1
|
Duan G, Chen Y, Pang Y, Feng Z, Liao H, Liu H, Zou Z, Li M, Tao J, He X, Li S, Liu P, Deng D. Altered fractional amplitude of low-frequency fluctuation in women with premenstrual syndrome via acupuncture at Sanyinjiao (SP6). Ann Gen Psychiatry 2021; 20:29. [PMID: 33964936 PMCID: PMC8106846 DOI: 10.1186/s12991-021-00349-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Premenstrual syndrome (PMS) is a prevalent gynecological disease and is significantly associated with abnormal neural activity. Acupuncture is an effective treatment on PMS in clinical practice. However, few studies have been performed to investigate whether acupuncture might modulate the abnormal neural activity in patients with PMS. Thereby, the aim of the study was to assess alterations of the brain activity induced by acupuncture stimulation in PMS patients. METHODS Twenty PMS patients were enrolled in this study. All patients received a 6-min resting-state functional magnetic resonance imaging (rs-fMRI) scan before and after electro-acupuncturing stimulation (EAS) at Sanyinjiao (SP6) acupoint in the late luteal phase of menstrual. Fractional amplitude of low-frequency fluctuation (fALFF) method was applied to examine the EAS-related brain changes in PMS patients. RESULTS Compared with pre-EAS at SP6, increased fALFF value in several brain regions induced by SP6, including brainstem, right thalamus, bilateral insula, right paracentral lobule, bilateral cerebellum, meanwhile, decreased fALFF in the left cuneus, right precuneus, left inferior temporal cortex. CONCLUSIONS Our findings provide imaging evidence to support that SP6-related acupuncture stimulation may modulate the neural activity in patients with PMS. This study may partly interpret the neural mechanisms of acupuncture at SP6 which is used to treat PMS patients in clinical. TRIAL REGISTRATION The study was registered on http://www.chictr.org.cn . The Clinical Trial Registration Number is ChiCTR-OPC-15005918, registry in 29/01/2015.
Collapse
Affiliation(s)
- Gaoxiong Duan
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Ya Chen
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yong Pang
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhuo Feng
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hai Liao
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Huimei Liu
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhuocheng Zou
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Min Li
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Jien Tao
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xin He
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Shasha Li
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Demao Deng
- Department of Radiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Duan G, He Q, Pang Y, Chen W, Liao H, Liu H, Tan L, Liu Y, Tao J, Zhang J, Wei X, Sun P, Liu P, Deng D. Altered amygdala resting-state functional connectivity following acupuncture stimulation at BaiHui (GV20) in first-episode drug-Naïve major depressive disorder. Brain Imaging Behav 2021; 14:2269-2280. [PMID: 31432318 DOI: 10.1007/s11682-019-00178-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Amygdala is an important locus of dysfunction implicated in major depressive disorder(MDD). Aberrant amygdala networks(AN) had been reported in resting-state functional magnetic resonance imaging (rs-fMRI) study. The safety and efficacy of acupuncture treatment for MDD have been verified in previous clinical studies. This study is aimed to investigate whether acupuncture at GV20 could modulate the abnormal AN of patients with the first-episode, drug-naïve MDD by using rs-fMRI combined with functional connectivity (FC) method. Thirty MDD patient underwent 6-min rs-fMRI scans respectively before and after 20-min electro-acupuncture stimulate(EAS) at GV20. Twenty-nine healthy subjects underwent only a 6-min rs-fMRI scan. Based on the amygdala as the seed region, FC method was adopted to examine abnormal AN in patients by comparing with healthy subjects and to evaluate the influence of EAS on intrinsic connectivity within the AN in patients with MDD. Compared to healthy subjects, MDD patients had aberrant intrinsic AN which mainly showed increased FC between amygdala and hippocampus, precuneus, precentral gyrus and angular gyrus, as well as decreased FC between amygdala and orbital frontal cortex(OFC). Moreover, our results indicated that EAS at GV20 induced increased/decreased FC between amygdala and certain regions in MDD patients. In addition, the intrinsic amygdala FC within other certain brain regions in MDD patients were regulated by EAS at GV20. The abnormal AN of MDD patients could be modulated by EAS at GV20. Our findings may further provide the potential imaging evidence to support the modulatory mechanisms of acupuncture on MDD.
