1
|
Akter D, Biswas J, Miller MJ, Thiele DJ, Murphy EA, O'Connor CM, Moffat JF, Chan GC. Targeting the host transcription factor HSF1 prevents human cytomegalovirus replication in vitro and in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614483. [PMID: 39386472 PMCID: PMC11463536 DOI: 10.1101/2024.09.23.614483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
FDA-approved antivirals against HCMV have several limitations, including only targeting the later stages of the viral replication cycle, adverse side effects, and the emergence of drug-resistant strains. Antivirals targeting host factors specifically activated within infected cells and necessary for viral replication could address the current drawbacks of anti-HCMV standard-of-care drugs. In this study, we found HCMV infection stimulated the activation of the stress response transcription factor heat shock transcription factor 1 (HSF1). HCMV entry into fibroblasts rapidly increased HSF1 activity and subsequent relocalization from the cytoplasm to the nucleus, which was maintained throughout viral replication and in contrast to the transient burst of activity induced by canonical heat shock. Prophylactic pharmacological inhibition or genetic depletion of HSF1 prior to HCMV infection attenuated the expression of all classes of viral genes, including immediate early (IE) genes, and virus production, suggesting HSF1 promotes the earliest stages of the viral replication cycle. Therapeutic treatment with SISU-102, an HSF1 inhibitor tool compound, after IE expression also reduced the levels of L proteins and progeny production, suggesting HSF1 regulates multiple steps along the HCMV replication cycle. Leveraging a newly developed human skin xenograft transplant murine model, we found prophylactic treatment with SISU-102 significantly attenuated viral replication in transplanted human skin xenografts as well as viral dissemination to distal sites. These data demonstrate HCMV infection rapidly activates and relocalizes HSF1 to the nucleus to promote viral replication, which can be exploited as a host-directed antiviral strategy. One Sentence Summary Inhibiting of HSF1 as a host-directed antiviral therapy attenuates HCMV replication in vitro and in vivo.
Collapse
|
2
|
Mayer MP. Hsf1 and Hsf2 in normal, healthy human tissues: Immunohistochemistry provokes new questions. Cell Stress Chaperones 2024; 29:437-439. [PMID: 38641046 PMCID: PMC11067330 DOI: 10.1016/j.cstres.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
The heat shock transcription factors heat shock transcription factor 1 and Hsf2 have been studied for many years, mainly in the context of stress response and in malignant cells. Their physiological function in nonmalignant human cells under nonstress conditions is still largely unknown. To approach this important issue, Joutsen et al. present immunohistochemical staining data on Hsf1 and Hsf2 in 80 nonpathological human tissue samples. The wealth of these data elicits many interesting questions that will spur many future research projects.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology Heidelberg University (ZMBH), DKFZ-ZMBH-Alliance, Heidelberg, Germany.
| |
Collapse
|
3
|
Yan L, Li J, Hu J, Qu J, Li K, Wang M, An SS, Ke CC, Li H, Yuan F, Guo W, Hu M, Zhang J, Yang Z, Mu H, zhang F, Zhang J, Cui X, Hu Y. Biotin attenuates heat shock factor 4b transcriptional activity by lysine 444 biotinylation. Biochem Biophys Rep 2022; 30:101227. [PMID: 35198740 PMCID: PMC8841385 DOI: 10.1016/j.bbrep.2022.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic mutations in HSF4 cause congenital cataracts. HSF4 exhibits both positive and negative regulation on the transcription of heat shock and non-heat shock proteins during lens development, and its activity is regulated by posttranslational modifications. Biotin is an essential vitamin that regulates gene expression through protein biotinylation. In this paper, we report that HSF4b is negatively regulated by biotinylation. Administration of biotin or ectopic bacterial biotin ligase BirA increases HSF4b biotinylation at its C-terminal amino acids from 196 to 493. This attenuates the HSF4b-controlled expression of αB-crystallin in both lens epithelial cells and tested HEK293T cells. HSF4b interacts with holocarboxylase synthetase (HCS), a ubiquitous enzyme for catalyzing protein biotinylation in mammal. Ectopic HA-HCS expression downregulates HSF4b-controlled αB-crystallin expression. Lysine-mutation analyses indicate that HSF4b/K444 is a potential biotinylation site. Mutation K444R reduces the co-precipitation of HSF4b by streptavidin beads and biotin-induced reduction of αB-crystallin expression. Mutations of other lysine residues such as K207R/K209R, K225R, K288R, K294R and K355R in HSF4's C-terminal region do not affect HSF4's expression level and the interaction with streptavidin, but they exhibit distinct regulation on αB-crystallin expression through different mechanisms. HSF4/K294R leads to upregulation of αB-crystallin expression, while mutations K207R/K209R, K225R, K288R, K255R and K435R attenuate HSF4's regulation on αB-crystallin expression. K207R/K209R blocks HSF4 nuclear translocation, and K345R causes HSF4 destabilization. Taken together, the data reveal that biotin maybe a novel factor in modulating HSF4 activity through biotinylation. Biotin downregulates HSF4's transcription activity. HSF4 is associated with and down-regulated by holocarboxylase synthetase (HCS). K444 is the potential biotinylated amino acid residue in HSF4b.
