1
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
2
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 584] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Zaidi S, Hassan MI, Islam A, Ahmad F. The role of key residues in structure, function, and stability of cytochrome-c. Cell Mol Life Sci 2014; 71:229-55. [PMID: 23615770 PMCID: PMC11113841 DOI: 10.1007/s00018-013-1341-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023]
Abstract
Cytochrome-c (cyt-c), a multi-functional protein, plays a significant role in the electron transport chain, and thus is indispensable in the energy-production process. Besides being an important component in apoptosis, it detoxifies reactive oxygen species. Two hundred and eighty-five complete amino acid sequences of cyt-c from different species are known. Sequence analysis suggests that the number of amino acid residues in most mitochondrial cyts-c is in the range 104 ± 10, and amino acid residues at only few positions are highly conserved throughout evolution. These highly conserved residues are Cys14, Cys17, His18, Gly29, Pro30, Gly41, Asn52, Trp59, Tyr67, Leu68, Pro71, Pro76, Thr78, Met80, and Phe82. These are also known as "key residues", which contribute significantly to the structure, function, folding, and stability of cyt-c. The three-dimensional structure of cyt-c from ten eukaryotic species have been determined using X-ray diffraction studies. Structure analysis suggests that the tertiary structure of cyt-c is almost preserved along the evolutionary scale. Furthermore, residues of N/C-terminal helices Gly6, Phe10, Leu94, and Tyr97 interact with each other in a specific manner, forming an evolutionary conserved interface. To understand the role of evolutionary conserved residues on structure, stability, and function, numerous studies have been performed in which these residues were substituted with different amino acids. In these studies, structure deals with the effect of mutation on secondary and tertiary structure measured by spectroscopic techniques; stability deals with the effect of mutation on T m (midpoint of heat denaturation), ∆G D (Gibbs free energy change on denaturation) and folding; and function deals with the effect of mutation on electron transport, apoptosis, cell growth, and protein expression. In this review, we have compiled all these studies at one place. This compilation will be useful to biochemists and biophysicists interested in understanding the importance of conservation of certain residues throughout the evolution in preserving the structure, function, and stability in proteins.
Collapse
Affiliation(s)
- Sobia Zaidi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025 India
| |
Collapse
|
4
|
Zheng J, Zhou Q, Zhou Y, Lu T, Cotton TM, Chumanov G. Surface-enhanced resonance Raman spectroscopic study of yeast iso-1-cytochrome c and its mutant. J Electroanal Chem (Lausanne) 2002. [DOI: 10.1016/s0022-0728(02)01003-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Murgida DH, Hildebrandt P. Elektronentransferdynamik von adsorbiertem Cytochromc auf selbstorganisierten Monoschichten - eine Untersuchung mit zeitaufgelöster oberflächenverstärkter Resonanz-Raman-Spektroskopie. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20010216)113:4<751::aid-ange7510>3.0.co;2-g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Murgida DH, Hildebrandt P. Active-Site Structure and Dynamics of Cytochrome c Immobilized on Self-Assembled Monolayers-A Time-Resolved Surface Enhanced Resonance Raman Spectroscopic Study This work was supported by the Deutsche Forschungsgemeinschaft, the Volkswagenstiftung, and the Alexander-von-Humboldt Foundation. Angew Chem Int Ed Engl 2001; 40:728-731. [PMID: 11241605 DOI: 10.1002/1521-3773(20010216)40:4<728::aid-anie7280>3.0.co;2-p] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel H. Murgida
- Max-Planck-Institut für Strahlenchemie Stiftstrasse 34-36, 45470 Mülheim an der Ruhr (Germany)
| | | |
Collapse
|
7
|
|
8
|
Ye S, Shen C, Cotton TM, Kostić NM. Characterization of zinc-substituted cytochrome c by circular dichroism and resonance Raman spectroscopic methods. J Inorg Biochem 1997; 65:219-26. [PMID: 9025273 DOI: 10.1016/s0162-0134(97)00001-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Iron(III) in cytochrome c is replaced with zinc(II) by a modification of a method published by others, and the procedure is described in full detail. Three forms of cytochrome c-those containing iron(III), iron(II), and zinc(II)-are examined by circular dichroism spectroscopy and resonance Raman spectroscopy. Spectra of both kinds show that introduction of zinc(II) ions does not appreciably alter the overall structure and conformation of cytochrome c. Resonance Raman spectra indicate the size of the porphyrin "core" that is inconsistent with six-coordination and consistent with five-coordination. Unlike the iron(III) and iron(II) ions, which are bound to two axial ligands (His 18 and Met 80), the zinc(II) ion in cytochrome c seems to be bound to only one, most probably His 18. Evidence pertaining to the question of axial coordination is discussed.