Collapse
Affiliation(s)
- Gaoxiong Duan
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Qianchao He
- Department of Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yong Pang
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Wenfu Chen
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Hai Liao
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Huimei Liu
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Lulu Tan
- Department of Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yanfei Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Jien Tao
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Jian Zhang
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Xiaomei Wei
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Peiyi Sun
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Demao Deng
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China.
| |
Collapse
|
3
|
Anterior insula stimulation suppresses appetitive behavior while inducing forebrain activation in alcohol-preferring rats. Transl Psychiatry 2020; 10:150. [PMID: 32424183 PMCID: PMC7235223 DOI: 10.1038/s41398-020-0833-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
The anterior insular cortex plays a key role in the representation of interoceptive effects of drug and natural rewards and their integration with attention, executive function, and emotions, making it a potential target region for intervention to control appetitive behaviors. Here, we investigated the effects of chemogenetic stimulation or inhibition of the anterior insula on alcohol and sucrose consumption. Excitatory or inhibitory designer receptors (DREADDs) were expressed in the anterior insula of alcohol-preferring rats by means of adenovirus-mediated gene transfer. Rats had access to either alcohol or sucrose solution during intermittent sessions. To characterize the brain network recruited by chemogenetic insula stimulation we measured brain-wide activation patterns using pharmacological magnetic resonance imaging (phMRI) and c-Fos immunohistochemistry. Anterior insula stimulation by the excitatory Gq-DREADDs significantly attenuated both alcohol and sucrose consumption, whereas the inhibitory Gi-DREADDs had no effects. In contrast, anterior insula stimulation failed to alter locomotor activity or deprivation-induced water drinking. phMRI and c-Fos immunohistochemistry revealed downstream activation of the posterior insula and medial prefrontal cortex, as well as of the mediodorsal thalamus and amygdala. Our results show the critical role of the anterior insula in regulating reward-directed behavior and delineate an insula-centered functional network associated with the effects of insula stimulation. From a translational perspective, our data demonstrate the therapeutic potential of circuit-based interventions and suggest that potentiation of insula excitability with neuromodulatory methods, such as repetitive transcranial magnetic stimulation (rTMS), could be useful in the treatment of alcohol use disorders.
Collapse
|
4
|
Bifone A, Gozzi A, Cippitelli A, Matzeu A, Domi E, Li H, Scuppa G, Cannella N, Ubaldi M, Weiss F, Ciccocioppo. phMRI, neurochemical and behavioral responses to psychostimulants distinguishing genetically selected alcohol-preferring from genetically heterogenous rats. Addict Biol 2019; 24:981-993. [PMID: 30328656 PMCID: PMC6697752 DOI: 10.1111/adb.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/27/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023]
Abstract
Alcoholism is often associated with other forms of drug abuse, suggesting that innate predisposing factors may confer vulnerability to addiction to diverse substances. However, the neurobiological bases of these factors remain unknown. Here, we have used a combination of imaging, neurochemistry and behavioral techniques to investigate responses to the psychostimulant amphetamine in Marchigian Sardinian (msP) alcohol-preferring rats, a model of vulnerability to alcoholism. Specifically, we employed pharmacological magnetic resonance imaging to investigate the neural circuits engaged by amphetamine challenge, and to relate functional reactivity to neurochemical and behavioral responses. Moreover, we studied self-administration of cocaine in the msP rats. We found stronger functional responses in the extended amygdala, alongside with increased release of dopamine in the nucleus accumbens shell and augmented vertical locomotor activity compared with controls. Wistar and msP rats did not differ in operant cocaine self-administration under short access (2 hours) conditions, but msP rats exhibited a higher propensity to escalate drug intake following long access (6 hours). Our findings suggest that neurobiological and genetic mechanisms that convey vulnerability to excessive alcohol drinking also facilitate the transition from psychostimulants use to abuse.
