1
|
Sarvari M, Alavi-Moghadam S, Aghayan HR, Tayanloo-Beik A, Payab M, Tootee A, Sajjadi-Jazi SM, Larijani B, Arjmand B. Stem cells researches and therapies towards endocrine diseases treatment; strategies, challenges, and opportunities. J Diabetes Metab Disord 2024; 23:1461-1467. [PMID: 39610510 PMCID: PMC11599503 DOI: 10.1007/s40200-020-00674-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Due to the limitations of organ transplantation and the urgent need for treatment of chronic diseases, the benefit of stem cells for treatment has been studied and evaluated as an effective approach worldwide. One of the leading countries in this field is Iran. In this respect, several research and treatment institutes, including endocrinology and metabolism research institute are active in the use of stem cells in Iran. Herein, the aim is to review strategies, challenges, and opportunities for stem cell research and treatment in endocrinology and metabolism research institute.
Collapse
Affiliation(s)
- Masoumeh Sarvari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Tootee
- Diabetes Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Arjmand B, Alavi-Moghadam S, Rezaei-Tavirani M, Kokabi-Hamidpour S, Arjmand R, Gilany K, Rajaeinejad M, Rahim F, Namazi N, Larijani B. GMP-Compliant Mesenchymal Stem Cell-Derived Exosomes for Cell-Free Therapy in Cancer. Methods Mol Biol 2024; 2736:163-176. [PMID: 36515892 DOI: 10.1007/7651_2022_467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is categorized as one of the life-threatening disease in the world, which has recently been associated with a significant increase in the incidence and prevalence rate. Hence, the discovery of effective approaches for prevention, early diagnosis, and effective treatment for cancer has been prioritized by oncology researchers. In recent decades, mesenchymal stem cells show great potential to advance the field of regenerative medicine and oncology research due to representing prominent characteristics. Recently, studies indicate that mesenchymal stem cells can play an important role by secreting extracellular vesicles like exosomes in modulating the biological functions of target cells through paracrine regulation. Indeed, the exosomes derived from mesenchymal stem cells can represent the same therapeutic potential as parent cells with fewer side effects. Therefore, it can be demonstrated that exosomes can be a suitable drug delivery candidate in regenerative medicine and targeted therapy. It is also noteworthy that as the use of exosome therapy becomes more common in clinical studies, the importance of improving basic criteria such as safety, efficiency, and quality of stem cell products will also be highlighted. Based on this concept, the good manufacturing practice principles were put forward to examine the standard of cell products from different qualitative and quantitative aspects to progress the cell therapy. In other words, the principles of good manufacturing practice should be observed not only in the extraction and isolation of stem cells but also in the extraction of products related to stem cells such as exosomes in the field of treatment.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shayesteh Kokabi-Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
3
|
Adibi H, Arjmand B, Aghayan HR, Bahrami-Vahdat E, Alavi-Moghadam S, Rezaei-Tavirani M, Arjmand R, Namazi N, Larijani B. Standardized GMP-Compliant Scalable 3D-Bioprocessing of Epidermal Stem Cells for Diabetic Foot Ulcers. Methods Mol Biol 2024; 2849:173-183. [PMID: 38376750 DOI: 10.1007/7651_2024_514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Diabetic foot ulcers (DFUs) pose a significant threat to the health and well-being of individuals with diabetes, often leading to lower limb amputations. Fortunately, epidermal stem cell therapy offers hope for improving the treatment of DFUs. By leveraging 3D culture techniques, the scalability of stem cell manufacturing can be greatly enhanced. In particular, using bioactive materials and scaffolds can promote the healing potential of cells, enhance their proliferation, and facilitate their survival. Furthermore, 3D tissue-mimicking cultures can accurately replicate the complex interactions between cells and extracellular matrix, thereby ensuring that the stem cells are primed for therapeutic application. To ensure the safety and quality of these stem cells, it is essential to adhere to good manufacturing practice (GMP) principles during cultivation. This chapter provides a comprehensive overview of the step-by-step process for GMP-based 3D epidermal stem cell cultivation, thus laying the groundwork for developing reliable regenerative medicine therapies.