Collapse
Affiliation(s)
- S Ye
- Department of Chemistry, Iowa State University, Ames 50011-3111, USA
| | | | | | | |
Collapse
|
9
|
Crnogorac MM, Shen C, Young S, Hansson O, Kostić NM. Effects of mutations in plastocyanin on the kinetics of the protein rearrangement gating the electron-transfer reaction with zinc cytochrome c. Analysis of the rearrangement pathway. Biochemistry 1996; 35:16465-74. [PMID: 8987979 DOI: 10.1021/bi961914u] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We study, by flash kinetic spectrophotometry on the microsecond time scale, the effects of ionic strength and viscosity on the kinetics of oxidative quenching of the triplet state of zinc cytochrome c (3Zncyt) by the wild-type form and the following nine mutants of cupriplastocyanin: Leu12Glu, Leu12Asn, Phe35Tyr, Gln88Glu, Tyr83Phe, Tyr83His, Asp42Asn, Glu43Asn, and the double mutant Glu59Lys/Glu60Gln. The unimolecular rate constants for the quenching reactions within the persistent diprotein complex, which predominates at low ionic strengths, and within the transient diprotein complex, which is involved at higher ionic strengths, are equal irrespective of the mutation. Evidently, the two complexes are the same. In both reactions, the rate-limiting step is rearrangement of the diprotein complex from a configuration optimal for docking to the one optimal for the subsequent electron-transfer step, which is fast. We investigate the effects of plastocyanin mutations on this rearrangement, which gates the overall electron-transfer reaction. Conversion of the carboxylate anions into amide groups in the lower acidic cluster (residues 42 and 43), replacement of Tyr83 with other aromatic residues, and mutations in the hydrophobic patch in plastocyanin do not significantly affect the rearrangement. Conversion of a pair of carboxylate anions into a cationic and a neutral residue in the upper acidic cluster (residues 59 and 60) impedes the rearrangement. Creation of an anion at position 88, between the upper acidic cluster and the hydrophobic patch, facilitates the rearrangement. The rate constant for the rearrangement smoothly decreases as the solution viscosity increases, irrespective of the mutation. Fittings of this dependence to the modified Kramers's equation and to an empirical equation show that zinc cytochrome c follows the same trajectory on the surfaces of all the plastocyanin mutants but that the obstacles along the way vary as mutations alter the electrostatic potential. Mutations that affect protein association (i.e., change the binding constant) do not necessarily affect the reaction between the associated proteins (i.e., the rate constant) and vice versa. All of the kinetic and thermodynamic effects and noneffects of mutations consistently indicate that in the protein rearrangement the basic patch of zinc cytochrome c moves from a position between the two acidic clusters to a position at or near the upper acidic cluster.