Collapse
Affiliation(s)
- Longjun Yan
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Jing Li
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Jialin Hu
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Junwei Qu
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Kejia Li
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Mingli Wang
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Shuang-Shuang An
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Cun-cun Ke
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Hui Li
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Fengling Yuan
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Weikai Guo
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Mengyue Hu
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Jing Zhang
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Zhengyan Yang
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Hongmei Mu
- Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Fengyan zhang
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Zhang
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
| | - Xiukun Cui
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
- Corresponding author.
| | - Yanzhong Hu
- National-Joint Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan International Union Lab of Antibody Medicine, Department of Cell Biology and Genetics, Henan University School of Basic Medical Sciences, Kaifeng, China
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
- Corresponding author. Department of Cell Biology, Henan University School of Medicine, Zhengzhou, China.
| |
Collapse
|
4
|
Occhigrossi L, D’Eletto M, Barlev N, Rossin F. The Multifaceted Role of HSF1 in Pathophysiology: Focus on Its Interplay with TG2. Int J Mol Sci 2021; 22:ijms22126366. [PMID: 34198675 PMCID: PMC8232231 DOI: 10.3390/ijms22126366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
The cellular environment needs to be strongly regulated and the maintenance of protein homeostasis is crucial for cell function and survival. HSF1 is the main regulator of the heat shock response (HSR), the master pathway required to maintain proteostasis, as involved in the expression of the heat shock proteins (HSPs). HSF1 plays numerous physiological functions; however, the main role concerns the modulation of HSPs synthesis in response to stress. Alterations in HSF1 function impact protein homeostasis and are strongly linked to diseases, such as neurodegenerative disorders, metabolic diseases, and different types of cancers. In this context, type 2 Transglutaminase (TG2), a ubiquitous enzyme activated during stress condition has been shown to promote HSF1 activation. HSF1-TG2 axis regulates the HSR and its function is evolutionary conserved and implicated in pathological conditions. In this review, we discuss the role of HSF1 in the maintenance of proteostasis with regard to the HSF1-TG2 axis and we dissect the stress response pathways implicated in physiological and pathological conditions.
Collapse
Affiliation(s)
- Luca Occhigrossi
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Manuela D’Eletto
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy; (L.O.); (M.D.)