Collapse
Affiliation(s)
- Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Aja University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Roudsari PP, Alavi-Moghadam S, Aghayan HR, Arjmand R, Gilany K, Rezaei-Tavirani M, Arjmand B. GMP-Based Isolation of Full-Term Human Placenta-Derived NK Cells for CAR-NK Cell Therapy in Malignant Melanoma. Methods Mol Biol 2024; 2849:203-213. [PMID: 37801257 DOI: 10.1007/7651_2023_503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Melanoma, a severe type of skin cancer, poses significant management challenges due to its resistance to available treatments. Despite this obstacle, the high immunogenicity of melanoma renders it amenable to immune therapy, and NK cells have been identified as possessing anti-tumor properties in immunotherapy. The development of chimeric antigen receptor (CAR)-modified NK cells, or CAR-NK cells, has shown potential in enhancing immunotherapeutic regimens. To achieve this, researchers have explored various sources of NK cells, including those derived from the placenta, which offers benefits compared to other sources due to their limited ex vivo expansion potential. Recent studies have indicated the capacity to expand functional NK cells from placenta-derived cells in vitro that possess anti-tumor cytolytic properties. This chapter discusses the isolation of full-term human placenta-derived NK cells using Good Manufacturing Practice-based methods for CAR-NK cell therapy in melanoma.
Collapse
Affiliation(s)
| | - Sepideh Alavi-Moghadam
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Babak Arjmand
- Iranian Cancer Control Center (MACSA), Tehran, Iran.
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Arjmand B, Rezaei-Tavirani M, Alavi-Moghadam S, Tayanloo-Beik A, Gholami M, Kokabi-Hamidpour S, Arjmand R, Rezazadeh-Mafi A, Mohamadi-Jahani F, Larijani B. Standard Operating Procedure for Production of Mouse Brown Adipose Tissue-Derived Mesenchymal Stem Cells. Methods Mol Biol 2024; 2736:115-125. [PMID: 36515894 DOI: 10.1007/7651_2022_468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past years, stem cell technology was heralded as a significant breakthrough of the century in scrutinizing the intricacies of human body biology and discovering different therapeutic approaches. Recently, adipose tissue, as a suitable source of harvesting mesenchymal stem cells, has attracted the attention of many researchers in the field of regenerative medicine. Adipose tissue-derived mesenchymal stem cells can self-renew and differentiate into different types of cells such as adipocytes, chondrocytes, and osteoblasts. Adipose tissue, especially brown type, is considered an attractive cell source for various therapeutic purposes, such as restoring damaged tissue or fighting against diseases such as obesity. The growth of importance of stem cell applications in regenerative medicine has highlighted the need to seek appropriate mesenchymal stem cells sources. Recently, in the light of many efforts in the field of regenerative medicine, mice have gained increasing interest as a suitable source of adipose tissue for the extraction of mesenchymal stem cells, which can be used in the preclinical investigations in order to aid in the treatment of many human diseases.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayesteh Kokabi-Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh-Mafi
- Clinical Oncologist, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
6
|
Arjmand B, Bahrami-Vahdat E, Alavi-Moghadam S, Arjmand R, Rezaei-Tavirani M, Namazi N, Larijani B. Human-Induced Pluripotent Stem Cell‒Derived Keratinocytes, as Therapeutic Option in Vitiligo. Methods Mol Biol 2024; 2849:185-202. [PMID: 38189899 DOI: 10.1007/7651_2023_510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Vitiligo is a skin condition affecting 1% of the global population, causing non-scaly, chalky-white macules on the skin and hair. It is caused by the pathologic destruction of melanocytes, which produce melanin. Research has focused on the abnormalities of melanocytes and their interaction with neighboring keratinocytes. Current treatments are mainly immunosuppressive drugs and UV radiation, which are scarce and ineffective. To treat vitiligo, regenerative medicine techniques, such as cell-based and cell-free methods, are recommended. Keratinocyte cell transplantation has shown promising results in treating vitiligo. Moreover, studies suggest individualized therapy for diseases can be provided by reprogramming somatic cells into induced pluripotent stem cells. On the other hand, differentiation into particular cell types is a key component of induced pluripotent stem cells-based treatment. In this chapter, the differentiation and validation of human induced pluripotent stem cells into a keratinocyte as a therapeutic option in vitiligo will be discussed.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