Collapse
Affiliation(s)
- M M Crnogorac
- Department of Chemistry, Iowa State University, Ames 50011, USA
| | | | | | | | | |
Collapse
|
10
|
Ivković-Jensen MM, Kostić NM. Effects of temperature on the kinetics of the gated electron-transfer reaction between zinc cytochrome c and plastocyanin. Analysis of configurational fluctuation of the diprotein complex. Biochemistry 1996; 35:15095-106. [PMID: 8942677 DOI: 10.1021/bi961608g] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This is a study of the effects of temperature (in the range 273.3-307.7 K) and of ionic strength (in the range 2.5-100 mM) on the kinetics of photoinduced electron-transfer reaction 3Zncyt/pc(II)--> Zncyt+/pc(I) within the electrostatic complex of zinc cytochrome c and cupriplastocyanin at pH 7.0. In order to separate direct and indirect effects of temperature on the rate constants, viscosity of the solutions was fixed, at different values, by additions of sucrose. The activation parameters for the reaction within the preformed complex, at the low ionic strength, are delta H++ = 13 +/- 2 kJ/mol and delta S++ = -97 +/- 4 J/K mol. The activation parameters for the reaction within the encounter complex, at the higher ionic strength, are delta H++ = 13 +/- 1 kJ/mol and delta S++ = -96 +/- 3 J/K mol. Evidently, the two complexes are the same. The proteins associate similarly in the persistent and the transient complex, i.e., at different ionic strengths. In both complexes, however, electron transfer is gated by a rearrangement, as previous studies from this laboratory showed. Changes in the solution viscosity modulate this rearrangement by affecting delta H++, not delta S++. The activation parameters are analyzed by empirical methods. The thermodynamic parameters delta H and delta S for the formation of the complex Zncyt/pc(II) are determined and related to changes in hydrophilic and hydrophobic surfaces upon protein association in three configurations. A difference between the values of delta H for the configuration providing optimal electronic coupling between the redox sites and the configuration providing optimal docking equals the experimental value delta H++ = 13 kJ/mol for the rearrangement of the latter configuration into the former. Enthalpy of activation may reflect a change in the character of the exposed surface as the diprotein complex rearranges. Entropy of activation may reflect tightening of the contact between the associated proteins.
Collapse
|
11
|
Shen C, Kostić NM. Reductive Quenching of the Triplet State of Zinc Cytochrome c by the Hexacyanoferrate(II) Anion and by Conjugate Bases of Ethylenediaminetetraacetic Acid. Inorg Chem 1996. [DOI: 10.1021/ic9510270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chengyu Shen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Nenad M. Kostić
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
12
|
Qin L, Kostić NM. Enforced interaction of one molecule of plastocyanin with two molecules of cytochrome c and an electron-transfer reaction involving the hydrophobic patch on the plastocyanin surface. Biochemistry 1996; 35:3379-86. [PMID: 8639487 DOI: 10.1021/bi9516586] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Laser flash photolysis is used to study the photoinduced electron-transfer reaction cyt(III)//pc(II) + 3Zncyt --> cyt(III)//pc(I) + Zincyt+ at pH 7.0 and 25 degrees. In the covalent (symbol//) complex cyt(III)//pc(II) the acidic patch in cupriplastocyanin is directly cross-linked to the basic patch in ferricytochrome c. The triplet state of zinc cytochrome c reduces the pc(II) moiety, not the cyt(III) moiety, of the covalent complex. The reaction is strictly bimolecular in the entire range of ionic strength studied, from 1.25 mM to 1.00 M. The two reactants interact only transiently, in a collisional complex, and do not form a persistent complex cyt(III)//pc(II)/Zncyt. Because noncovalent (symbol/) association of three separate protein molecules is far less probable than association of the covalent complex and another protein molecule, we conclude that, without the aid of covalent cross-links, one molecule of plastocyanin will not form a ternary complex with two molecules of cytochrome c, cyt/pc/cyt. Dependence of the rate constant on ionic strength is analyzed in terms of van Leeuwen theory of electrostatic interactions, which recognizes the importance of dipole moments of the proteins. This analysis shows that 3Zncyt reacts with the hydrophobic patch in the pc(II) moiety of the covalent complex cyt(III)//pc(II). At high ionic strength, at which electrostatic interactions are practically abolished, the blue copper site is reduced with approximately equal rates via the hydrophobic patch in the pc(II) moiety of the complex and via the acidic patch in free pc(II). This is evidence that the two distinct patches on the plastocyanin surface are comparable in their intrinsic "conductivity" for electrons coming to the copper site. Positively charged and electroneutral redox partners tend to react at the acidic patch (although not necessarily at the initial docking site in this broad patch) for electrostatic, not electronic, reasons. Earlier theorectical studies disagreed about the relative electronic conductivities of the two patches. This experimental study corroborates very recent theoretical studies that found the two patches to be comparable in the efficiency of electron transfer.