| | - Nickolai Barlev
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Moscow Institute of Physics and Technology (MIPT), 141701 Dolgoprudny, Russia
| | - Federica Rossin
- Institute of Cytology, 194064 Saint-Petersburg, Russia;
- Correspondence:
| |
Collapse
|
5
|
Widlak W, Vydra N. The Role of Heat Shock Factors in Mammalian Spermatogenesis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 222:45-65. [PMID: 28389750 DOI: 10.1007/978-3-319-51409-3_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat shock transcription factors (HSFs), as regulators of heat shock proteins (HSPs) expression, are well known for their cytoprotective functions during cellular stress. They also play important yet less recognized roles in gametogenesis. All HSF family members are expressed during mammalian spermatogenesis, mainly in spermatocytes and round spermatids which are characterized by extensive chromatin remodeling. Different HSFs could cooperate to maintain proper spermatogenesis. Cooperation of HSF1 and HSF2 is especially well established since their double knockout results in meiosis arrest, spermatocyte apoptosis, and male infertility. Both factors are also involved in the repackaging of the DNA during spermatid differentiation. They can form heterotrimers regulating the basal level of transcription of target genes. Moreover, HSF1/HSF2 interactions are lost in elevated temperatures which can impair the transcription of genes essential for spermatogenesis. In most mammals, spermatogenesis occurs a few degrees below the body temperature and spermatogenic cells are extremely heat-sensitive. Pro-survival pathways are not induced by heat stress (e.g., cryptorchidism) in meiotic and postmeiotic cells. Instead, male germ cells are actively eliminated by apoptosis, which prevents transition of the potentially damaged genetic material to the next generation. Such a response depends on the transcriptional activity of HSF1 which in contrary to most somatic cells, acts as a proapoptotic factor in spermatogenic cells. HSF1 activation could be the main trigger of impaired spermatogenesis related not only to elevated temperature but also to other stress conditions; therefore, HSF1 has been proposed to be the quality control factor in male germ cells.
Collapse
Affiliation(s)
- Wieslawa Widlak
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Natalia Vydra
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
6
|
Hsf4 counteracts Hsf1 transcription activities and increases lens epithelial cell survival in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:746-55. [DOI: 10.1016/j.bbamcr.2015.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/05/2015] [Accepted: 01/08/2015] [Indexed: 11/22/2022]
|
7
|
Zhang J, Ma Z, Wang J, Li S, Zhang Y, Wang Y, Wang M, Feng X, Liu X, Liu G, Lou Q, Cui X, Ma Y, Dong Z, Hu YZ. Regulation of Hsf4b nuclear translocation and transcription activity by phosphorylation at threonine 472. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:580-9. [PMID: 24361130 DOI: 10.1016/j.bbamcr.2013.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 11/09/2013] [Accepted: 12/10/2013] [Indexed: 12/09/2022]
Abstract
Hsf4b, a key regulator of postnatal lens development, is subjected to posttranslational modifications including phosphorylation. However, the phosphorylation sites in Hsf4b and their biological effects on the transcription activity of Hsf4b are poorly understood. Here we examined 17 potential phosphorylation residues in Hsf4b with alanine-scanning assays and found that a T472A mutation diminished Hsf4b-mediated expression of Hsp25 and alphaB-crystallin. In contrast, the phosphomimetic mutation of T472D enhanced their expression. Further investigation demonstrated that Hsf4b could interact with nuclear-transporter importin beta-1 and Hsc70 via amino acids 246-320 and 320-493, respectively. T472A mutation reduced Hsf4bs interaction with importin beta-1, while enhancing its interaction with Hsc7O, resulting in Hsf4b cytosolic re-localization, protein instability and transcription activity attenuation. At the upstream, MEK6 was found to interact with Hsf4b and enhance Hsf4b's nuclear translocation and transcription activity, probably by phosphorylation at sites such as T472. Taken together, our results suggest that phosphotylation of Hsf4b at T472 by protein kinases such as MEI(6 regulates Hsf4b interaction with the importin V I -Hsc7O complex, resulting in blockade of its nuclear translocation and transcriptional activity of Hsf4b.
Collapse
|
8
|
Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders. Neuron 2014; 82:560-72. [PMID: 24726381 DOI: 10.1016/j.neuron.2014.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2014] [Indexed: 12/25/2022]
Abstract
Prenatal exposure of the developing brain to various environmental challenges increases susceptibility to late onset of neuropsychiatric dysfunction; still, the underlying mechanisms remain obscure. Here we show that exposure of embryos to a variety of environmental factors such as alcohol, methylmercury, and maternal seizure activates HSF1 in cerebral cortical cells. Furthermore, Hsf1 deficiency in the mouse cortex exposed in utero to subthreshold levels of these challenges causes structural abnormalities and increases seizure susceptibility after birth. In addition, we found that human neural progenitor cells differentiated from induced pluripotent stem cells derived from schizophrenia patients show higher variability in the levels of HSF1 activation induced by environmental challenges compared to controls. We propose that HSF1 plays a crucial role in the response of brain cells to prenatal environmental insults and may be a key component in the pathogenesis of late-onset neuropsychiatric disorders.
