1
|
Siegler Lathrop T, Perego S, Bastiaanssen TFS, van Hemert S, Chronakis IS, Diaz Heijtz R. Multispecies probiotic intake during pregnancy modulates neurodevelopmental trajectories of offspring: Aiming towards precision microbial intervention. Brain Behav Immun 2024; 122:547-554. [PMID: 39197545 DOI: 10.1016/j.bbi.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024] Open
Abstract
Recent research highlights the pivotal role of the maternal gut microbiome during pregnancy in shaping offspring neurodevelopment. In this study, we investigated the impact of maternal intake of a multispecies probiotic formulation during a critical prenatal window (from gestational day 6 until birth) on neurodevelopmental trajectories in mice. Our findings demonstrate significant and persistent benefits in emotional behavior, gut microbiota composition, and expression of tight junction-related genes, particularly in male offspring, who exhibited heightened sensitivity to the probiotic intervention compared to females. Additionally, we observed elevated gene expression levels of the anti-inflammatory cytokine IL-10 and the oxytocin receptor (Oxtr) in the prefrontal cortex (PFC) of exposed juvenile offspring; however, these changes persisted only in the adult male offspring. Furthermore, the sustained increase in the expression of the proton-coupled oligopeptide transporter 1 (PepT1), which is involved in the transport of bacterial peptidoglycan motifs, in the PFC of exposed male offspring suggests a potential mechanistic pathway underlying the observed sex-dependent effects on behavior and gene expression. These results underscore the potential of prenatal multispecies probiotic interventions to promote long-term neurodevelopmental outcomes, with implications for precision microbial reconstitution aimed at promoting healthy neurodevelopment and behavior.
Collapse
Affiliation(s)
- Tatiana Siegler Lathrop
- Technical University of Denmark, DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Denmark
| | - Sarah Perego
- Department of Neuroscience, Karolinska Institutet, Stockholm Sweden
| | | | - Saskia van Hemert
- Wageningen Bioveterinary Research, Wageningen University & Research, the Netherlands
| | - Ioannis S Chronakis
- Technical University of Denmark, DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Denmark
| | | |
Collapse
|
2
|
Yu P, Cheng M, Wang N, Wu C, Qiang K. Pubertal maternal presence reduces anxiety and increases adult neurogenesis in Kunming mice offspring. Pharmacol Biochem Behav 2024; 243:173839. [PMID: 39079561 DOI: 10.1016/j.pbb.2024.173839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Puberty is a critical period of emotional development and neuroplasticity. However, most studies have focused on early development, with limited research on puberty, particularly the parental presence. In this study, four groups were established, and pubertal maternal presence (PMP) was assessed until postnatal days 21 (PD21), 28 (PD28), 35 (PD35), and 42 (PD42), respectively. The social interaction and anxiety behaviors, as well as the expression of oxytocin (OT) in the paraventricular nucleus (PVN) and supraoptic nucleus (SON), and the number of new generated neurons and the expression of estrogen receptor alpha (ERα) in the dentate gyrus (DG) were assessed. The results suggest that there is a lot of physical contact between the mother and offspring from 21 to 42 days of age, which reduces anxiety in both female and male offspring in adulthood; for example, the PMP increased the amount of time mice spent in the center area in the open field experiment and in the bright area in the light-dark box experiment. PMP increased OT expression in the PVN and SON and the number of newly generated neurons in the DG. However, there was a sexual difference in ERα, with ERα increasing in females but decreasing in males. In conclusion, PMP reduces the anxiety of offspring in adulthood, increases OT in the PVN and SON, and adult neurogenesis; ERα in the DG may be involved in this process.
Collapse
Affiliation(s)
- Peng Yu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China.
| | - Miao Cheng
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Na Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844099, Xinjiang, China
| | - Chendong Wu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Keju Qiang
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| |
Collapse
|
3
|
Nisbett KE. Moxie begets MOXI: The journey to a novel hypothesis about Mu-opioid and OXytocin system Interactions. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 19:100244. [PMID: 39104824 PMCID: PMC11298892 DOI: 10.1016/j.cpnec.2024.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
This narrative review summarizes the early life of the author, Khalin E. Nisbett, and highlights the factors that led to her career in research and her development of two novel research hypotheses: the Mu-opioid and OXytocin system Interaction (MOXI) hypothesis and Mu-Opioid receptor antagonist and OXytocin receptor Agonist In Combination (MOXAIC) treatment hypothesis. Notably, Nisbett's career began in the era after countless studies demonstrated that oxytocin is not just a female neurotransmitter and not just a female reproductive hormone, an era in which researchers are exploring the role of oxytocin in emotion regulation, social interaction, and cognitive processing across both sexes. As such, the previously held perspective that oxytocin is "just a female hormone" did not impede Nisbett's ideas. Intrigued by science, emotion regulation, and social interaction, she began to explore the role of oxytocin and opioids in emotion regulation. On the heels of earlier theories, such as the Tend-and-Befriend theory and Opioid Theory of Social Attachment, she began to develop the MOXI hypothesis, which postulates that the μ-opioid receptor and oxytocin systems interact to mediate social interaction and emotion regulation. In this narrative review, Nisbett summarizes two studies that explored (i) the role of oxytocin in anxiety- and depression-like behavior and (ii) the effect of opioid receptor blockade on the anxiolytic-like effect of oxytocin, which led to a revision of the MOXI hypothesis and postulation of the Mu-Opioid receptor antagonist and OXytocin receptor Agonist In Combination (MOXAIC) treatment hypothesis. Nisbett also discusses several limitations of these hypotheses and her current research interests and aspirations.
Collapse
Affiliation(s)
- Khalin E. Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL, 60607, USA
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
4
|
Balestrino R, Losa M, Albano L, Barzaghi LR, Mortini P. Intranasal oxytocin as a treatment for obesity: safety and efficacy. Expert Rev Endocrinol Metab 2023; 18:295-306. [PMID: 37232186 DOI: 10.1080/17446651.2023.2216794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Known for its effect on labor and lactation and on emotional and social functions, oxytocin has recently emerged as a key modulator of feeding behavior and indeed suggested as a potential treatment for obesity. The potential positive effect of oxytocin on both metabolic and psychological-behavioral complications of hypothalamic lesions makes it a promising tool in the management of these conditions. AREAS COVERED The aim of the present review article is to provide an overview of the mechanism of action and clinical experience of the use of oxytocin in different forms of obesity. EXPERT OPINION Current evidence suggests a potential role of oxytocin in the treatment of obesity with different causes. Several challenges remain: an improved understanding of the physiological regulation, mechanisms of action of oxytocin, and interplay with other endocrine axes is fundamental to clarify its role. Further clinical trials are needed to determine the safety and efficacy of oxytocin for the treatment of different forms of obesity. Understanding the mechanism(s) of action of oxytocin on body weight regulation might also improve our understanding of obesity and reveal possible new therapeutic targets - as well as promoting advances in other fields in which oxytocin might be used.
Collapse
Affiliation(s)
- Roberta Balestrino
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Losa
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| | - Luigi Albano
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele, Milan, Italy
| | - Lina R Barzaghi
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele, Milano, Italy
| |
Collapse
|
5
|
Üstün NSG, Gümüş ŞN, Soylu N. Oxytocin Levels in Children with Separation Anxiety and Their Mothers before and after Treatment. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:499-515. [PMID: 37424418 PMCID: PMC10335901 DOI: 10.9758/cpn.22.1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/31/2022] [Accepted: 01/31/2023] [Indexed: 07/11/2023]
Abstract
Objective The purpose of this study was to compare the plasma oxytocin levels of children with separation anxiety disorder (SAD) and their mothers with those of healthy controls and to examine the relationship between oxytocin levels and changes in anxiety three months after treatment. Methods Thirty children aged 6-12 years with SAD, 30 healthy children, and mothers of both groups were included in the study. All cases were evaluated with semi-structured interview and Clinical Global Impression Scale. All cases and mothers of both groups filled out scales to determine various psychological variables (anxiety, depression, and attachment). The patient group children were re-evaluated with their mothers after three months, following treatment. Plasma oxytocin levels were evaluated from both groups and their mothers before and after treatment. Results The plasma oxytocin levels of mothers of children with SAD were significantly lower than those of the controls and increased significantly three months after their children were treated. No difference was found between the plasma oxytocin levels of children with SAD and the control group, and these children's levels decreased significantly after treatment. A positive correlation was found between changes in the plasma oxytocin levels of children with SAD and the change in anxiety scores. Conclusion Our results show that the change in plasma oxytocin levels in both children and mothers after treatment suggests that oxytocin may be important in the etiology of SAD.