Collapse
Affiliation(s)
- L Qin
- Department of Chemistry, Iowa State University, Ames 50011, USA
| | | |
Collapse
|
13
|
Torres E, Victor Sandoval J, Rosell FI, Grant Mauk A, Vazquez-Duhalt R. Site-directed mutagenesis improves the biocatalytic activity of iso-1-cytochrome c in polycyclic hydrocarbon oxidation. Enzyme Microb Technol 1995. [DOI: 10.1016/0141-0229(95)00032-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Blanchard L, Dolla A, Bersch B, Forest E, Bianco P, Wall J, Marion D, Guerlesquin F. Effects of the Tyr64 substitution on the stability of cytochrome c553, a low oxidoreduction-potential cytochrome from Desulfovibrio vulgaris Hildenborough. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:423-32. [PMID: 8001560 DOI: 10.1111/j.1432-1033.1994.tb20067.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytochrome c553 from sulfate-reducing bacteria is a low-oxidoreduction-potential cytochrome. The primary and tertiary structures show notable differences when compared to mitochondrial cytochromes. Tyr64 replacement in cytochrome c553 provides evidence that this residue is not directly involved in the potential modulation but is mostly implicated in the hydrogen-bond network around the heme. While the different variants obtained did not induce drastic structural modifications, they did affect the stability of the protein. This decrease of stability in acidic and alkaline environments was observed by variations in the optical spectra and by mass spectrometry. In addition, the mobility of aromatic side-chain was found to be increased in the mutant proteins as monitored by two-dimensional NMR spectroscopy.
Collapse
Affiliation(s)
- L Blanchard
- Unité de Bioénergétique et Ingénierie des Protéines, CNRS, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Heacock DH, Harris MR, Durham B, Millett F. Intramolecular electron transfer between Ru(I) and Ru(III) and the heme iron of cytochrome c labeled with ruthenium(II) polypyridine complexes. Inorganica Chim Acta 1994. [DOI: 10.1016/0020-1693(94)04078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Ubbink M, Campos AP, Teixeira M, Hunt NI, Hill HA, Canters GW. Characterization of mutant Met100Lys of cytochrome c-550 from Thiobacillus versutus with lysine-histidine heme ligation. Biochemistry 1994; 33:10051-9. [PMID: 8060974 DOI: 10.1021/bi00199a032] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The heme iron in cytochrome c-550 from Thiobacillus versutus has a methionine and a histidine as axial ligands. In order to study the characteristics of a possible lysine-histidine ligation in a heme protein, the methionine has been replaced by a lysine. This residue acts as a ligand between pH 3 and 12. The midpoint potential of the mutant has shifted -329 mV compared to wild type, but apart from this shift the pH dependence of the midpoint potential is unchanged, suggesting that the large drop is caused by specific ligand effects and not by protein refolding. While the EPR spectrum of wild-type cytochrome c-550 shows one species with gz = 3.35, in the spectrum of the mutant two species occur with gz values of 3.53 and 3.30. The intensity ratio of both species depends on the presence of organic cosolvents. In the low frequency region (-4 to -1 ppm) of the 1H NMR spectrum of mutant ferrocytochrome c-550, four one-proton peaks replace the resonances of the ligand methionine side chain protons. Using two-dimensional NMR spectroscopy (COSY and NOESY), these protons and five others have been assigned to the lysine ligand. The spectroscopic results obtained for this mutant show similarities with those observed for the alkaline form of cytochrome c, supporting the Lys-His ligation proposed for this protein. The data are consistent with the evidence for amine ligation in cytochrome f: the EPR spectrum of M100K cytc-550 is similar to that of cytochrome f. However, the NMR spectra show significant differences.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Ubbink
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Willie A, McLean M, Liu RQ, Hilgen-Willis S, Saunders AJ, Pielak GJ, Sligar SG, Durham B, Millett F. Intracomplex electron transfer between ruthenium-65-cytochrome b5 and position-82 variants of yeast iso-1-cytochrome c. Biochemistry 1993; 32:7519-25. [PMID: 8393343 DOI: 10.1021/bi00080a025] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We tested the idea that the aromatic ring on the invariant residue Phe-82 in cytochrome c acts as an electron-transfer bridge between cytochrome c and cytochrome b5. Ru-65-cyt b5 was prepared by labeling the single sulfhydryl group on T65C cytochrome b5 with [4-(bromomethyl)-4'-methylbipyridine][bis(bipyridine)]ruthenium 2+ as previously described [Willie, A., Stayton, P.S., Sligar, S.G., Durham, B., & Millett, F. (1992) Biochemistry 31, 7237-7242]. Laser excitation of