7
|
Orozco-Solares TE, León-Moreno LC, Rojas-Rizo A, Manguart-Paez K, Caplan AI. Allogeneic Mesenchymal Stem Cell-based treatments legislation in Latin America: The need for standardization in a medical tourism context. Stem Cells Dev 2022; 31:143-162. [PMID: 35216516 DOI: 10.1089/scd.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Medicinal Signaling Cells (MSCs) secrete bioactive molecules with paracrine effects. These cells are widely used in basic and clinical research to treat several human diseases and medically relevant conditions. Although there are promising results, only a few treatments are approved of its administration, and clinicians should not underestimate the potential risks of its application without proper authorization. However, some treatments advertised mainly through the internet are not supported by solid or rigorous scientific evidence, legal consent, or the assurance of safety and efficacy, especially in the cell therapy tourism space. This practice allows patients to travel from stringently regulated countries to less restricted ones and increases the flourishing of non-endorsed therapies in these regions. Clinical applications of MSC-based treatments are subject to health legislation, and regulatory agencies are responsible for supervising their manufacture, quality control, and marketing approval. Consensus is needed to homologize and strengthen health legislation regarding those therapies, particularly in regions where medical tourism is frequent. Latin America and the Caribbean, an overlooked region with very heterogeneous legislation regarding cell therapy, is a popular medical tourism destination. Brazil and Argentina created regulations to supervise cell-based treatments manufacture, quality, and marketing. While Mexico, considered the second-largest drug market in Latin America, does not recognize nor authorize any cells as therapy. Also, some regulatory bodies miss the importance of several critical GMP processes to ensure reproducible, reliable, safe, and potentially more favorable results and do not consider them in their legislation. These inconsistencies make the region vulnerable to unproven or unethical treatments, potentially becoming a public health problem involving people from countries worldwide. This review attempts to generate awareness for the legal status of cell therapies in Latin America and the need for standardization as this region is a significant medical tourism destination.
Collapse
Affiliation(s)
| | - Lilia Carolina León-Moreno
- Universidad de Guadalajara, 27802, Guadalajara, Jalisco, Mexico.,Provida Salud Integral, Research and Development, Guadalajara, Jalisco, Mexico;
| | - Andrea Rojas-Rizo
- Provida Salud Integral, Mesenchymal Stem Cell Bank, Guadalajara, Jalisco, Mexico;
| | - Karen Manguart-Paez
- Provida Salud Integral, Mesenchymal Stem Cell Bank, Guadalajara, Jalisco, Mexico;
| | - Arnold I Caplan
- Case Western Reserve University, 2546, Department of Biology, Cleveland, Ohio, United States;
| |
Collapse
|
8
|
The Fingerprints of Biomedical Science in Internal Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:173-189. [DOI: 10.1007/5584_2022_729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Arjmand B, Alavi-Moghadam S, Parhizkar Roudsari P, Rezaei-Tavirani M, Rahim F, Gilany K, Mohamadi-Jahani F, Adibi H, Larijani B. COVID-19 Pathology on Various Organs and Regenerative Medicine and Stem Cell-Based Interventions. Front Cell Dev Biol 2021; 9:675310. [PMID: 34195193 PMCID: PMC8238122 DOI: 10.3389/fcell.2021.675310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome-coronavirus 2, a novel betacoronavirus, has caused the global outbreak of a contagious infection named coronavirus disease-2019. Severely ill subjects have shown higher levels of pro-inflammatory cytokines. Cytokine storm is the term that can be used for a systemic inflammation leading to the production of inflammatory cytokines and activation of immune cells. In coronavirus disease-2019 infection, a cytokine storm contributes to the mortality rate of the disease and can lead to multiple-organ dysfunction syndrome through auto-destructive responses of systemic inflammation. Direct effects of the severe acute respiratory syndrome associated with infection as well as hyperinflammatory reactions are in association with disease complications. Besides acute respiratory distress syndrome, functional impairments of the cardiovascular system, central nervous system, kidneys, liver, and several others can be mentioned as the possible consequences. In addition to the current therapeutic approaches for coronavirus disease-2019, which are mostly supportive, stem cell-based therapies have shown the capacity for controlling the inflammation and attenuating the cytokine storm. Therefore, after a brief review of novel coronavirus characteristics, this review aims to explain the effects of coronavirus disease-2019 cytokine storm on different organs of the human body. The roles of stem cell-based therapies on attenuating cytokine release syndrome are also stated.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Gilany