Collapse
|
9
|
Brandman O, Stewart-Ornstein J, Wong D, Larson A, Williams CC, Li GW, Zhou S, King D, Shen PS, Weibezahn J, Dunn JG, Rouskin S, Inada T, Frost A, Weissman JS. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 2013; 151:1042-54. [PMID: 23178123 PMCID: PMC3534965 DOI: 10.1016/j.cell.2012.10.044] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/03/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
Abstract
The conserved transcriptional regulator heat shock factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC, and Hsf1 senses an RQC-mediated translation-stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism.
Collapse
Affiliation(s)
- Onn Brandman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zorzi E, Bonvini P. Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers (Basel) 2011; 3:3921-56. [PMID: 24213118 PMCID: PMC3763403 DOI: 10.3390/cancers3043921] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/26/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022] Open
Abstract
Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more "addicted" to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells.
Collapse
Affiliation(s)
- Elisa Zorzi
- OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova, Italy; E-Mail:
| | - Paolo Bonvini
- OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova, Italy; E-Mail:
- Fondazione Città della Speranza, 36030 Monte di Malo, Vicenza, Italy
| |
Collapse
|
11
|
Gong TW, Fairfield DA, Fullarton L, Dolan DF, Altschuler RA, Kohrman DC, Lomax MI. Induction of heat shock proteins by hyperthermia and noise overstimulation in hsf1 -/- mice. J Assoc Res Otolaryngol 2011; 13:29-37. [PMID: 21932106 DOI: 10.1007/s10162-011-0289-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/23/2011] [Indexed: 11/26/2022] Open
Abstract
Diverse cellular and environmental stresses can activate the heat shock response, an evolutionarily conserved mechanism to protect proteins from denaturation. Stressors activate heat shock transcription factor 1 (HSF1), which binds to heat shock elements in the genes for heat shock proteins, leading to rapid induction of these important molecular chaperones. Both heat and noise stress are known to activate the heat shock response in the cochlea and protect it from subsequent noise trauma. However, the contribution of HSF1 to induction of heat shock proteins following noise trauma has not been investigated at the molecular level. We evaluated the role of HSF1 in the cochlea following noise stress by examining induction of heat shock proteins in Hsf1 ( +/- ) control and Hsf1 ( -/- ) mice. Heat stress rapidly induced expression of Hsp25, Hsp47, Hsp70.1, Hsp70.3, Hsp84, Hsp86, and Hsp110 in the cochleae of wild-type and Hsf1 ( +/- ) mice, but not in Hsf1 ( -/- ) mice, confirming the essential role of HSF1 in mediating the heat shock response. Exposure to broadband noise (2-20 kHz) at 106 dB SPL for 2 h produced partial hearing loss. Maximal induction of heat shock proteins occurred 4 h after the noise. In comparison to heat stress, noise stress resulted in lower induced levels of Hsp25, Hsp70.1, Hsp70.3, Hsp86, and Hsp110 in Hsf1 ( +/- ) mice. Induction of these heat shock proteins was attenuated, but not completely eliminated, in Hsf1 ( -/- ) mice. These same noise exposure conditions induced genes for several immediate early transcription factors and maximum induction occurred earlier than for heat shock proteins. Thus, additional signaling pathways and transcriptional regulators that are activated by noise probably contribute to induction of heat shock proteins in the cochlea.