Collapse
Affiliation(s)
- Nur Seda Gülcü Üstün
- Department of Child and Adolescent Psychiatry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Şefika Nur Gümüş
- Department of Medical Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nusret Soylu
- Department of Child and Adolescent Psychiatry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Vörös D, Kiss O, Ollmann T, Mintál K, Péczely L, Zagoracz O, Kertes E, Kállai V, László BR, Berta B, Toth A, Lénárd L, László K. Intraamygdaloid Oxytocin Increases Time Spent on Social Interaction in Valproate-Induced Autism Animal Model. Biomedicines 2023; 11:1802. [PMID: 37509444 PMCID: PMC10376246 DOI: 10.3390/biomedicines11071802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder that affects about 1.5% of children worldwide. One of the core symptoms is impaired social interaction. Since proper treatment has not been found yet, an investigation of the exact pathophysiology of autism is essential. The valproate (VPA)-induced rat model can be an appropriate way to study autism. Oxytocin (OT) may amend some symptoms of ASD since it plays a key role in developing social relationships. In the present study, we investigated the effect of the intraamygdaloid OT on sham and intrauterine VPA-treated rats' social interaction using Crawley's social interaction test. Bilateral guide cannulae were implanted above the central nucleus of the amygdala (CeA), and intraamygdaloid microinjections were carried out before the test. Our results show that male Wistar rats prenatally exposed to VPA spent significantly less time on social interaction. Bilateral OT microinjection increased the time spent in the social zone; it also reached the level of sham-control animals. OT receptor antagonist blocked this effect of the OT but in itself did not significantly influence the behavior of the rats. Based on our results, we can establish that intraamygdaloid OT has significantly increased time spent on social interaction in the VPA-induced autism model, and its effect is receptor-specific.
Collapse
Affiliation(s)
- Dávid Vörös
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Orsolya Kiss
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Tamás Ollmann
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Kitti Mintál
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary
| | - László Péczely
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Olga Zagoracz
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Erika Kertes
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Veronika Kállai
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Bettina Réka László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Beáta Berta
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Attila Toth
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary
| | - László Lénárd
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - Kristóf László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| |
Collapse
|
7
|
Johnston MP, Wanat MJ. Mitigating the impact of adolescence isolation on the development of social anxiety: A potential role for oxytocin. Front Behav Neurosci 2022; 16:1038236. [PMID: 36311867 PMCID: PMC9608628 DOI: 10.3389/fnbeh.2022.1038236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Exposure to isolation can lead to the development of social anxiety disorder (SAD), which affects 13% of Americans. There are sex differences in the prevalence of anxiety disorders, as women experience higher rates of SAD relative to men. Importantly, isolation experienced during adolescence increases the likelihood of developing SAD in adulthood. Unfortunately, the current treatments for SAD are only effective in 50–65% of patients. As such, it is critical to identify therapeutic targets for the treatment and prevention of SAD, particularly in women. Here, we discuss the links between childhood isolation and adulthood SAD. Next, we examine the preclinical models used to study the impact of isolation on social anxiety-like behaviors in rodents. Increasing evidence from both clinical and pre-clinical studies suggests oxytocin signaling is a potential target to modify social anxiety-like behaviors. We present the evidence that sex hormones influence the oxytocin system. Finally, we highlight future directions for both clinical and pre-clinical studies to further evaluate the efficacy of oxytocin as a treatment for isolation-induced SAD.
Collapse
Affiliation(s)
- Morgan P Johnston
- Department of Neuroscience, Developmental, and Regenerative Biology, Neurosciences Institute, Brain Health Consortium, University of Texas San Antonio, San Antonio, TX, United States
| | - Matthew J Wanat
- Department of Neuroscience, Developmental, and Regenerative Biology, Neurosciences Institute, Brain Health Consortium, University of Texas San Antonio, San Antonio, TX, United States
| |
Collapse
|
8
|
Gonzalez A, Hammock EAD. Oxytocin and microglia in the development of social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210059. [PMID: 35858111 PMCID: PMC9272152 DOI: 10.1098/rstb.2021.0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/18/2022] [Indexed: 08/31/2023] Open
Abstract
Oxytocin is a well-established regulator of social behaviour. Microglia, the resident immune cells of the central nervous system, regulate brain development and maintenance in health and disease. Oxytocin and microglia interact: microglia appear to regulate the oxytocin system and are, in turn, regulated by oxytocin, which appears to have anti-inflammatory effects. Both microglia and oxytocin are regulated in sex-specific ways. Oxytocin and microglia may work together to promote experience-dependent circuit refinement through multiple developmental-sensitive periods contributing to individual differences in social behaviour. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Alicia Gonzalez
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 32306, USA
| | - Elizabeth A. D. Hammock
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 32306, USA
| |
Collapse
|
9
|
Tian T, Zhang G, Wang J, Liu D, Wan C, Fang J, Wu D, Zhou Y, Qin Y, Zhu H, Li Y, Li J, Zhu W. Contribution of brain network connectivity in predicting effects of polygenic risk and childhood trauma on state-trait anxiety. J Psychiatr Res 2022; 152:119-127. [PMID: 35724493 DOI: 10.1016/j.jpsychires.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Anxiety is usually attributed to adverse environmental factors, but it is known as a polygenic inheritance disease. Gene-environment interactions on the occurrence and severity of anxiety are still unclear. The role of brain network connectivity in the gene-environment effects on anxiety has not been explored and may be key to understanding neuropathogenesis and guiding treatment. METHODS This study recruited 177 young adults from the community that completed functional magnetic resonance imaging, Childhood Trauma Questionnaire (CTQ), state-trait anxiety scores, and whole exome sequencing. We calculated polygenic risk score (PRS) for anxiety and the sum score of CTQ, which are genetic and environmental factors that may affect anxiety, respectively. Abnormal brain network connectivity determined by the gene-environment effects and its associations with anxiety scores were then explored. RESULTS Except for the main effect of PRS or CTQ on intra-network connectivity, significant interactions were found in intra-network connectivity of visual network, default mode network, self-reference network, and sensorimotor network. Moreover, altered network connectivity was related to anxious tendency. In particular, the effect of CTQ on trait anxiety was mediated by the disrupted sensorimotor network, accompanied by a significant direct effect. However, the PRS influence on anxiety was mainly mediated through sensorimotor network paths, which exceeded the direct influence and was moderated by childhood trauma levels. CONCLUSIONS These network-specific functional changes related to individual gene-environment risks advance our understanding of psychiatric pathogenesis of anxiety and provide new insights for clinical intervention.