- Reproductive Immunology Research Center, Avicenna Research Institute, The Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Kwon DH, Park JB, Lee JS, Kim SJ, Choi B, Lee KY. Human delta like 1-expressing human mesenchymal stromal cells promote human T cell development and antigen-specific response in humanized NOD/SCID/IL-2R[Formula: see text] null (NSG) mice. Sci Rep 2021; 11:10603. [PMID: 34011992 PMCID: PMC8134586 DOI: 10.1038/s41598-021-90110-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023] Open
Abstract
Human delta-like 1 (hDlk1) is known to be able to regulate cell fate decisions during hematopoiesis. Mesenchymal stromal cells (MSCs) are known to exhibit potent immunomodulatory roles in a variety of diseases. Herein, we investigated in vivo functions of hDlk1-hMSCs and hDlk1+hMSCs in T cell development and T cell response to viral infection in humanized NOD/SCID/IL-2Rγnull (NSG) mice. Co-injection of hDlk1-hMSC with hCD34+ cord blood (CB) cells into the liver of NSG mice markedly suppressed the development of human T cells. In contrast, co-injection of hDlk1+hMSC with hCD34+ CB cells into the liver of NSG dramatically promoted the development of human T cells. Human T cells developed in humanized NSG mice represent markedly diverse, functionally active, TCR V[Formula: see text] usages, and the restriction to human MHC molecules. Upon challenge with Epstein-Barr virus (EBV), EBV-specific hCD8+ T cells in humanized NSG mice were effectively mounted with phenotypically activated T cells presented as hCD45+hCD3+hCD8+hCD45RO+hHLA-DR+ T cells, suggesting that antigen-specific T cell response was induced in the humanized NSG mice. Taken together, our data suggest that the hDlk1-expressing MSCs can effectively promote the development of human T cells and immune response to exogenous antigen in humanized NSG mice. Thus, the humanized NSG model might have potential advantages for the development of therapeutics targeting infectious diseases in the future.
Collapse
Affiliation(s)
- Do Hee Kwon
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joo Sang Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon-Si, 440-746 Kyonggi-Do Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| | - Sung Joo Kim
- GenNBio, Inc., Seoul, Republic of Korea
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon-Si, Kyonggi-Do, 440-746 Korea
| | - Bongkum Choi
- GenNBio, Inc., Seoul, Republic of Korea
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon-Si, Kyonggi-Do, 440-746 Korea
| | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| |
Collapse
|
11
|
Tootee A, Nikbin B, Ghahary A, Esfahani EN, Arjmand B, Aghayan H, Qorbani M, Larijani B. Assessment of immune-alternations and their correlations with therapeutic outcomes of transplantation of autologous Mesenchymal and Allogenic fetal stem cells in patients with type 1 diabetes: a study protocol. J Diabetes Metab Disord 2021; 20:1067-1073. [PMID: 34222099 DOI: 10.1007/s40200-020-00716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
Introduction Stem-cell therapy, which has recently emerged as a potentially therapeutic option for diabetes, is demonstrated to significantly alter both cellular and non-cellular elements of the immune system. In addition, it is demonstrated that allogenic stem-cells, once considered immune-privileged, can be rejected by the host immune system almost similar to any other somatic cell. To date, nonetheless, details of these intricate interactions remain obscure. The current study is designed to illuminate both aforementioned favorable and unfavorable stem cell-mediated immune reactions. Findings of this study may shed some light on how stem cells may exert their therapeutic effect in type 1 diabetes through immune system-mediated mechanisms and illuminate the partially-obscure immune-caused rejection of these cells. Methods and analysis For the purpose of this study, frozen whole blood samples obtained from patients with type 1 diabetes who received stem cells at the Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences in two different clinical trials will be thawed and analyzed. These clinical trials were carried out using two different sources of stem cells, namely allogenic fetal and autologous mesenchymal cells. The samples we aim to analyze were obtained from the patients before the procedure and regularly after it, one, three, six, 12, and 24 months later. For the purpose of this study, the following parameters will be measured: C-peptide levels, IDAA1c (a surrogate marker of beta cell function which