Collapse
Affiliation(s)
- Tzy-Wen Gong
- Department of Otolaryngology/Head Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-5648, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Le Masson F, Razak Z, Kaigo M, Audouard C, Charry C, Cooke H, Westwood JT, Christians ES. Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis. Mol Cell Biol 2011; 31:3410-23. [PMID: 21690297 PMCID: PMC3147796 DOI: 10.1128/mcb.05237-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/07/2011] [Indexed: 01/18/2023] Open
Abstract
Heat shock factor 1 (HSF1), while recognized as the major regulator of the heat shock transcriptional response, also exerts important functions during mammalian embryonic development and gametogenesis. In particular, HSF1 is required for oocyte maturation, the adult phase of meiosis preceding fertilization. To identify HSF1 target genes implicated in this process, comparative transcriptomic analyses were performed with wild-type and HSF-deficient oocytes. This revealed a network of meiotic genes involved in cohesin and synaptonemal complex (SC) structures, DNA recombination, and the spindle assembly checkpoint (SAC). All of them were found to be regulated by HSF1 not only during adult but also in embryonic phases of female meiosis. Additional investigations showed that SC, recombination nodules, and DNA repair were affected in Hsf1(-/-) oocytes during prenatal meiotic prophase I. However, targeting Hsf1 deletion to postnatal oocytes (using Zp3 Cre; Hsf1(loxP/loxP)) did not fully rescue the chromosomal anomalies identified during meiotic maturation, which possibly caused a persistent SAC activation. This would explain the metaphase I arrest previously described in HSF1-deficient oocytes since SAC inhibition circumvented this block. This work provides new insights into meiotic gene regulation and points out potential links between cellular stress and the meiotic anomalies frequently observed in humans.
Collapse
Affiliation(s)
- Florent Le Masson
- Université Toulouse 3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| | - Zak Razak
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Mo Kaigo
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Christophe Audouard
- Université Toulouse 3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| | - Colette Charry
- Université Toulouse 3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| | - Howard Cooke
- Institute of Genetic and Molecular Medicine, MRC Human Genetics Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - J. Timothy Westwood
- Department of Cell and Systems Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Elisabeth S. Christians
- Université Toulouse 3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| |
Collapse
|
13
|
Le Masson F, Christians E. HSFs and regulation of Hsp70.1 (Hspa1b) in oocytes and preimplantation embryos: new insights brought by transgenic and knockout mouse models. Cell Stress Chaperones 2011; 16:275-85. [PMID: 21053113 PMCID: PMC3077227 DOI: 10.1007/s12192-010-0239-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/17/2010] [Accepted: 10/14/2010] [Indexed: 11/25/2022] Open
Abstract
Gene encoding heat shock protein (Hsps) are induced following a thermal stress thanks to the activation of heat shock transcription factor (HSF) which interacts with heat shock elements (HSE) located within the sequence of Hsp promoters. This cellular and protective response (heat shock response (HSR)) is well known and evolutionarily conserved. Nevertheless, HSR does not function in all the cells produced during the life of a multicellular organism, e.g., early mouse embryos. Taking advantage of mouse transgenic and knockout models, we investigated the roles of trans (HSF 1 and 2) and cis (HSE) regulatory elements in the control of Hsp70.1 (Hspa1b) through several developmental steps from oocytes to blastocysts. Our studies confirm that, even in absence of any stress, HSF1 regulates Hsp70.1 in oocytes and early embryos. Our data emphasize the role of maternal and paternal HSFs in the developmentally regulated expression of Hsp70.1 observed when the zygotic genome activation occurs. Furthermore, in this unstressed developmental condition, affinity and binding to HSEs might be more permissive than in the stress response. Finally, submitting blastocyst to different stress conditions, we show that HSF2 is differentially required for Hsp expression and cell survival. Taken together, our findings indicate that the role of heat shock trans and cis regulatory elements evolve along the successive steps of early embryonic development.