Collapse
Affiliation(s)
- Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guiling Zhang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Changhua Wan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jicheng Fang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Di Wu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiran Zhou
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Bharadwaj VN, Meyerowitz J, Zou B, Klukinov M, Yan N, Sharma K, Clark DJ, Xie X, Yeomans DC. Impact of Magnesium on Oxytocin Receptor Function. Pharmaceutics 2022; 14:1105. [PMID: 35631690 PMCID: PMC9144867 DOI: 10.3390/pharmaceutics14051105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND PURPOSE The intranasal administration of oxytocin (OT) reduces migraine headaches through activation of the oxytocin receptor (OTR). Magnesium ion (Mg2+) concentration is critical to the activation of the OTR, and a low serum Mg2+ concentration is predictive of a migraine headache. We, therefore, examined the functional impact of Mg2+ concentration on OT-OTR binding efficacy using two complimentary bioassays. EXPERIMENTAL APPROACH Current clamp recordings of rat trigeminal ganglia (TG) neurons measured the impact of Mg2+ on an OT-induced reduction in excitability. In addition, we assessed the impact of Mg2+ on intranasal OT-induced craniofacial analgesia in rats. KEY RESULTS While OT alone dose-dependently hyperpolarized TG neurons, decreasing their excitability, the addition of 1.75 mM Mg2+ significantly enhanced this effect. Similarly, while the intranasal application of OT produced dose-dependent craniofacial analgesia, Mg2+ significantly enhanced these effects. CONCLUSIONS AND IMPLICATIONS OT efficacy may be limited by low ambient Mg2+ levels. The addition of Mg2+ to OT formulations may improve its efficacy in reducing headache pain as well as for other OT-dependent processes.
Collapse
Affiliation(s)
- Vimala N. Bharadwaj
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (V.N.B.); (J.M.); (M.K.); (D.J.C.)
| | - Justin Meyerowitz
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (V.N.B.); (J.M.); (M.K.); (D.J.C.)
| | - Bende Zou
- AfaSci Inc., Burlingame, CA 94010, USA; (B.Z.); (N.Y.); (K.S.); (X.X.)
| | - Michael Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (V.N.B.); (J.M.); (M.K.); (D.J.C.)
| | - Ni Yan
- AfaSci Inc., Burlingame, CA 94010, USA; (B.Z.); (N.Y.); (K.S.); (X.X.)
| | - Kaustubh Sharma
- AfaSci Inc., Burlingame, CA 94010, USA; (B.Z.); (N.Y.); (K.S.); (X.X.)
| | - David J. Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (V.N.B.); (J.M.); (M.K.); (D.J.C.)
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xinmin Xie
- AfaSci Inc., Burlingame, CA 94010, USA; (B.Z.); (N.Y.); (K.S.); (X.X.)
| | - David C. Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (V.N.B.); (J.M.); (M.K.); (D.J.C.)
| |
Collapse
|
11
|
Wang SC, Zhang F, Zhu H, Yang H, Liu Y, Wang P, Parpura V, Wang YF. Potential of Endogenous Oxytocin in Endocrine Treatment and Prevention of COVID-19. Front Endocrinol (Lausanne) 2022; 13:799521. [PMID: 35592777 PMCID: PMC9110836 DOI: 10.3389/fendo.2022.799521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 or COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant threat to the health of human beings. While wearing mask, maintaining social distance and performing self-quarantine can reduce virus spreading passively, vaccination actively enhances immune defense against COVID-19. However, mutations of SARS-CoV-2 and presence of asymptomatic carriers frustrate the effort of completely conquering COVID-19. A strategy that can reduce the susceptibility and thus prevent COVID-19 while blocking viral invasion and pathogenesis independent of viral antigen stability is highly desirable. In the pathogenesis of COVID-19, endocrine disorders have been implicated. Correspondingly, many hormones have been identified to possess therapeutic potential of treating COVID-19, such as estrogen, melatonin, corticosteroids, thyroid hormone and oxytocin. Among them, oxytocin has the potential of both treatment and prevention of COVID-19. This is based on oxytocin promotion of immune-metabolic homeostasis, suppression of inflammation and pre-existing comorbidities, acceleration of damage repair, and reduction of individuals' susceptibility to pathogen infection. Oxytocin may specifically inactivate SARS-COV-2 spike protein and block viral entry into cells via angiotensin-converting enzyme 2 by suppressing serine protease and increasing interferon levels and number of T-lymphocytes. In addition, oxytocin can promote parasympathetic outflow and the secretion of body fluids that could dilute and even inactivate SARS-CoV-2 on the surface of cornea, oral cavity and gastrointestinal tract. What we need to do now is clinical trials. Such trials should fully balance the advantages and disadvantages of oxytocin application, consider the time- and dose-dependency of oxytocin effects, optimize the dosage form and administration approach, combine oxytocin with inhibitors of SARS-CoV-2 replication, apply specific passive immunization, and timely utilize efficient vaccines. Meanwhile, blocking COVID-19 transmission chain and developing other efficient anti-SARS-CoV-2 drugs are also important. In addition, relative to the complex issues with drug applications over a long term, oxytocin can be mobilized through many physiological stimuli, and thus used as a general prevention measure. In this review, we explore the potential of oxytocin for treatment and prevention of COVID-19 and perhaps other similar pathogens.
Collapse
Affiliation(s)
- Stephani C. Wang
- Division of Cardiology, Department of Medicine, University of California-Irvine, Irvine, CA, United States
| | - Fengmin Zhang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Haipeng Yang
- Neonatal Division of the Department of Pediatrics, Harbin Medical University The Fourth Affiliated Hospital, Harbin, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Sanson A, Bosch OJ. Dysfunctions of brain oxytocin signaling: Implications for poor mothering. Neuropharmacology 2022; 211:109049. [PMID: 35390436 DOI: 10.1016/j.neuropharm.2022.109049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Good mothering has profound impact on both the mother's and the young's well-being. Consequently, experiencing inadequate maternal care - or even neglect - in the first stages of life is a major risk factor for the development of psychiatric disorders, and even for poor parenting towards the future offspring. Thus, understanding the neurobiological basis of maternal neglect becomes crucial. Along with other neurotransmitters and neuropeptides, oxytocin (OXT) has long been known as one of the main modulators of maternal behavior. In rodents, disruptions of central OXT transmission have been associated with poor maternal responses, like impaired onset of nursing behaviors, and reduced care and defense of the pups. Importantly, such behavioral and molecular deficits can be transmitted through generations, creating a vicious circle of low-quality maternal behavior. Similarly, evidence from human studies shows that OXT signaling is defective in conditions of inadequate mothering and child neglect. On those premises, this review aims at providing a comprehensive overview of animal and human studies linking perturbed OXT transmission to poor maternal behavior. Considering the important fallouts of inadequate maternal responses, we believe that unraveling the alterations in OXT transmission might provide useful insights for a better understanding of maternal neglect and, ultimately, for future intervention approaches.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
13
|
Hsieh FF, Korsunsky I, Shih AJ, Moss MA, Chatterjee PK, Deshpande J, Xue X, Madankumar S, Kumar G, Rochelson B, Metz CN. Maternal oxytocin administration modulates gene expression in the brains of perinatal mice. J Perinat Med 2022; 50:207-218. [PMID: 34717055 DOI: 10.1515/jpm-2020-0525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/01/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Oxytocin (OXT) is widely used to facilitate labor. However, little is known about the effects of perinatal OXT exposure on the developing brain. We investigated the effects of maternal OXT administration on gene expression in perinatal mouse brains. METHODS Pregnant C57BL/6 mice were treated with saline or OXT at term (n=6-7/group). Dams and pups were euthanized on gestational day (GD) 18.5 after delivery by C-section. Another set of dams was treated with saline or OXT (n=6-7/group) and allowed to deliver naturally; pups were euthanized on postnatal day 9 (PND9). Perinatal/neonatal brain gene expression was determined using Illumina BeadChip Arrays and real time quantitative PCR. Differential gene expression analyses were performed. In addition, the effect of OXT on neurite outgrowth was assessed using PC12 cells. RESULTS Distinct and sex-specific gene expression patterns were identified in offspring brains following maternal OXT administration at term. The microarray data showed that female GD18.5 brains exhibited more differential changes in gene expression compared to male GD18.5 brains. Specifically, Cnot4 and Frmd4a were significantly reduced by OXT exposure in male and female GD18.5 brains, whereas Mtap1b, Srsf11, and Syn2 were significantly reduced only in female GD18.5 brains. No significant microarray differences were observed in PND9 brains. By quantitative PCR, OXT exposure reduced Oxtr expression in female and male brains on GD18.5 and PND9, respectively. PC12 cell differentiation assays revealed that OXT induced neurite outgrowth. CONCLUSIONS Prenatal OXT exposure induces sex-specific differential regulation of several nervous system-related genes and pathways with important neural functions in perinatal brains.
