GIP resulted in up-regulation of hypothalamic mRNA levels of AVP (46.9±4.5 %), CART (25.9±2.7 %), CREB1 (38.5±4.5 %), GABRD (67.1±11 %), JAK2 (22.1±3.6 %), MAPK1 (33.8±7.8 %), NPY (25.3±5.3 %), OXT (49.1±5.1 %), STAT3 (21.6±3.8 %), and TH (33.9±8.5 %). In a second experiment the same set of genes was evaluated in GIPR-/- and GIPR+/? mice to determine the effect of lack of GIP stimulation on gene expression. In GIPR-/- mice expressions of the following genes were down-regulated: AVP (27.1±7.5 %), CART (28.3±3.7 %), OXT (25.2±5.8 %), PTGES (23.9±4.5 %), and STAT3 (8.8±2.3 %). These results suggest that AVP, CART, OXT and STAT3 may be involved in energy balance-related hypothalamic circuits affected by GIP.
Collapse
Affiliation(s)
| | | | | | | | | | - C. A. BAILE
- Department of Animal and Dairy Science, University of Georgia, Athens, USA
| |
Collapse
|
6
|
Zhu X, Peng M, Cheng M, Xiao X, Yi J, Yao S, Zhang X. Hyperthermia protects mice against chronic unpredictable stress-induced anxiety-like behaviour and hippocampal CA3 cell apoptosis. Int J Hyperthermia 2011; 27:573-81. [PMID: 21846193 DOI: 10.3109/02656736.2011.587493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE It is widely accepted that chronic stress can induce anxiety; however, the cellular and molecular mechanisms of stress-induced anxiety are far from being elucidated. Hyperthermia has been shown to induce expression of heat shock proteins (HSPs) to provide protection against a variety of stresses. To our knowledge, the effect of hyperthermia on the development of chronic unpredictable stress (CUS)-induced anxiety has not been studied. This study was to determine the relationship between hyperthermia induced Hsp72 and CUS related anxiety. MATERIALS AND METHODS Heat shock factor 1 knockout (hsf1(-/-)) and wild-type (hsf1(+/+)) mice were subjected to CUS with or without hyperthermia treatment. Anxiety-like behaviours were evaluated by elevated plus maze and open field tests. Apoptosis in the hippocampal CA3 area was detected by TUNEL staining. Hsp72 protein level in the hippocampus was measured by Western blot. RESULTS CUS caused significant apoptosis in hippocampal CA3 cells in both hsf1(-/-) and hsf1(+/+) mice, which significantly correlated with anxiety-like behaviours. Hyperthermia induced Hsp72 expression in hsf1(+/+) mice, but not in hsf1(-/-) mice. Importantly, hyperthermia protected hsf1(+/+) mice against developing CUS-related anxiety-like behaviours and reduced CUS-induced apoptosis in hippocampal CA3 cells. In contrast, hyperthermia exhibited no protective role in hsf1(-/-) mice. CONCLUSIONS Apoptosis of hippocampal CA3 cells is involved in the development of anxiety-like behaviours underlying CUS. Hsp72 protein is a crucial player in the protective effect of hyperthermia against CUS-induced apoptosis and development of anxiety-like behaviours. Our study suggests hyperthermia is an effective treatment for CUS-induced mood disorders.