is calculated as HbA1c (%) + [4 × insulin dose (units per kilogram per day)]), frequencies of islet-specific autoreactive CD8+ T cells (CTL), different lymphocyte subsets, thymic function indicators, T cell repertoire diversity (including Treg/Tconv ratios), plasma levels of several pro- and anti-inflammatory cytokines, diabetes autoantibodies, and HLA typing. Ethics and dissemination The stem cell transplantation clinical trials which provided the primary source of our samples were carried out at the Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences between 2008 and 2012. These series of clinical trials have secured approval of the ethics committee of Tehran University of Medical Sciences (ethical code number: E-0089) and registered on the national clinical trial registry of Islamic Republic of Iran (IRCT) with the identifier codes: IRCT138810271414N8 (for autologous mesenchymal cells) and IRCT201103171414N23 (for allogenic fetal cells). Our findings are to be presented at international scientific events, published in peer-reviewed journals, and disseminated both electronically and in print. Besides, results of the current study will be used for design and implementation of future laboratory investigations and clinical trials at the Endocrinology and Metabolism Research Institute of Tehran University of Medical Sciences.
Collapse
Affiliation(s)
- Ali Tootee
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Nikbin
- Research Center of Molecular Immunology, Tehran University of Medical Sciences, Tehran, Iran
| | - Aziz Ghahary
- Burn and Wound Healing Research Laboratory, Department of Surgery, Plastic Surgery, University of British Columbia, Vancouver, Canada
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran university of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran university of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Arjmand B, Alaei S, Heravani NF, Alavi-Moghadam S, Payab M, Ebrahimpour M, Aghayan HR, Goodarzi P, Larijani B. Regenerative Medicine Perspectives in Polycystic Ovary Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:125-141. [PMID: 33748932 DOI: 10.1007/5584_2021_623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common gynecologic endocrine disorder in women between the ages of 15 and 40, with uncertain etiology. It is mostly presented with hyperandrogenism and insulin resistance along with a variety of comorbidities that significantly reduce a patient's quality of life. Many disturbed metabolic pathways are correlated with PCOS. Moreover, it is evident that there is a strong genetic factor for PCOS. Indeed, several altered gene expressions have been found in PCOS subjects, but the exact genetic origins are still unclear. The major treatment options such as pharmacological treatments are to improve the symptoms. In addition, surgical procedures (Bariatric surgery and assisted reproductive technologies) can be used to treat some of the patient's complications and reduce their severity. Generally, using pharmacological agents for a long period of time can increase the risk of adverse effects. Moreover, surgical options may have high-risk consequences. Herein, there is an undeniable need for a different multidisciplinary approach to PCOS. Regenerative medicine with the help of stem cells can develop a worthy alternative approach for the treatment of PCOS. Furthermore, animal models can provide valuable knowledge of genetic alterations and metabolic pathway disturbances in PCOS. They can also be used for testing novel treatments in pre-clinical stages. Therein, the current knowledge of PCOS and investigation about the potential role of regenerative medicine in developing new and more efficient treatments for PCOS are summarized here.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpour
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Bandarian F, Namazi N, Amini MR, Pajouhi M, Mehrdad N, Larijani B. Endocrinology and Metabolism Research Institute from inception to maturity: an overview of 25-year activity. J Diabetes Metab Disord 2020:1-7. [PMID: 33042897 PMCID: PMC7532120 DOI: 10.1007/s40200-020-00645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Endocrinology and Metabolism Research Institute (EMRI) was founded in 1993. EMRI progressed step by step from inception and reached to its maturation during the past 25 years. EMRI has expanded and progressed in different aspects including human resources and infrastructures (laboratories and new technologies) and has obtained the first rank in the country in endocrinology research. It has also collaborated with regional and international organizations such as World Health Organization (WHO), International Osteoporosis Foundation (IOF), and American Association of Clinical Endocrinologists (AACE). This article provides an overview of EMRI activities during a quarter of a century.