Collapse
Affiliation(s)
- Frances F Hsieh
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology Stamford Hospital, Stamford, CT, USA
| | - Ilya Korsunsky
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA.,Division of Genetics, Department of Medicine at Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew J Shih
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA
| | - Matthew A Moss
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Prodyot K Chatterjee
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA
| | - Jaai Deshpande
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA.,Providence Community Health Center, Providence, RI, USA
| | - Xiangying Xue
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA
| | - Swati Madankumar
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA
| | - Gopal Kumar
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, USA
| | - Burton Rochelson
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine N Metz
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA.,Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, USA
| |
Collapse
|
14
|
Wang F, Yin XS, Lu J, Cen C, Wang Y. Phosphorylation-dependent positive feedback on the oxytocin receptor through the kinase PKD1 contributes to long-term social memory. Sci Signal 2022; 15:eabd0033. [PMID: 35104164 DOI: 10.1126/scisignal.abd0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Social memory enables one to recognize and distinguish specific individuals. It is fundamental to social behaviors that can be mediated by the oxytocin receptor (OXTR), such as forming relationships. We investigated the molecular regulation and function of OXTR in animal behavior involving social memory. We found that Ser261 in OXTR was phosphorylated by protein kinase D1 (PKD1). Neuronal Ca2+ signaling and behavior analyses revealed that rats expressing a mutated form of OXTR that cannot be phosphorylated at this residue (OXTR S261A) in the medial amygdala (MeA) exhibited impaired long-term social memory (LTSM). Blocking the phosphorylation of wild-type OXTR in the MeA using an interfering peptide in rats or through conditional knockout of Pkd1 in mice reduced social memory retention, whereas expression of a phosphomimetic mutant of OXTR rescued it. In HEK293A cells, the PKD1-mediated phosphorylation of OXTR promoted its binding to Gq protein and, in turn, OXTR-mediated phosphorylation of PKD1, indicating a positive feedback loop. In addition, OXTR with a single-nucleotide polymorphism found in humans (rs200362197), which has a mutation in the conserved recognition region in the PKD1 phosphorylation site, showed impaired activation and signaling in vitro and in HEK293A cells similar to that of the S216A mutant. Our findings describe a phosphoregulatory loop for OXTR and its critical role in social behavior that might be further explored in associated disorders.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiang-Sha Yin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Jie Lu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Cheng Cen
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Yun Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
von Dawans B, Trueg A, Voncken M, Dziobek I, Kirschbaum C, Domes G, Heinrichs M. Empathy Modulates the Effects of Acute Stress on Anxious Appearance and Social Behavior in Social Anxiety Disorder. Front Psychiatry 2022; 13:875750. [PMID: 35911212 PMCID: PMC9326503 DOI: 10.3389/fpsyt.2022.875750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Patients suffering from social anxiety disorder (SAD) fear social interaction and evaluation, which severely undermines their everyday life. There is evidence of increased prosocial behavior after acute social stress exposure in healthy individuals, which may be interpreted as stress-regulating "tend-and-befriend" behavior. In a randomized controlled trial, we measured empathic abilities in a first diagnostic session. In the following experimental session, we investigated how patients with SAD (n = 60) and healthy control participants (HC) (n = 52) respond to an acute social stressor (Trier Social Stress Test for groups) or a non-stressful control condition, and whether empathic abilities and acute social stress interact to modulate anxious appearance and social behavior in a social conversation test. Salivary cortisol, heart rate, and subjective stress response were repeatedly measured. The anxious appearance and social behavior of participants were rated by the conversation partner. SAD patients demonstrated stronger subjective stress responses while the biological responses did not differ from HC. Moreover, patients performed worse overall in the conversation task, which stress additionally undermined. Finally, we found that both emotional and cognitive empathy buffered the negative effects of acute stress on social behavior in SAD, but not in HC. Our data highlight the importance of empathic abilities for SAD during stressful situations and call for multimodal clinical diagnostics. This may help to differentiate clinical subtypes and offer better-tailored treatment for patients. General Scientific Summary: This study shows that high levels of cognitive and emotional empathy can buffer the negative effects of acute stress on social behavior in social anxiety disorder (SAD). Empathic abilities may be included as an additional diagnostic resource marker for SAD.
Collapse
Affiliation(s)
- Bernadette von Dawans
- Department of Biological and Clinical Psychology, University of Trier, Trier, Germany
| | - Amalie Trueg
- Department of Psychology, Biological Psychology, Clinical Psychology and Psychotherapy, University of Freiburg, Freiburg, Germany
| | - Marisol Voncken
- Department of Psychology and Neuroscience, Clinical Psychological Science, Maastricht University, Maastricht, Netherlands
| | - Isabel Dziobek
- Clinical Psychology of Social Interaction, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Gregor Domes
- Department of Biological and Clinical Psychology, University of Trier, Trier, Germany
| | - Markus Heinrichs
- Department of Psychology, Biological Psychology, Clinical Psychology and Psychotherapy, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Chen C, Xiao X, Belkacem AN, Lu L, Wang X, Yi W, Li P, Wang C, Sha S, Zhao X, Ming D. Efficacy Evaluation of Neurofeedback-Based Anxiety Relief. Front Neurosci 2021; 15:758068. [PMID: 34776855 PMCID: PMC8581142 DOI: 10.3389/fnins.2021.758068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023] Open
Abstract
Anxiety disorder is a mental illness that involves extreme fear or worry, which can alter the balance of chemicals in the brain. This change and evaluation of anxiety state are accompanied by a comprehensive treatment procedure. It is well-known that the treatment of anxiety is chiefly based on psychotherapy and drug therapy, and there is no objective standard evaluation. In this paper, the proposed method focuses on examining neural changes to explore the effect of mindfulness regulation in accordance with neurofeedback in patients with anxiety. We designed a closed neurofeedback experiment that includes three stages to adjust the psychological state of the subjects. A total of 34 subjects, 17 with anxiety disorder and 17 healthy, participated in this experiment. Through the three stages of the experiment, electroencephalography (EEG) resting state signal and mindfulness-based EEG signal were recorded. Power spectral density was selected as the evaluation index through the regulation of neurofeedback mindfulness, and repeated analysis of variance (ANOVA) method was used for statistical analysis. The findings of this study reveal that the proposed method has a positive effect on both types of subjects. After mindfulness adjustment, the power map exhibited an upward trend. The increase in the average power of gamma wave indicates the relief of anxiety. The enhancement of the wave power represents an improvement in the subjects’ mindfulness ability. At the same time, the results of ANOVA showed that P < 0.05, i.e., the difference was significant. From the aspect of neurophysiological signals, we objectively evaluated the ability of our experiment to relieve anxiety. The neurofeedback mindfulness regulation can effect on the brain activity pattern of anxiety disorder patients.