the complex formed between Ru-65-cyt b5 and Saccharomyces cerevisiae iso-1-cytochrome c at low ionic strength results in rapid electron transfer from the excited-state Ru(II*) to the heme group of Ru-65-cyt b5 followed by biphasic electron transfer to the heme group of cytochrome c with rate constants of (1.0 +/- 0.2) x 10(5) s-1 and (2.0 +/- 0.04) x 10(4) s-1. Variants of iso-1-cytochrome c substituted at Phe-82 with Tyr, Gly, Leu, and Ile have fast-phase rate constants of 0.4, 1.9, 2.1, and 2.0 x 10(5) s-1 and slow-phase rate constants of 5.3, 3.5, 2.4, and 2.0 x 10(3) s-1, respectively. Increasing the ionic strength to 50 mM results in single-phase intracomplex electron transfer with rate constants of 3.8, 3.1, 3.0, 5.0, and 4.5 x 10(4) s-1 for the wild-type, Tyr, Gly, Leu, and Ile variants, respectively. These results demonstrate that an aromatic side chain at residue 82 is not needed for rapid electron transfer with cytochrome b5. Furthermore, two conformational forms of the complex are present at low ionic strength with fast and slow electron-transfer rates.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Willie
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 72701
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhou JS, Kostić NM. Comparison of electrostatic interactions and of protein-protein orientations in electron-transfer reactions of plastocyanin with the triplet state of zinc cytochrome c and with zinc cytochrome c cation radical. Biochemistry 1993; 32:4539-46. [PMID: 8387336 DOI: 10.1021/bi00068a008] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photoinduced reduction of cupriplastocyanin by the triplet state of zinc cytochrome c (the "forward" reaction) and the subsequent thermal oxidation of cuproplastocyanin by zinc cytochrome c cation radical (the "back" reaction) at ionic strengths from 40 mM to 3.00 M are studied by laser kinetic spectroscopy (so-called flash photolysis). Variation of the bimolecular rate constants over the entire range of ionic strength cannot be explained in terms of monopole-monopole interactions between the protein molecules, but it can be explained in terms of monopole-monopole, monopole-dipole, and dipole-dipole interactions. Analysis of the kinetic results in terms of these electrostatic interactions reveals the overall protein-protein orientation for electron transfer. In both the forward and back reactions the exposed heme edge in zinc cytochrome c apparently abuts the negatively-charged (acidic) patch on the plastocyanin surface, which is remote from the copper atom, and not the electroneutral (hydrophobic) patch, which is proximate to the copper atom. The acidic patch is large, and this analysis cannot rule out a relatively small difference in protein-protein orientations for the forward and back reactions. These two reactions are compared with the previously studied reduction of cupriplastocyanin by ferrocytochrome c. Although native cytochrome c and its zinc derivative have very similar structural and electrostatic properties, the reactive forms of the cytochrome c/plastocyanin and zinc cytochrome c/plastocyanin complexes may adopt somewhat different protein-protein orientations or may adopt similar orientations but differ in dynamic properties.
Collapse
Affiliation(s)
- J S Zhou
- Department of Chemistry, Iowa State University, Ames 50011
| | | |
Collapse
|
19
|
Protein-protein orientation in electron-transfer reactions of the cytochromec/plastocyanin complex with free cytochromec and with free plastocyanin. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/bf00696753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Pelletier H, Kraut J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 1992; 258:1748-55. [PMID: 1334573 DOI: 10.1126/science.1334573] [Citation(s) in RCA: 576] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The crystal structure of a 1:1 complex between yeast cytochrome c peroxidase and yeast iso-1-cytochrome c was determined at 2.3 A resolution. This structure reveals a possible electron transfer pathway unlike any previously proposed for this extensively studied redox pair. The shortest straight line between the two hemes closely follows the peroxidase backbone chain of residues Ala194, Ala193, Gly192, and finally Trp191, the indole ring of which is perpendicular to, and in van der Waals contact with, the peroxidase heme. The crystal structure at 2.8 A of a complex between yeast cytochrome c peroxidase and horse heart cytochrome c was also determined. Although crystals of the two complexes (one with cytochrome c from yeast and the other with cytochrome c from horse) grew under very different conditions and belong to different space groups, the two complex structures are closely similar, suggesting that cytochrome c interacts with its redox partners in a highly specific manner.