Collapse
Affiliation(s)
- Florent Le Masson
- Université Toulouse3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| | - Elisabeth Christians
- Université Toulouse3, UPS, UMR 5547, Centre de Biologie du Développement, 118 route de Narbonne (Bat 4R3B3), 31062 Toulouse Cedex 09, France
| |
Collapse
|
14
|
Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor α. PPAR Res 2011; 2010:727194. [PMID: 21318169 PMCID: PMC3026993 DOI: 10.1155/2010/727194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/13/2010] [Accepted: 11/01/2010] [Indexed: 11/18/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is activated by a large number of xenobiotic and hypolipidemic compounds called peroxisome proliferator chemicals (PPCs). One agonist of PPARα (WY-14,643) regulates responses in the mouse liver to chemical stress in part by altering expression of genes involved in proteome maintenance (PM) including protein chaperones in the heat shock protein (Hsp) family and proteasomal genes (Psm) involved in proteolysis. We hypothesized that other PPARα activators including diverse hypolipidemic and xenobiotic compounds also regulate PM genes in the rat and mouse liver. We examined the expression of PM genes in rat and mouse liver after exposure to 7 different PPCs (WY-14,643, clofibrate, fenofibrate, valproic acid, di-(2-ethylhexyl) phthalate, perfluorooctanoic acid, and perfluorooctane sulfonate) using Affymetrix microarrays. In rats and mice, 174 or 380 PM genes, respectively, were regulated by at least one PPC. The transcriptional changes were, for the most part, dependent on PPARα, as most changes were not observed in similarly treated PPARα-null mice and the changes were not consistently observed in rats treated with activators of the nuclear receptors CAR or PXR. In rats and mice, PM gene expression exhibited differences compared to typical direct targets of PPARα (e.g., Cyp4a family members). PM gene expression was usually delayed and in some cases, it was transient. Dose-response characterization of protein expression showed that Hsp86 and Hsp110 proteins were induced only at higher doses. These studies demonstrate that PPARα, activated by diverse PPC, regulates the expression of a large number of genes involved in protein folding and degradation and support an expanded role for PPARα in the regulation of genes that protect the proteome.
Collapse
|
15
|
Vallanat B, Anderson SP, Brown-Borg HM, Ren H, Kersten S, Jonnalagadda S, Srinivasan R, Corton JC. Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). BMC Genomics 2010; 11:16. [PMID: 20059764 PMCID: PMC2823686 DOI: 10.1186/1471-2164-11-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 01/07/2010] [Indexed: 11/22/2022] Open
Abstract
Background The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by heat shock (HS) through activation by HS factor-1 (HSF1). We hypothesized that there are interactions on a genetic level between PPARα and the HS response mediated by HSF1. Results Wild-type and PPARα-null mice were exposed to HS, the PPARα agonist WY-14,643 (WY), or both; gene and protein expression was examined in the livers of the mice 4 or 24 hrs after HS. Gene expression profiling identified a number of Hsp family members that were altered similarly in both mouse strains. However, most of the targets of HS did not overlap between strains. A subset of genes was shown by microarray and RT-PCR to be regulated by HS in a PPARα-dependent manner. HS also down-regulated a large set of mitochondrial genes specifically in PPARα-null mice that are known targets of PPARγ co-activator-1 (PGC-1) family members. Pretreatment of PPARα-null mice with WY increased expression of PGC-1β and target genes and prevented the down-regulation of the mitochondrial genes by HS. A comparison of HS genes regulated in our dataset with those identified in wild-type and HSF1-null mouse embryonic fibroblasts indicated that although many HS genes are regulated independently of both PPARα and HSF1, a number require both factors for HS responsiveness. Conclusions These findings demonstrate that the PPARα genotype has a dramatic effect on the transcriptional targets of HS and support an expanded role for PPARα in the regulation of proteome maintenance genes after exposure to diverse forms of environmental stress including HS.
Collapse
Affiliation(s)
- Beena Vallanat
- NHEERL Toxicogenomics Core, US EPA, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lack of maternal Heat Shock Factor 1 results in multiple cellular and developmental defects, including mitochondrial damage and altered redox homeostasis, and leads to reduced survival of mammalian oocytes and embryos. Dev Biol 2010; 339:338-53. [PMID: 20045681 DOI: 10.1016/j.ydbio.2009.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/12/2009] [Accepted: 12/23/2009] [Indexed: 11/24/2022]
Abstract
Heat Shock Factor 1 (HSF1) is a transcription factor whose loss of function results in the inability of Hsf1(-/-) females to produce viable embryos, as a consequence of early developmental arrest. We previously demonstrated that maternal HSF1 is required in oocytes to regulate expression of chaperones, in particular Hsp90alpha, and is essential for the progression of meiotic maturation. In the present work, we used comparative morphological and biochemical analytic approaches to better understand how Hsf1(-/-) oocytes undergo irreversible cell death. We found that the metaphase II arrest in mature oocytes, cortical granule exocytosis and formation of pronuclei in zygotes were all impaired in Hsf1(-/-) mutants. Although oogenesis generated fully grown oocytes in follicles, intra-ovarian Hsf1(-/-) oocytes displayed ultrastructural abnormalities and contained dysfunctional mitochondria as well as elevated oxidant load. Finally, the apoptotic effector, caspase-3, was activated in most mutant oocytes and embryos, reflecting their commitment to apoptosis. In conclusion, our study shows that early post-ovulation events are particularly sensitive to oxidant insult, which abrogates the developmental competence of HSF1-depleted oocytes. They also reveal that Hsf1 knock-out mice constitute a genetic model that can be used to evaluate the importance of redox homeostasis in oocytes.