Collapse
Affiliation(s)
- Chao Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, China
| | - Xiaolin Xiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lin Lu
- Zhonghuan Information College, Tianjin University of Technology, Tianjin, China
| | - Xin Wang
- Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, China
| | - Weibo Yi
- Beijing Machine and Equipment Institute, Beijing, China
| | - Penghai Li
- Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Brain-Inspired Intelligence and Clinical Translational Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Sha Sha
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xixi Zhao
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Wan L, Huang RJ, Luo ZH, Gong JE, Pan A, Manavis J, Yan XX, Xiao B. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. Neural Plast 2021; 2021:3651735. [PMID: 34539776 PMCID: PMC8448607 DOI: 10.1155/2021/3651735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The levels of reproduction-associated hormones in females, such as estrogen, progesterone, prolactin, and oxytocin, change dramatically during pregnancy and postpartum. Reproduction-associated hormones can affect adult hippocampal neurogenesis (AHN), thereby regulating mothers' behavior after delivery. In this review, we first briefly introduce the overall functional significance of AHN and the methods commonly used to explore this front. Then, we attempt to reconcile the changes of reproduction-associated hormones during pregnancy. We further update the findings on how reproduction-related hormones influence adult hippocampal neurogenesis. This review is aimed at emphasizing a potential role of AHN in reproduction-related brain plasticity and its neurobiological relevance to motherhood behavior.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao-e Gong
- Department of Neurology, Hunan Children's Hospital, Changsha 410007, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia 5000
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
18
|
Garakani A, Murrough JW, Freire RC, Thom RP, Larkin K, Buono FD, Iosifescu DV. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2021; 19:222-242. [PMID: 34690588 PMCID: PMC8475923 DOI: 10.1176/appi.focus.19203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
(Appeared originally in Frontiers in Psychiatry 2020 Dec 23; 11:595584)
Collapse
|
19
|
Šimić G, Tkalčić M, Vukić V, Mulc D, Španić E, Šagud M, Olucha-Bordonau FE, Vukšić M, R. Hof P. Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules 2021; 11:biom11060823. [PMID: 34072960 PMCID: PMC8228195 DOI: 10.3390/biom11060823] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Emotions arise from activations of specialized neuronal populations in several parts of the cerebral cortex, notably the anterior cingulate, insula, ventromedial prefrontal, and subcortical structures, such as the amygdala, ventral striatum, putamen, caudate nucleus, and ventral tegmental area. Feelings are conscious, emotional experiences of these activations that contribute to neuronal networks mediating thoughts, language, and behavior, thus enhancing the ability to predict, learn, and reappraise stimuli and situations in the environment based on previous experiences. Contemporary theories of emotion converge around the key role of the amygdala as the central subcortical emotional brain structure that constantly evaluates and integrates a variety of sensory information from the surroundings and assigns them appropriate values of emotional dimensions, such as valence, intensity, and approachability. The amygdala participates in the regulation of autonomic and endocrine functions, decision-making and adaptations of instinctive and motivational behaviors to changes in the environment through implicit associative learning, changes in short- and long-term synaptic plasticity, and activation of the fight-or-flight response via efferent projections from its central nucleus to cortical and subcortical structures.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
- Correspondence:
| | - Mladenka Tkalčić
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka, 51000 Rijeka, Croatia;
| | - Vana Vukić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Damir Mulc
- University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia;
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Marina Šagud
- Department of Psychiatry, Clinical Hospital Center Zagreb and University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | | | - Mario Vukšić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 07305, USA;
| |
Collapse
|
20
|
Łoś K, Waszkiewicz N. Biological Markers in Anxiety Disorders. J Clin Med 2021; 10:1744. [PMID: 33920547 PMCID: PMC8073190 DOI: 10.3390/jcm10081744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Anxiety disorders are one of the most commonly reported disorders in psychiatry, causing a high medical and socio-economic burden. Recently, there has been a soaring interest in the biological basis of anxiety disorders, which is reflected in an increasing number of articles related to the topic. Due to the ambiguity of the diagnosis and a large number of underdiagnosed patients, researchers are looking for laboratory tests that could facilitate the diagnosis of anxiety disorders in clinical practice and would allow for the earliest possible implementation of appropriate treatment. Such potential biomarkers may also be useable in monitoring the efficacy of pharmacological therapy for anxiety disorders. Therefore this article reviews the literature of potential biomarkers such as components of saliva, peripheral blood, cerebrospinal fluid (CSF), and neuroimaging studies. There are promising publications in the literature that can be useful. The most valuable and promising markers of saliva are cortisol, lysozyme, and α-amylase (sAA). In the blood, in turn, we can distinguish serotonin, brain-derived serum neurotrophic factor (BDNF), cortisol, and microRNA. Structural changes in the amygdala and hippocampus are promising neuroimaging markers, while in CSF, potential markers include oxytocin and 5-Hydroxyindoleacetic acid (5-HIAA). Unfortunately, research in the field of biomarkers is hampered by insufficient knowledge about the etiopathogenesis of anxiety disorders, the significant heterogeneity of anxiety disorders, frequent comorbidities, and low specificity of biomarkers. The development of appropriate biomarker panels and their assessment using new approaches may have the prospective to overcome the above-mentioned obstacles.
Collapse
Affiliation(s)
- Kacper Łoś
- Department of Psychiatry, Medical University of Bialystok, Plac Brodowicza 1, 16-070 Choroszcz, Poland;
| | | |
Collapse
|
21
|
Gazzo G, Melchior M, Caussaint A, Gieré C, Lelièvre V, Poisbeau P. Overexpression of chloride importer NKCC1 contributes to the sensory-affective and sociability phenotype of rats following neonatal maternal separation. Brain Behav Immun 2021; 92:193-202. [PMID: 33316378 DOI: 10.1016/j.bbi.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Early life stress is known to affect the development of the nervous system and its function at a later age. It increases the risk to develop psychiatric disorders as well as chronic pain and its associated affective comorbidities across the lifespan. GABAergic inhibition is important for the regulation of central function and related behaviors, including nociception, anxiety or social interactions, and requires low intracellular chloride levels. Of particular interest, the oxytocinergic (OTergic) system exerts potent anxiolytic, analgesic and pro-social properties and is known to be involved in the regulation of chloride homeostasis and to be impaired following early life stress. METHODS We used behavioral measures to evaluate anxiety, social interactions and pain responses in a rat model of neonatal maternal separation (NMS). Using quantitative PCR, we investigated whether NMS was associated with alterations in the expression of chloride transporters in the cerebrum and spinal cord. Finally, we evaluated the contribution of OTergic signaling and neuro-inflammatory processes in the observed phenotype. RESULTS NMS animals displayed a long-lasting upregulation of chloride importer Na-K-Cl cotransporter type 1 (NKCC1) expression in the cerebrum and spinal cord. Neonatal administration of the NKCC1 inhibitor bumetanide or oxytocin successfully normalized the anxiety-like symptoms and the lack of social preference observed in NMS animals. Phenotypic alterations were associated with a pro-inflammatory state which could contribute to NKCC1 upregulation. CONCLUSIONS This work suggests that an impaired chloride homeostasis, linked to oxytocin signaling dysfunction and to neuro-inflammatory processes, could contribute to the sensori-affective phenotype following NMS.
Collapse
Affiliation(s)
- Géraldine Gazzo
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Meggane Melchior
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Andréa Caussaint
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Clémence Gieré
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Vincent Lelièvre
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Pierrick Poisbeau
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France.
| |
Collapse
|
22
|
Abstract
Of all mental disorders, anxiety disorders are currently the strongest contributors to the global burden of disease, with 7.3% of the general population affected worldwide. The hypothalamus is crucial hub of a network of neural structures modulating fear conditioning and extinction and, as such, highly relevant to the pathophysiology of these conditions. Three hypothalamic systems have emerged as particularly relevant in this context. First, the oxytocin system is highly likely to be involved anxiety disorders and in particular in the cognitive and behavioral deficits pertaining to social anxiety disorder. Second, peripheral markers of the hypothalamic-pituitary-adrenal axis appear altered in patients with panic disorder and generalized anxiety disorder, which may denote aberrant functioning of their central corticotropin-releasing hormone system. Furthermore, cortisol seems to augment the effects of exposure therapy in patients with specific phobia. Third, the integrity of the hypothalamic-pituitary-thyroid axis is likely compromised in panic disorder. Further, cross-disciplinary research efforts are required to shed more light on how, exactly, these hypothalamic systems interact with the neural structures involved in fear conditioning and extinction, which should ultimately open up new avenues for the prevention and treatment of anxiety disorders.