Collapse
Affiliation(s)
- A Bifone
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - A Gozzi
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - A Cippitelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - A Matzeu
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - E Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - H Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - G Scuppa
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - N Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - M Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - F Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, United States
| | - Ciccocioppo
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| |
Collapse
|
5
|
Pang Y, Liu H, Duan G, Liao H, Liu Y, Feng Z, Tao J, Zou Z, Du G, Wan R, Liu P, Deng D. Altered Brain Regional Homogeneity Following Electro-Acupuncture Stimulation at Sanyinjiao (SP6) in Women With Premenstrual Syndrome. Front Hum Neurosci 2018; 12:104. [PMID: 29904344 PMCID: PMC5990869 DOI: 10.3389/fnhum.2018.00104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/05/2018] [Indexed: 01/02/2023] Open
Abstract
Background: Premenstrual syndrome (PMS) is a menstrual cycle-related disorder which causes physical and mood changes prior to menstruation and is associated with the functional dysregulation of the brain. Acupuncture is an effective alternative therapy for treating PMS, and sanyinjiao (SP6) is one of the most common acupoints used for improving the symptoms of PMS. However, the mechanism behind acupuncture's efficacy for relieving PMS symptoms remains unclear. The aim of this study was to identify the brain response patterns induced by acupuncture at acupoint SP6 in patients with PMS. Materials and Methods: Twenty-three females with PMS were enrolled in this study. All patients underwent resting-state fMRI data collection before and after 6 min of electroacupuncture stimulation (EAS) at SP6. A regional homogeneity (ReHo) approach was used to compare patients' brain responses before and after EAS at SP6 using REST software. The present study was registered at http://www.chictr.org.cn, and the Clinical Trial Registration Number is ChiCTR-OPC-15005918. Results: EAS at SP6 elicited decreased ReHo value at the bilateral precuneus, right inferior frontal cortex (IFC) and left middle frontal cortex (MFC). In contrast, increased ReHo value was found at the bilateral thalamus, bilateral insula, left putamen and right primary somatosensory cortex (S1). Conclusions: Our study provides an underlying neuroimaging evidence that the aberrant neural activity of PMS patients could be regulated by acupuncture at SP6.
Collapse
Affiliation(s)
- Yong Pang
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Huimei Liu
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Gaoxiong Duan
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Hai Liao
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanfei Liu
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhuo Feng
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Jien Tao
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhuocheng Zou
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Guoxiang Du
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Rongchao Wan
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Demao Deng
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
6
|
Liao H, Pang Y, Liu P, Liu H, Duan G, Liu Y, Tang L, Tao J, Wen D, Li S, Liang L, Deng D. Abnormal Spontaneous Brain Activity in Women with Premenstrual Syndrome Revealed by Regional Homogeneity. Front Hum Neurosci 2017; 11:62. [PMID: 28243196 PMCID: PMC5303726 DOI: 10.3389/fnhum.2017.00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/30/2017] [Indexed: 01/14/2023] Open
Abstract
Background: Previous studies have revealed that the etiologies of premenstrual syndrome (PMS) refer to menstrual cycle related brain changes. However, its intrinsic neural mechanism is still unclear. The aim of the present study was to assess abnormal spontaneous brain activity and to explicate the intricate neural mechanism of PMS using resting state functional magnetic resonance imaging (RS-fMRI). Materials and Methods: The data of 20 PMS patients (PMS group) and 21 healthy controls (HC group) were analyzed by regional homogeneity (ReHo) method during the late luteal phase of menstrual cycle. In addition, all the participants were asked to complete a daily record of severity of problems (DRSP) questionnaire. Results: Compared with HC group, the results showed that PMS group had increased ReHo mainly in the bilateral precuneus, left inferior temporal cortex (ITC), right inferior frontal cortex (IFC) and left middle frontal cortex (MFC) and decreased ReHo in the right anterior cingulate cortex (ACC) at the luteal phase. Moreover, the PMS group had higher DRSP scores, and the DRSP scores positively correlated with ReHo in left MFC and negatively correlated with ReHo in the right ACC. Conclusion: Our results suggest that abnormal spontaneous brain activity is found in PMS patients and the severity of symptom is specifically related to the left MFC and right ACC. The present findings may be beneficial to explicate the intricate neural mechanism of PMS.