Collapse
Affiliation(s)
- H Pelletier
- Department of Chemistry, University of California, San Diego, La Jolla 92093-0317
| | | |
Collapse
|
21
|
Christensen HE, Hammerstad-Pedersen JM, Holm A, Roepstorff P, Ulstrup J, Vorm O, Ostergård S. Synthesis and characterization of a 25-residue rubredoxin(II)-like metalloprotein and its valine-leucine mutant. FEBS Lett 1992; 312:219-22. [PMID: 1426256 DOI: 10.1016/0014-5793(92)80939-e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An iron-sulfur metalloprotein containing the 5-12 and 35-50 residues of Desulfovibrio gigas rubredoxin has been synthesized by Fmoc solid phase peptide synthesis and subsequent peptide folding. A Gly links the two residue chains between Val-5 and Glu-50. Sybyl Tripos structure optimization indicates only minor structural changes of the folded synthetic protein compared to the similar residue positions in the native protein. The UV-VIS spectrum of the reduced synthetic protein is very similar to that of native D. gigas rubredoxin and the molecular mass determined by laser mass spectrometry has the expected value (+/- 2D). No metal is transferred to the gas phase by the laser beam merely by mixing the peptide and iron(II), substantiating that the folding procedure is a necessary pre-requisite for protein formation. The Val-->Leu41 chemical mutant has also been synthesized and behaves in a closely similar fashion.
Collapse
Affiliation(s)
- H E Christensen
- Chemistry Department A, Technical University of Denmark, Lyngby
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhou JS, Kostić NM. Photoinduced electron-transfer reaction in a ternary system involving zinc cytochrome c and plastocyanin. Interplay of monopolar and dipolar electrostatic interactions between metalloproteins. Biochemistry 1992; 31:7543-50. [PMID: 1324717 DOI: 10.1021/bi00148a015] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A carbodiimide promotes noninvasive cross-linking between amino groups surrounding the exposed heme edge in zinc cytochrome c and carboxylic groups in the acidic patch in plastocyanin. Eight derivatives of the covalent complex Zncyt/pc(I), which have similar structures but different overall charges because of different numbers and locations of N-acylurea groups, are separated by cation-exchange chromatography. Kinetics of electron transfer from the diprotein complex in the triplet excited state, 3Zncyt/pc(I), to free cupriplastocyanin at pH 7.0 and various ionic strengths is studied by laser flash spectroscopy. This reaction is purely bimolecular for all eight N-acylurea derivatives of the diprotein complex. The overall charges of the derivatives 1 and 2 at pH 7.0 are -2 and 0, respectively; both of them, however, have very large dipole moments of 410-480 D. The rate constants for their reactions with cupriplastocyanin, whose charge at pH 7.0 is -8 and whose dipole moment is 362 D, are determined over the range of ionic strengths from 2.5 mM to 3.00 M. The observed dependence of the rate constants on ionic strength cannot be explained in terms of net charges (monopole-monopole interactions) alone, but it can be fitted quantitatively with a theory that recognizes also monopole-dipole and dipole-dipole interactions [van Leeuwen, J. W. (1983) Biochim. Biophys. Acta 743, 408]. At ionic strengths up to ca. 10 mM monopole-monopole interactions predominate and Brønsted-Debye-Hückel theory applies.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J S Zhou
- Department of Chemistry, Iowa State University, Ames 50011
| | | |
Collapse
|
23
|
Ubbink M, Van Beeumen J, Canters GW. Cytochrome c550 from Thiobacillus versutus: cloning, expression in Escherichia coli, and purification of the heterologous holoprotein. J Bacteriol 1992; 174:3707-14. [PMID: 1339423 PMCID: PMC206060 DOI: 10.1128/jb.174.11.3707-3714.1992] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The gene coding for cytochrome c550 from Thiobacillus versutus, cycA, has been cloned and sequenced. It codes for a protein of 134 amino acids plus a 19-amino-acid-long signal peptide. Both coding and noncoding DNA sequences of the clone are homologous to the Paracoccus denitrificans DNA sequence. An expression vector was constructed by cloning the cycA gene directly behind the lac promoter of pUC. The cycA gene was expressed in Escherichia coli under semianaerobic conditions, and mature holo-cytochrome c550 was isolated with the periplasmic soluble protein fraction. Under both aerobic and anaerobic conditions, significantly less cytochrome c550 was produced. The heterologously expressed cytochrome c550 was isolated and purified to better than 95% purity and was compared with cytochrome c550 isolated and purified from T. versutus. No structural differences could be detected by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis UV-visible light spectroscopy, and 1H nuclear magnetic resonance spectroscopy, indicating that E. coli produces the cytochrome and attaches the heme correctly.