Collapse
|
23
|
Donovan M, Mackey CS, Platt GN, Rounds J, Brown AN, Trickey DJ, Liu Y, Jones KM, Wang Z. Social isolation alters behavior, the gut-immune-brain axis, and neurochemical circuits in male and female prairie voles. Neurobiol Stress 2020; 13:100278. [PMID: 33344730 PMCID: PMC7739176 DOI: 10.1016/j.ynstr.2020.100278] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
The absence of social support, or social isolation, can be stressful, leading to a suite of physical and psychological health issues. Growing evidence suggests that disruption of the gut-immune-brain axis plays a crucial role in the negative outcomes seen from social isolation stress. However, the mechanisms remain largely unknown. The socially monogamous prairie vole (Microtus ochrogaster) has been validated as a useful model for studying negative effects of social isolation on the brain and behaviors, yet how the gut microbiome and central immune system are altered in isolated prairie voles are still unknown. Here, we utilized this social rodent to examine how social isolation stress alters the gut-immune-brain axis and relevant behaviors. Adult male and female prairie voles (n = 48 per sex) experienced social isolation or were cohoused with a same-sex cagemate (control) for six weeks. Thereafter, their social and anxiety-like behaviors, neuronal circuit activation, neurochemical expression, and microgliosis in key brain regions, as well as gut microbiome alterations from the isolation treatment were examined. Social isolation increased anxiety-like behaviors and impaired social affiliation. Isolation also resulted in sex- and brain region-specific alterations in neuronal activation, neurochemical expression, and microgliosis. Further, social isolation resulted in alterations to the gut microbiome that were correlated with key brain and behavioral measures. Our data suggest that social isolation alters the gut-immune-brain axis in a sex-dependent manner and that gut microbes, central glial cells, and neurochemical systems may play a critical, integrative role in mediating negative outcomes from social isolation.
Collapse
Affiliation(s)
- Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, 1700 N. Wheeling St., Aurora, CO, 80045, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Calvin S. Mackey
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Grayson N. Platt
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Jacob Rounds
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Amber N. Brown
- Department of Biological Science Core Facilities, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Darryl J. Trickey
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| | - Kathryn M. Jones
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL, 32306, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306, USA
| |
Collapse
|
24
|
Vismara M, Girone N, Cirnigliaro G, Fasciana F, Vanzetto S, Ferrara L, Priori A, D’Addario C, Viganò C, Dell’Osso B. Peripheral Biomarkers in DSM-5 Anxiety Disorders: An Updated Overview. Brain Sci 2020; 10:E564. [PMID: 32824625 PMCID: PMC7464377 DOI: 10.3390/brainsci10080564] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Anxiety disorders are prevalent and highly disabling mental disorders. In recent years, intensive efforts focused on the search for potential neuroimaging, genetic, and peripheral biomarkers in order to better understand the pathophysiology of these disorders, support their diagnosis, and characterize the treatment response. Of note, peripheral blood biomarkers, as surrogates for the central nervous system, represent a promising instrument to characterize psychiatric disorders, although their role has not been extensively applied to clinical practice. In this report, the state of the art on peripheral biomarkers of DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, 5th edition) Anxiety Disorders is presented, in order to examine their role in the pathogenesis of these conditions and their potential application for diagnosis and treatment. Available data on the cerebrospinal fluid and blood-based biomarkers related to neurotransmitters, neuropeptides, the hypothalamic-pituitary-adrenal axis, neurotrophic factors, and the inflammation and immune system are reviewed. Despite the wide scientific literature and the promising results in the field, only a few of the proposed peripheral biomarkers have been defined as a specific diagnostic instrument or have been identified as a guide in the treatment response to DSM-5 Anxiety Disorders. Therefore, further investigations are needed to provide new biological insights into the pathogenesis of anxiety disorders, to help in their diagnosis, and to tailor a treatment.
Collapse
Affiliation(s)
- Matteo Vismara
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Nicolaja Girone
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Giovanna Cirnigliaro
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Federica Fasciana
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Simone Vanzetto
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Luca Ferrara
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Alberto Priori
- Department of Health Sciences, Aldo Ravelli Center for Neurotechnology and Brain Therapeutic, University of Milan, 20142 Milan, Italy;
| | - Claudio D’Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Caterina Viganò
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
| | - Bernardo Dell’Osso
- Department of Mental Health, Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy; (N.G.); (G.C.); (F.F.); (S.V.); (L.F.); (C.V.); (B.D.)
- Department of Health Sciences, Aldo Ravelli Center for Neurotechnology and Brain Therapeutic, University of Milan, 20142 Milan, Italy;
- Department of Psychiatry and Behavioral Sciences, Bipolar Disorders Clinic, Stanford University, Stanford, CA 94305, USA
- “Centro per lo studio dei meccanismi molecolari alla base delle patologie neuro-psico-geriatriche”, University of Milan, 20100 Milan, Italy
| |
Collapse
|
25
|
Schiele MA, Bandelow B, Baldwin DS, Pini S, Domschke K. A neurobiological framework of separation anxiety and related phenotypes. Eur Neuropsychopharmacol 2020; 33:45-57. [PMID: 32046934 DOI: 10.1016/j.euroneuro.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/25/2019] [Accepted: 01/22/2020] [Indexed: 01/09/2023]
Abstract
In the DSM-5, separation anxiety disorder (SAD) is newly classified in the chapter on anxiety, renewing research efforts into its etiology. In this narrative review, we summarize the current literature on the genetic, endocrine, physiological, neural and neuropsychological underpinnings of SAD per se, SAD in the context of panic disorder, separation anxiety symptoms, and related intermediate phenotypes. SAD aggregates in families and has a heritability of ~43%. Variants in the oxytocin receptor, serotonin transporter, opioid receptor µ1, dopamine D4 receptor and translocator protein genes have all been associated with SAD. Dysregulation of the hypothalamus-pituitary-adrenal axis, dysfunctional cortico-limbic interaction and biased cognitive processing seem to constitute further neurobiological markers of separation anxiety. Hypersensitivity to carbon dioxide appears to be an endophenotype shared by SAD, panic disorder and anxiety sensitivity. The identification of biological risk markers and its multi-level integration hold great promise regarding the prediction of SAD risk, maintenance and course, and in the future may allow for the selection of indicated preventive and innovative, personalized therapeutic interventions.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University Medical Centre Göttingen, Germany
| | - David S Baldwin
- Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, Southampton, United Kingdom; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
26
|
Kleinert T, Schiller B, Fischbacher U, Grigutsch LA, Koranyi N, Rothermund K, Heinrichs M. The Trust Game for Couples (TGC): A new standardized paradigm to assess trust in romantic relationships. PLoS One 2020; 15:e0230776. [PMID: 32214377 PMCID: PMC7098626 DOI: 10.1371/journal.pone.0230776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/09/2020] [Indexed: 11/23/2022] Open
Abstract
Trust between couples is a prerequisite for stable and satisfactory romantic relationships. However, there has been no valid research tool to assess partner-specific trust behavior including costly investments in the trustworthiness of the romantic partner. We here present a comprehensive validation of the newly developed Trust Game for Couples (TGC) by means of various self-report and implicit relationship-related measures. The TGC operationalizes trust by measuring an individual's willingness to invest his or her own financial resources in pro-relationship attitudes of their romantic partner (collected by dichotomous responses to relationship-relevant items, e.g., answering yes to "I am absolutely sure that I love my partner"). Thirty-five healthy couples between 20 and 34 years completed the TGC in an interactive (both partners present), but anonymous setting (no information on the partner's responses revealed). Trust, as measured by the TGC, correlates positively with self-reported trust, satisfaction, and felt closeness in the relationship, but not with general interpersonal trust, confirming both its convergent and discriminant validity. In addition to explicit criteria for construct validity, implicit measures of partner valence and confidence explained variance in the TGC, demonstrating that it constitutes an economical measure of implicit and explicit ingredients of trust between couples. In sum, the TGC provides a novel, specific behavioral tool for a sensitive assessment of trust in dyadic relationships with potential for numerous research fields.