Collapse
Affiliation(s)
- Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Evidence Based Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amini
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Pajouhi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Mehrdad
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Beneath Dr. Shariati Hospital, Gomnam Highway, Tehran, Iran
| |
Collapse
|
14
|
Goodarzi P, Alavi-Moghadam S, Payab M, Larijani B, Rahim F, Gilany K, Bana N, Tayanloo-Beik A, Foroughi Heravani N, Hadavandkhani M, Arjmand B. Metabolomics Analysis of Mesenchymal Stem Cells. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 8:30-40. [PMID: 32351907 PMCID: PMC7175611 DOI: 10.22088/ijmcm.bums.8.2.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Various mesenchymal stem cells as easily accessible and multipotent cells can share different essential signaling pathways related to their stemness ability. Understanding the mechanism of stemness ability can be useful for controlling the stem cells for regenerative medicine targets. In this context, OMICs studies can analyze the mechanism of different stem cell properties or stemness ability via a broad range of current high-throughput techniques. This field is fundamentally directed toward the analysis of whole genome (genomics), mRNAs (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in biological samples. According to several studies, metabolomics is more effective than other OMICs ّfor various system biology concerns. Metabolomics can elucidate the biological mechanisms of various mesenchymal stem cell function by measuring their metabolites such as their secretome components. Analyzing the metabolic alteration of mesenchymal stem cells can be useful to promote their regenerative medicine application.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran .,Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Nikoo Bana
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Goodarzi P, Aghayan HR, Payab M, Larijani B, Alavi-Moghadam S, Sarvari M, Adibi H, Khatami F, Heravani NF, Hadavandkhani M, Arjmand B. Human Fetal Skin Fibroblast Isolation and Expansion for Clinical Application. Methods Mol Biol 2019; 2109:261-273. [PMID: 31073862 DOI: 10.1007/7651_2019_233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell therapy is one of the most hopeful technologies of regenerative medicine approaches. Among various cells, human skin fibroblasts have been progressively used for wound healing as cell-based therapy purposes. By increasing the age, the number of skin fibroblasts' abilities including cell migration, growth, collagen production, etc. decreases. Hence, use of the fetal source is more beneficent. In this respect, this chapter covers the manufacturing of human fetal skin-derived fibroblasts for clinical application.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sarvari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Arjmand B, Goodarzi P, Aghayan HR, Payab M, Rahim F, Alavi-Moghadam S, Mohamadi-jahani F, Larijani B. Co-transplantation of Human Fetal Mesenchymal and Hematopoietic Stem Cells in Type 1 Diabetic Mice Model. Front Endocrinol (Lausanne) 2019; 10:761. [PMID: 31781036 PMCID: PMC6856665 DOI: 10.3389/fendo.2019.00761] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: Cell therapy can overcome the limitation of conventional treatments (including different medications and β cell replacement) for type 1 diabetes. Based- on several studies human fetal mesenchymal and hematopoietic stem cells are ideal candidates for stem cell therapy. On the other hand, co-transplantation of them can improve their effects. Accordingly, the aim of this research is co-transplantation of human fetal mesenchymal and hematopoietic stem cells in type 1 diabetes. Materials and Methods: The liver of legally aborted fetus was harvested. Then, mononuclear cells were isolated and extracted mesenchymal stromal cells and CD34+ hematopoietic stem cells were cultured. Expression of pluripotency markers were evaluated. For molecular imaging, mesenchymal stromal cells were labeled using GFP- vector. BALB/c inbred male mice were modeled by injection a single dose of Streptozotocin. Diabetic animals were received stem cells. After stem cell transplantation, in vivo imaging was performed and blood glucose levels were measured weekly. Results: Fetal mesenchymal stromal cells were demonstrated differentiation potential. Expression of pluripotency markers were positive. The mean of blood glucose levels were reduced in mixed mesenchymal and hematopoietic stem cells transplantation. A lot of GFP-labeled mesenchymal stem cells were engrafted in the pancreas of animal models that received a mixed suspension of hematopoietic and mesenchymal stromal cells. Conclusions: Human fetal stem cells are valuable source for cell therapy and co-transplantation of mesenchymal stromal cells can improve therapeutic effects of hematopoietic stem cells.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Alavi-Moghadam