Collapse
Affiliation(s)
- M Ubbink
- Gorlaeus Laboratories, Department of Chemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
24
|
Christensen HE, Conrad LS, Hammerstad-Pedersen JM, Ulstrup J. Resonance effects in strongly exothermic long-range electron transfer and their possible implications for the behaviour of site-directed mutant proteins. FEBS Lett 1992; 296:141-4. [PMID: 1733768 DOI: 10.1016/0014-5793(92)80365-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long-range electron transfer investigations of hemoproteins, blue copper and iron-sulphur proteins frequently rest on electronically excited metal centres. When the excitation energy approaches the oxidation or reduction potentials of intermediate residues the superexchange view normally used, however, fails and a variety of new dynamic features arise. These all involve population of the intermediate cation or anion residue states which can be partially or wholly vibrationally relaxed. We discuss suitable views and a new theoretical formalism for these phenomena. We also note some important implications for site-directed mutagenesis in long-range, strongly exothermic electron transfer processes.
Collapse
Affiliation(s)
- H E Christensen
- Chemistry Department A, Technical University of Denmark, Lyngby
| | | | | | | |
Collapse
|
25
|
Wang XH, Pielak GJ. Temperature-sensitive variants of Saccharomyces cerevisiae iso-1-cytochrome c produced by random mutagenesis of codons 43 to 54. J Mol Biol 1991; 221:97-105. [PMID: 1656051 DOI: 10.1016/0022-2836(91)80207-b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vitro random mutagenesis within the CYC1 gene from the yeast Saccharomyces cerevisiae was used to produce a library of mutants encompassing codons 43 to 54 of iso-1-cytochrome c. This region consists of an evolutionarily conserved structure within an evolutionarily diverse sequence. The library, on a low-copy-number yeast shuttle phagemid, was introduced into a yeast strain lacking cytochrome c. The ability of transformants harboring a functional cytochrome c to grow on the non-fermentable carbon source glycerol at 30 degrees C and 37 degrees C was used to determine the phenotype of nearly 1000 transformants. Approximately 90% of the missense mutants present in the library give rise to the wild-type phenotype, 7% result in the temperature-sensitive (Cycts) phenotype, and 3% give rise to the non-functional (Cyc-) phenotype. Phagemids from 20 Cycts and 30 Cyc- transformants were subjected to DNA sequence analysis. All the mutations occur within the targeted region. One-third of the mutants from Cyc- transformants and all the mutants from Cycts transformants are missense mutants. The remaining mutants from Cyc- transformants are nonsense or frame-shift mutants. Missense mutations within the codons for Gly45, Tyr46, Thr49, Asn52 or Ile53 alone are sufficient to produce temperature-sensitive behavior both in vivo and in the variant proteins. The deduced amino acid substitutions correlate remarkably well with side-chain dynamics, secondary structure and tertiary structure of the wild-type protein.
Collapse
Affiliation(s)
- X H Wang
- Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290
| | | |
Collapse
|