Collapse
Affiliation(s)
- Hai Liao
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Yong Pang
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University Xi'an, China
| | - Huimei Liu
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Gaoxiong Duan
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Yanfei Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University Xi'an, China
| | - Lijun Tang
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Jien Tao
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Danhong Wen
- Department of Teaching, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Shasha Li
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Lingyan Liang
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| | - Demao Deng
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine Nanning, China
| |
Collapse
|
7
|
Bourke JH, Wall MB. phMRI: methodological considerations for mitigating potential confounding factors. Front Neurosci 2015; 9:167. [PMID: 25999812 PMCID: PMC4423340 DOI: 10.3389/fnins.2015.00167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/23/2015] [Indexed: 11/16/2022] Open
Abstract
Pharmacological Magnetic Resonance Imaging (phMRI) is a variant of conventional MRI that adds pharmacological manipulations in order to study the effects of drugs, or uses pharmacological probes to investigate basic or applied (e.g., clinical) neuroscience questions. Issues that may confound the interpretation of results from various types of phMRI studies are briefly discussed, and a set of methodological strategies that can mitigate these problems are described. These include strategies that can be employed at every stage of investigation, from study design to interpretation of resulting data, and additional techniques suited for use with clinical populations are also featured. Pharmacological MRI is a challenging area of research that has both significant advantages and formidable difficulties, however with due consideration and use of these strategies many of the key obstacles can be overcome.
Collapse
Affiliation(s)
- Julius H Bourke
- Centre for Psychiatry, The London School of Medicine and Dentistry, Wolfson Barts Institute for Preventive Medicine, Queen Mary University of London London, UK
| | - Matthew B Wall
- Imanova Centre for Imaging Sciences, Imperial College London, Hammersmith Hospital London, UK ; Division of Brain Sciences, Imperial College London London, UK
| |
Collapse
|
8
|
Wellman PJ, Clifford PS, Rodriguez JA, Hughes S, Di Francesco C, Melotto S, Tessari M, Corsi M, Bifone A, Gozzi A. Brain reinforcement system function is ghrelin dependent: studies in the rat using pharmacological fMRI and intracranial self-stimulation. Addict Biol 2012; 17:908-19. [PMID: 22017465 DOI: 10.1111/j.1369-1600.2011.00392.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ghrelin (GHR) is an orexigenic gut peptide that interacts with brain ghrelin receptors (GHR-Rs) to promote food intake. Recent research suggests that GHR acts as a modulator of motivated behavior, suggesting a direct influence of GHR on brain reinforcement circuits. In the present studies, we investigated the role of GHR and GHR-Rs in brain reinforcement function. Pharmacological magnetic resonance imaging was used to spatially resolve the functional activation produced by systemic administration of an orexigenic GHR dose. The imaging data revealed a focal activation of a network of subcortical structures that comprise brain reinforcement circuits-ventral tegmental area, lateral hypothalamus and nucleus accumbens. We next analyzed whether brain reinforcement circuits require functional GHR-Rs. To this purpose, wild-type (WT) or mutant rats sustaining N-ethyl-N-nitrosourea-induced knockout of GHR-Rs (GHR-R null rats) were implanted with stimulating electrodes aimed at the lateral hypothalamus, shaped to respond for intracranial self-stimulation (ICSS) and then tested using a rate-frequency procedure to examine ICSS response patterns. WT rats were readily shaped using stimulation intensities of 75 µA, whereas GHR-R null rats required 300 µA for ICSS shaping. No differences in rate-frequency curves were noted for WT rats at 75 µA and GHR-R null rats at 300 µA. When current intensity was lowered to 100 µA, GHR-R null rats did not respond for ICSS. Taken collectively, these data suggest that systemic GHR can activate mesolimbic dopaminergic areas, and highlight a facilitative role of GHR-Rs on the activity of brain reinforcement systems.