Collapse
|
17
|
Whitesell L, Lindquist S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 2009; 13:469-78. [PMID: 19335068 DOI: 10.1517/14728220902832697] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND In mammals, the cytoprotective heat-shock response is regulated primarily by heat shock factor 1 (HSF1). Unfortunately, the effects of HSF1 also support the ability of cancer cells to accommodate imbalances in signaling and alterations in DNA, protein and energy metabolism associated with oncogenesis. The malignant lifestyle confers dependence on this 'non-oncogene', suggesting a therapeutic role for HSF1 inhibitors. OBJECTIVE/METHODS We begin with an overview of how HSF1 affects cancer biology and how its activity is regulated. We then summarize progress in discovery and development of HSF1 inhibitors, their current limitations and potential as anticancer agents with a fundamentally different scope of action from other clinically validated modulators of protein homeostasis. RESULTS/CONCLUSIONS It is likely that within the next 5 years usable inhibitors of HSF1 will be identified and in early pre-clinical evaluation.
Collapse
Affiliation(s)
- Luke Whitesell
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
18
|
Metchat A, Akerfelt M, Bierkamp C, Delsinne V, Sistonen L, Alexandre H, Christians ES. Mammalian heat shock factor 1 is essential for oocyte meiosis and directly regulates Hsp90alpha expression. J Biol Chem 2009; 284:9521-8. [PMID: 19158073 DOI: 10.1074/jbc.m808819200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock transcription factor 1 (HSF1) is the main regulator of the stress response that triggers the transcription of several genes encoding heat shock proteins (Hsps). Hsps act as molecular chaperones involved in protein folding, stability, and trafficking. HSF1 is highly expressed in oocytes and Hsf1 knock-out in mice revealed that in the absence of stress this factor plays an important role in female reproduction. We previously reported that Hsf1(-/-) females produce oocytes but no viable embryos. Consequently, we asked whether oocytes require HSF1 to regulate a particular set of Hsps necessary for them to develop. We find that Hsp90alpha (Hspaa1) is the major HSF1-dependent chaperone inasmuch as Hsf1 knock-out resulted in Hsp90-depleted oocytes. These oocytes exhibited delayed germinal vesicle breakdown (or G(2)/M transition), partial meiosis I block, and defective asymmetrical division. To probe the role of Hsp90alpha in this meiotic syndrome, we analyzed meiotic maturation in wild-type oocytes treated with a specific inhibitor of Hsp90, 17-allylamino-17-demethoxy-geldanamycin, and observed similar defects. At the molecular level we showed that, together with these developmental anomalies, CDK1 and MAPK, key meiotic kinases, were significantly disturbed. Thus, our data demonstrate that HSF1 is a maternal transcription factor essential for normal progression of meiosis.