Collapse
Affiliation(s)
- Tobias Kleinert
- Laboratory for Biological and Personality Psychology, Department of Psychology, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
| | - Bastian Schiller
- Laboratory for Biological and Personality Psychology, Department of Psychology, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
- Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
| | - Urs Fischbacher
- Department of Economics, University of Konstanz, Konstanz, Baden-Wuerttemberg, Germany
- Thurgau Institute of Economics, Kreuzlingen, Thurgau, Switzerland
| | - Laura-Anne Grigutsch
- Department of Psychology, Friedrich-Schiller-University of Jena, Jena, Thuringia, Germany
| | - Nicolas Koranyi
- Department of Psychology, Friedrich-Schiller-University of Jena, Jena, Thuringia, Germany
| | - Klaus Rothermund
- Department of Psychology, Friedrich-Schiller-University of Jena, Jena, Thuringia, Germany
| | - Markus Heinrichs
- Laboratory for Biological and Personality Psychology, Department of Psychology, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
- Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
| |
Collapse
|
27
|
Uysal N, Çamsari UM, ATEş M, Kandİş S, Karakiliç A, Çamsari GB. Empathy as a Concept from Bench to Bedside: A Translational Challenge. Noro Psikiyatr Ars 2020; 57:71-77. [PMID: 32110155 PMCID: PMC7024828 DOI: 10.29399/npa.23457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/25/2019] [Indexed: 01/10/2023] Open
Abstract
Empathy is a multidimensional paradigm, and there currently is a lack of scientific consensus in its definition. In this paper, we review the possibility of compromising data during behavioral neuroscience experiments, including but not limited to those who study empathy. The experimental protocols can affect, and be affected by, empathy and related processes at multiple levels. We discuss several points to help researchers develop a successful translational pathway for behavioral research on empathy. Despite varying in their focus with no widely accepted model, current rodent models on empathy have provided sound translational explanations for many neuropsychiatric proof-of-concepts to date. Research has shown that empathy can be influenced by many parameters, some of which are to be reviewed in this paper. We emphasize the future importance of consistency in modeling proof of concept; efforts to create a multidisciplinary group which would include both bench scientists and clinicians with expertise in neuropsychiatry, and the consideration of empathy as an independent variable in animal behavioral experimental designs which is not the mainstream practice at present.
Collapse
Affiliation(s)
- Nazan Uysal
- Department of Physiology, Dokuz Eylül University, İzmir, Turkey
| | - Ulaş M. Çamsari
- Department of Psychiatry, Mayo Clinic, Rochester, Minnesota, USA
| | - Mehmet ATEş
- Department of Pharmacology, Dokuz Eylül University, İzmir, Turkey
| | - Sevim Kandİş
- Department of Physiology, Dokuz Eylül University, İzmir, Turkey
| | - Aslı Karakiliç
- Department of Physiology, Dokuz Eylül University, İzmir, Turkey
| | - Gamze B. Çamsari
- Department of Psychiatry, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
28
|
Yan L, Sun X, Wang Z, Song M, Zhang Z. Regulation of social behaviors by p-Stat3 via oxytocin and its receptor in the nucleus accumbens of male Brandt's voles (Lasiopodomys brandtii). Horm Behav 2020; 119:104638. [PMID: 31765660 DOI: 10.1016/j.yhbeh.2019.104638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 02/02/2023]
Abstract
Social behavior plays a significant role in the formation of social structure and population regulation in both animals and humans. Oxytocin (OXT) and its receptor (OXTR) are well known for regulating social behaviors, but their upstream regulating factors are rarely investigated. We hypothesized that the phosphorylation of the signal transducer and activator of transcription 3 (p-Stat3) may regulate social and aggressive behaviors via the OXT system in the nucleus accumbens (NAc). To test this hypothesis, OXT, p-Stat3 inhibitor, OXTR antagonist, and OXT plus p-Stat3 inhibitor were infused, respectively, into the NAc in the brain of male Brandt's voles (Lasiopodomys brandtii) - a social rodent species in grassland of Inner Mongolia, China. Our data showed that blockage of p-Stat3-Tyr705 signaling pathway in the NAc not only increased aggressive behavior but also impaired social recognition of male Brandt's voles via its effects on the expression of local OXT and OXTR. These results have illustrated a novel signaling pathway of p-Stat3-Tyr705 in regulating social behaviors via the OXT system.
Collapse
Affiliation(s)
- Lixin Yan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Xiuping Sun
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Mingjing Song
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China.
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
29
|
Tabak BA, Young KS, Torre JB, Way BM, Burklund LJ, Eisenberger NI, Lieberman MD, Craske MG. Preliminary Evidence That CD38 Moderates the Association of Neuroticism on Amygdala-Subgenual Cingulate Connectivity. Front Neurosci 2020; 14:11. [PMID: 32116489 PMCID: PMC7033443 DOI: 10.3389/fnins.2020.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/08/2020] [Indexed: 11/15/2022] Open
Abstract
CD38 genetic variation has been associated with autism spectrum disorders and social anxiety disorder, which may result from CD38’s regulation of oxytocin secretion. Converging evidence has found that the rs3796863 A-allele contributes to increased social sensitivity compared to the CC genotype. The current study examined the moderating role of CD38 genetic variants (rs3796863 and rs6449182) that have been associated with enhanced (or reduced) social sensitivity on neural activation related to neuroticism, which is commonly elevated in individuals with social anxiety and depression. Adults (n = 72) with varying levels of social anxiety and depression provided biological samples for DNA extraction, completed a measure of neuroticism, and participated in a standardized emotion processing task (affect matching) while undergoing fMRI. A significant interaction effect was found for rs3796863 x neuroticism that predicted right amygdala-subgenual anterior cingulate cortex (sgACC) functional connectivity. Simple slopes analyses showed a positive association between neuroticism and right amygdala-sgACC connectivity among rs3796863 A-allele carriers. Findings suggest that the more socially sensitive rs3796863 A-allele may partially explain the relationship between a known risk factor (i.e. neuroticism) and promising biomarker (i.e. amygdala-sgACC connectivity) in the development and maintenance of social anxiety and depression.
Collapse
Affiliation(s)
- Benjamin A Tabak
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - Katherine S Young
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jared B Torre
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Baldwin M Way
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Lisa J Burklund
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Naomi I Eisenberger
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew D Lieberman
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michelle G Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
30
|
Actigraphy assessment of motor activity and sleep in patients with alcohol withdrawal syndrome and the effects of intranasal oxytocin. PLoS One 2020; 15:e0228700. [PMID: 32053696 PMCID: PMC7018062 DOI: 10.1371/journal.pone.0228700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Background and aims The alcohol withdrawal syndrome increases autonomic activation and stress in patients during detoxification, leading to alterations in motor activity and sleep irregularities. Intranasal oxytocin has been proposed as a possible treatment of acute alcohol withdrawal. The aim of the present study was to explore whether actigraphy could be used as a tool to register symptoms during alcohol detoxification, whether oxytocin affected actigraphy variables related to motor activity and sleep compared to placebo during detoxification, and whether actigraphy-recorded motor function during detoxification was different from that in healthy controls. Methods This study was a part of a randomized, double blind, placebo-controlled trial in which 40 patients with alcohol use disorder admitted for acute detoxification were included. Of these, 20 received insufflations with intranasal oxytocin and 20 received placebo. Outcomes were actigraphy-recorded motor activity during 5-hour sequences following the insufflations and a full 24-hour period, as well as actigraphy-recorded sleep. Results were related to clinical variables of alcohol intake and withdrawal, including self-reported sleep. Finally, the actigraphy results were compared to those in a group of 34 healthy individuals. Results There were no significant differences between the oxytocin group and the placebo group for any of actigraphy variables registered. Neither were there any correlations between actigraphy-recorded motor function and clinical symptoms of alcohol withdrawal, but there was a significant association between self-reported and actigraphy-recorded sleep. Compared to healthy controls, motor activity during alcohol withdrawal was lower in the evenings and showed increased variability. Conclusion Intranasal oxytocin did not affect actigraphy-recorded motor activity nor sleep in patients with acute alcohol withdrawal. There were no findings indicating that actigraphy can be used to evaluate the degree of withdrawal symptoms during detoxification. However, patients undergoing acute alcohol withdrawal had a motor activity pattern different from than in healthy controls.