Collapse
Affiliation(s)
- Paul J Wellman
- Behavioral Neuroscience Program, Department of Psychology, Texas A&M University, College Station, TX 77843-4235, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Borsook D, Hargreaves R, Becerra L. Can Functional Magnetic Resonance Imaging Improve Success Rates in CNS Drug Discovery? Expert Opin Drug Discov 2011; 6:597-617. [PMID: 21765857 DOI: 10.1517/17460441.2011.584529] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION: The bar for developing new treatments for CNS disease is getting progressively higher and fewer novel mechanisms are being discovered, validated and developed. The high costs of drug discovery necessitate early decisions to ensure the best molecules and hypotheses are tested in expensive late stage clinical trials. The discovery of brain imaging biomarkers that can bridge preclinical to clinical CNS drug discovery and provide a 'language of translation' affords the opportunity to improve the objectivity of decision-making. AREAS COVERED: This review discusses the benefits, challenges and potential issues of using a science based biomarker strategy to change the paradigm of CNS drug development and increase success rates in the discovery of new medicines. The authors have summarized PubMed and Google Scholar based publication searches to identify recent advances in functional, structural and chemical brain imaging and have discussed how these techniques may be useful in defining CNS disease state and drug effects during drug development. EXPERT OPINION: The use of novel brain imaging biomarkers holds the bold promise of making neuroscience drug discovery smarter by increasing the objectivity of decision making thereby improving the probability of success of identifying useful drugs to treat CNS diseases. Functional imaging holds the promise to: (1) define pharmacodynamic markers as an index of target engagement (2) improve translational medicine paradigms to predict efficacy; (3) evaluate CNS efficacy and safety based on brain activation; (4) determine brain activity drug dose-response relationships and (5) provide an objective evaluation of symptom response and disease modification.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, MGH, McLean and Children's Hospitals, Harvard Medical School And Merck Research Laboratories
| | | | | |
Collapse
|
10
|
Abstract
Drug addiction is a syndrome of impaired response inhibition and salience attribution, which involves a complex neurocircuitry underlying drug reinforcement, drug craving, and compulsive drug-seeking and drug-taking behaviors despite adverse consequences. The concept of disease stages with transitions from acute rewarding effects to early- and end-stage addiction has had an important impact on the design of nonclinical animal models. This chapter reviews the main advances in nonclinical paradigms that aim to at model (1) positive and negative reinforcing effects of addictive drugs; (2) relapse to drug-seeking behavior; (3) reconsolidation of drug cue memories, and (4) compulsive/impulsive drug intake. In addition, recent small animal neuroimaging studies and invertebrate models will be briefly discussed (see also Bifone and Gozzi, Animal models of ADHD, 2011). Continuous improvement in modeling drug intake, craving, withdrawal symptoms, relapse, and comorbid psychiatric associations is a necessary step to better understand the etiology of the disease and to ultimately foster the discovery, validation and optimization of new efficacious pharmacotherapeutic approaches. The modeling of specific subprocesses or constructs that address clinically defined criteria will ultimately increase our understanding of the disease as a whole. Future research will have to address the questions of whether some of these constructs can be reliably used as outcome measures to assess the effects of a treatment in clinical settings, whether changes in those measures can be a target of therapeutic efforts, and whether they relate to biological markers of traits such as impulsivity, which contribute to increased drug-seeking and may predict binge-like patterns of drug intake.
Collapse
Affiliation(s)
- Christian Heidbreder
- Reckitt Benckiser Pharmaceuticals Inc., 10710 Midlothian Turnpike, Suite 430, Richmond, VA, 23235, USA,
| |
Collapse
|