Collapse
Affiliation(s)
- Aïcha Metchat
- UPS, Centre de Biologie du Développement-UMR5547, 4R3B3, Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Salmand PA, Jungas T, Fernandez M, Conter A, Christians ES. Mouse Heat-Shock Factor 1 (HSF1) Is Involved in Testicular Response to Genotoxic Stress Induced by Doxorubicin1. Biol Reprod 2008; 79:1092-101. [PMID: 18703420 DOI: 10.1095/biolreprod.108.070334] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Pierre A Salmand
- Université Toulouse 3, Unité Mixte de Recherche 5547 (UMR 5547), Centre National pour la Recherche Scientifique (CNRS)-Université Paul Sabatier (UPS), 31062 Toulouse, France
| | | | | | | | | |
Collapse
|
20
|
Zhao R, Ma X, Shen GX. Transcriptional regulation of plasminogen activator inhibitor-1 in vascular endothelial cells induced by oxidized very low density lipoproteins. Mol Cell Biochem 2008; 317:197-204. [DOI: 10.1007/s11010-008-9851-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/13/2008] [Indexed: 11/28/2022]
|
21
|
Abstract
Environmental stress induces damage that activates an adaptive response in any organism. The cellular stress response is based on the induction of cytoprotective proteins,the so called stress or heat shock proteins. The stress response as well as stress proteins are ubiquitous,highly conserved mechanism, and genes, respectively, already present in prokaryotes. Chaperones protect the proteome against conformational damage, promoting the function of protein networks. Protein damage takes place during aging and in several degenerative diseases, and presents a threat to overload the cellular defense mechanisms. The preservation of a robust stress response and protein disposal is indispensable for health and longevity. This review summarizes the present knowledge of protein damage, turnover, and the stress response in aging and degenerative diseases.
Collapse
Affiliation(s)
- C Söti
- Department of Medical Chemistry, Semmelweis University PO Box 260, H-1444, Budapest 8, Hungary.
| | | |
Collapse
|
22
|
Wang Y, White MG, Akay C, Chodroff RA, Robinson J, Lindl KA, Dichter MA, Qian Y, Mao Z, Kolson DL, Jordan-Sciutto KL. Activation of cyclin-dependent kinase 5 by calpains contributes to human immunodeficiency virus-induced neurotoxicity. J Neurochem 2007; 103:439-55. [PMID: 17897354 DOI: 10.1111/j.1471-4159.2007.04746.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although the specific mechanism of neuronal damage in human immunodeficiency virus (HIV) -associated dementia is not known, a prominent role for NMDA receptor (NMDAR)-induced excitotoxicity has been demonstrated in neurons exposed to HIV-infected/activated macrophages. We hypothesized NMDAR-mediated activation of the calcium-dependent protease, calpain, would contribute to cell death by induction of cyclin-dependent kinase 5 (CDK5) activity. Using an in vitro model of HIV neurotoxicity, in which primary rat cortical cultures are exposed to supernatants from primary human HIV-infected macrophages, we have observed increased calpain-dependent cleavage of the CDK5 regulatory subunit, p35, to the constitutively active isoform, p25. Formation of p25 is dependent upon NMDAR activation and calpain activity and is coincident with increased CDK5 activity in this model. Further, inhibition of CDK5 by roscovitine provided neuroprotection in our in vitro model. Consistent with our observations in vitro, we have observed a significant increase in calpain activity and p25 levels in midfrontal cortex of patients infected with HIV, particularly those with HIV-associated cognitive impairment. Taken together, our data suggest calpain activation of CDK5, a pathway activated in HIV-infected individuals, can mediate neuronal damage and death in a model of HIV-induced neurotoxicity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The redox environment of the cell is currently thought to be extremely important to control cell growth, differentiation, and apoptosis as many redox-sensitive proteins characterize these networks. A recent, widely accepted theory is that free radicals are not only dangerous species but, at low concentration, they have been designed by evolution to participate in the maintenance of cellular redox (reduction/oxidation) homeostasis. This notion derives from the evidence that cells constantly generate free radicals both as waste products of aerobic metabolism and in response to a large variety of stimuli. Free radicals, once produced, provoked cellular responses (redox regulation) against oxidative stress transducing the signals to maintain the cellular redox balance. Growing evidence suggests that in many instances the production of radical species is tightly regulated and their downstream targets are very specific, indicating that reactive oxygen species and reactive nitrogen species actively participate in several cell-signalling pathways as physiological "second messengers." In this review, we provide a general overview and novel insights into the redox-dependent pathways involved in programmed cell death.
Collapse
|