Collapse
Affiliation(s)
- Xiongzhao Zhu
- Medical Psychological Institute, Second XiangYa Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Le-Niculescu H, Balaraman Y, Patel SD, Ayalew M, Gupta J, Kuczenski R, Shekhar A, Schork N, Geyer MA, Niculescu AB. Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms. Transl Psychiatry 2011; 1:e9. [PMID: 22832404 PMCID: PMC3309477 DOI: 10.1038/tp.2011.9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anxiety disorders are prevalent and disabling yet understudied from a genetic standpoint, compared with other major psychiatric disorders such as bipolar disorder and schizophrenia. The fact that they are more common, diverse and perceived as embedded in normal life may explain this relative oversight. In addition, as for other psychiatric disorders, there are technical challenges related to the identification and validation of candidate genes and peripheral biomarkers. Human studies, particularly genetic ones, are susceptible to the issue of being underpowered, because of genetic heterogeneity, the effect of variable environmental exposure on gene expression, and difficulty of accrual of large, well phenotyped cohorts. Animal model gene expression studies, in a genetically homogeneous and experimentally tractable setting, can avoid artifacts and provide sensitivity of detection. Subsequent translational integration of the animal model datasets with human genetic and gene expression datasets can ensure cross-validatory power and specificity for illness. We have used a pharmacogenomic mouse model (involving treatments with an anxiogenic drug--yohimbine, and an anti-anxiety drug--diazepam) as a discovery engine for identification of anxiety candidate genes as well as potential blood biomarkers. Gene expression changes in key brain regions for anxiety (prefrontal cortex, amygdala and hippocampus) and blood were analyzed using a convergent functional genomics (CFG) approach, which integrates our new data with published human and animal model data, as a translational strategy of cross-matching and prioritizing findings. Our work identifies top candidate genes (such as FOS, GABBR1, NR4A2, DRD1, ADORA2A, QKI, RGS2, PTGDS, HSPA1B, DYNLL2, CCKBR and DBP), brain-blood biomarkers (such as FOS, QKI and HSPA1B), pathways (such as cAMP signaling) and mechanisms for anxiety disorders--notably signal transduction and reactivity to environment, with a prominent role for the hippocampus. Overall, this work complements our previous similar work (on bipolar mood disorders and schizophrenia) conducted over the last decade. It concludes our programmatic first pass mapping of the genomic landscape of the triad of major psychiatric disorder domains using CFG, and permitted us to uncover the significant genetic overlap between anxiety and these other major psychiatric disorders, notably the under-appreciated overlap with schizophrenia. PDE10A, TAC1 and other genes uncovered by our work provide a molecular basis for the frequently observed clinical co-morbidity and interdependence between anxiety and other major psychiatric disorders, and suggest schizo-anxiety as a possible new nosological domain.
Collapse
Affiliation(s)
- H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Y Balaraman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - M Ayalew
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA,Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - J Gupta
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Kuczenski
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - A Shekhar
- Indiana Clinical Translational Science Institute, Indianapolis, IN, USA
| | - N Schork
- Scripps Translational Science Institute, La Jolla, CA, USA
| | - M A Geyer
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA,Indianapolis VA Medical Center, Indianapolis, IN, USA,Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA. E-mail:
| |
Collapse
|
8
|
Ambati S, Duan J, Choi YH, Hartzell DL, Della-Fera MA, Baile CA. ICV vs. VMH injection of leptin: Comparative effects on hypothalamic gene expression. Behav Brain Res 2009; 196:279-85. [DOI: 10.1016/j.bbr.2008.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 11/28/2022]
|
9
|
Wang D, Noda Y, Tsunekawa H, Zhou Y, Miyazaki M, Senzaki K, Nabeshima T. Behavioural and neurochemical features of olfactory bulbectomized rats resembling depression with comorbid anxiety. Behav Brain Res 2007; 178:262-73. [PMID: 17261334 DOI: 10.1016/j.bbr.2007.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/22/2006] [Accepted: 01/02/2007] [Indexed: 11/16/2022]
Abstract
In order to probe the nature and validity of olfactory bulbectomized (OB) rats as a model of depression, we reevaluated their behavioural and neurochemical deficits in relation to the symptoms and neurochemical abnormalities of depression using our protocols, which distinguish anhedonia-resembling behaviour in sexual behavioural test, the hippocampus (Hip)-dependent long-term memory and anxiety-resembling behaviour specially. Besides exploratory hyperactivity in response to a novel environmental stress resembling the psychomotor agitation, OB rats showed a decrease of libido, and a deficit of long-term explicit memory, resembling loss of interest and cognitive deficits in depressive patients, respectively. OB rats also exhibited the anxiety symptom-resembling behaviour in social interaction and plus-maze tests. In the OB rats, we found degenerated neurons in the piriform cortex, decreased protein expression of NMDA receptor subunit 1 (NR1), but not NR2A or NR2B, in the prefrontal cortex (PFC), Hip and amygdala (Amg), and decreased phosphorylation of cAMP-response element-binding protein (CREB) in the PFC and Hip, but not Amg. The behavioural and neurochemical abnormalities in OB rats, except for the performance in the plus-maze task and neuronal degeneration, were significantly attenuated by repeated treatment with desipramine (10 mg/kg), a typical antidepressant. The present study indicated that OB rats may be a model of depression with comorbid anxiety, characterized by agitation, sexual and cognitive dysfunction, neuronal degeneration, decreased protein expression of NR1, and decreased phosphorylation of CREB.
Collapse
Affiliation(s)
- Dayong Wang
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | | | | | | | | | | | | |
Collapse
|