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mohamadi-jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bagher Larijani ;
| |
Collapse
|
17
|
Najar M, Crompot E, Raicevic G, Sokal EM, Najimi M, Lagneaux L. Cytokinome of adult-derived human liver stem/progenitor cells: immunological and inflammatory features. Hepatobiliary Surg Nutr 2018; 7:331-344. [PMID: 30498709 DOI: 10.21037/hbsn.2018.05.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Being non-immunogenic and capable of achieving major metabolic liver functions, adult-derived human liver stem/progenitor cells (ADHLSCs) are of special interest in the field of liver cell therapy. The cytokine repertoire of engrafted cells may have critical impacts on the immune response balance, particularly during cell transplantation. Methods In this work, we analyzed the cytokinome of ADHLSCs during hepatogenic differentiation (HD) following stimulation with a mixture of inflammatory cytokines (I) in vitro and compared it to that of mature hepatocytes. Results Independent of their hepatic state, ADHLSCs showed no constitutive expression of pro-inflammatory cytokines, which were significantly induced by inflammation (IL-1β, IL-6, IL-8, TNFα, CCL5, IL-12a, IL-12b, IL-23p19, IL-27p28 and EBI-3). IL1-RA and IDO-1, as immunoregulatory cytokines, were highly induced in undifferentiated ADHLSCs, whereas TGF-β was downregulated by both hepatic and inflammatory events. Interestingly, TDO-1 was exclusively expressed in ADHLSCs after hepatic differentiation and enhanced by inflammatory cytokines. Compared to mature hepatocytes, hepatic-differentiated ADHLSCs showed significantly different cytokine expression patterns. Conclusions By establishing the cytokinome of ADHLSCs and highlighting their immunological and inflammatory features, we can enhance our knowledge about the safety and efficiency of the transplantation strategy.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels 1070, Belgium
| | - Emerence Crompot
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels 1070, Belgium
| | - Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels 1070, Belgium
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental & Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental & Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Campus Erasme, Bâtiment de Transfusion (Level +1), Brussels 1070, Belgium
| |
Collapse
|
18
|
|
19
|
Wang X, Li M, Gao Y, Gao J, Yang W, Liang H, Ji Q, Li Y, Liu H, Huang J, Cheng T, Yuan W. Rheb1-mTORC1 maintains macrophage differentiation and phagocytosis in mice. Exp Cell Res 2016; 344:219-28. [DOI: 10.1016/j.yexcr.2016.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022]
|
20
|
Wang Y, Yu X, Chen E, Li L. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem Cell Res Ther 2016; 7:71. [PMID: 27176654 PMCID: PMC4866276 DOI: 10.1186/s13287-016-0330-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent an attractive cell type for research and therapy due to their ability to proliferate, differentiate, modulate immune reactions, and secrete trophic factors. MSCs exist in a multitude of tissues, including bone marrow, umbilical cord, and adipose tissues. Moreover, MSCs have recently been isolated from the liver. Compared with other MSC types, liver-derived human MSCs (LHMSCs) possess general morphologies, immune functions, and differentiation capacities. Interestingly, LHMCSs produce higher levels of pro-angiogenic, anti-inflammatory, and anti-apoptotic cytokines than those of bone marrow-derived MSCs. Thus, these cells may be a promising therapeutic source for liver diseases. This paper summarizes the biological characteristics of LHMSCs and their potential benefits and risks for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yini Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaopeng Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ermei Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|