Collapse
|
31
|
Schiele MA, Gottschalk MG, Domschke K. The applied implications of epigenetics in anxiety, affective and stress-related disorders - A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin Psychol Rev 2020; 77:101830. [PMID: 32163803 DOI: 10.1016/j.cpr.2020.101830] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Mental disorders are highly complex and multifactorial in origin, comprising an elaborate interplay of genetic and environmental factors. Epigenetic mechanisms such as DNA modifications (e.g. CpG methylation), histone modifications (e.g. acetylation) and microRNAs function as a translator between genes and the environment. Indeed, environmental influences such as exposure to stress shape epigenetic patterns, and lifetime experiences continue to alter the function of the genome throughout the lifespan. Here, we summarize the recently burgeoning body of research regarding the involvement of aberrant epigenetic signatures in mediating an increased vulnerability to a wide range of mental disorders. We review the current knowledge of epigenetic changes to constitute useful markers predicting the clinical response to psychotherapeutic interventions, and of psychotherapy to alter - and potentially reverse - epigenetic risk patterns. Given first evidence pointing to a transgenerational transmission of epigenetic information, epigenetic alterations arising from successful psychotherapy might be transferred to future generations and thus contribute to the prevention of mental disorders. Findings are integrated into a multi-level framework highlighting challenges pertaining to the mechanisms of action and clinical implications of epigenetic research. Promising future directions regarding the prediction, prevention, and personalized treatment of mental disorders in line with a 'precision medicine' approach are discussed.
Collapse
Affiliation(s)
- Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Michael G Gottschalk
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104 Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, D-79106 Freiburg, Germany.
| |
Collapse
|
32
|
Garakani A, Murrough JW, Freire RC, Thom RP, Larkin K, Buono FD, Iosifescu DV. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. Front Psychiatry 2020; 11:595584. [PMID: 33424664 PMCID: PMC7786299 DOI: 10.3389/fpsyt.2020.595584] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Anxiety disorders are the most prevalent psychiatric disorders and a leading cause of disability. While there continues to be expansive research in posttraumatic stress disorder (PTSD), depression and schizophrenia, there is a relative dearth of novel medications under investigation for anxiety disorders. This review's first aim is to summarize current pharmacological treatments (both approved and off-label) for panic disorder (PD), generalized anxiety disorder (GAD), social anxiety disorder (SAD), and specific phobias (SP), including selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), azapirones (e.g., buspirone), mixed antidepressants (e.g., mirtazapine), antipsychotics, antihistamines (e.g., hydroxyzine), alpha- and beta-adrenergic medications (e.g., propranolol, clonidine), and GABAergic medications (benzodiazepines, pregabalin, and gabapentin). Posttraumatic stress disorder and obsessive-compulsive disorder are excluded from this review. Second, we will review novel pharmacotherapeutic agents under investigation for the treatment of anxiety disorders in adults. The pathways and neurotransmitters reviewed include serotonergic agents, glutamate modulators, GABAergic medications, neuropeptides, neurosteroids, alpha- and beta-adrenergic agents, cannabinoids, and natural remedies. The outcome of the review reveals a lack of randomized double-blind placebo- controlled trials for anxiety disorders and few studies comparing novel treatments to existing anxiolytic agents. Although there are some recent randomized controlled trials for novel agents including neuropeptides, glutamatergic agents (such as ketamine and d-cycloserine), and cannabinoids (including cannabidiol) primarily in GAD or SAD, these trials have largely been negative, with only some promise for kava and PH94B (an inhaled neurosteroid). Overall, the progression of current and future psychopharmacology research in anxiety disorders suggests that there needs to be further expansion in research of these novel pathways and larger-scale studies of promising agents with positive results from smaller trials.
Collapse
Affiliation(s)
- Amir Garakani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Silver Hill Hospital, New Canaan, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - James W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rafael C Freire
- Department of Psychiatry and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Robyn P Thom
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kaitlyn Larkin
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Frank D Buono
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dan V Iosifescu
- Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
33
|
Schiller B, Koenig T, Heinrichs M. Oxytocin modulates the temporal dynamics of resting EEG networks. Sci Rep 2019; 9:13418. [PMID: 31558733 PMCID: PMC6763457 DOI: 10.1038/s41598-019-49636-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/29/2019] [Indexed: 01/10/2023] Open
Abstract
Oxytocin is a key modulator of social interaction, but we possess little knowledge of its underlying effects on neuropsychological processes. We used a spatio-temporal EEG microstates analysis to reveal oxytocin's effects on the temporal dynamics of intrinsically generated activity in neural networks. Given oxytocin's known anxiolytic effects, we hypothesized that it increases the temporal stability of the four archetypal EEG resting networks. Eighty-six male participants had received oxytocin or placebo intranasally before we recorded their resting EEG. As hypothesized, oxytocin globally increased the average duration of the four archetypal resting networks and specifically decreased the occurrence and coverage of an autonomic processing-related network to benefit greater coverage of an attention-related network. Moreover, these neurophysiological changes were more pronounced in participants with high anxiety levels and strong subjectively experienced effects of the oxytocin administration. In sum, our study shows that oxytocin reduces rapid switching among neural resting networks by increasing their temporal stability. Specifically, it seems to reduce the brain's need for preparing the internally-oriented processing of autonomic information, thus enabling the externally-oriented processing of social information. Changes in the temporal dynamics of resting networks might underlie oxytocin's anxiolytic effects - potentially informing innovative psychobiological treatment strategies.
Collapse
Affiliation(s)
- Bastian Schiller
- Department of Psychology, Laboratory for Biological and Personality Psychology, University of Freiburg, DE-79104, Freiburg, Germany.
- Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, DE-79104, Freiburg, Germany.
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, CH-3000, Bern, Switzerland
| | - Markus Heinrichs
- Department of Psychology, Laboratory for Biological and Personality Psychology, University of Freiburg, DE-79104, Freiburg, Germany.
- Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, DE-79104, Freiburg, Germany.
| |
Collapse
|
34
|
Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 2019; 204:107402. [PMID: 31470029 DOI: 10.1016/j.pharmthera.2019.107402] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Current medication for anxiety disorders is suboptimal in terms of efficiency and tolerability, highlighting the need for improved drug treatments. In this review an overview of drugs being studied in different phases of clinical trials for their potential in the treatment of fear-, anxiety- and trauma-related disorders is presented. One strategy followed in drug development is refining and improving compounds interacting with existing anxiolytic drug targets, such as serotonergic and prototypical GABAergic benzodiazepines. A more innovative approach involves the search for compounds with novel mechanisms of anxiolytic action using the growing knowledge base concerning the relevant neurocircuitries and neurobiological mechanisms underlying pathological fear and anxiety. The target systems evaluated in clinical trials include glutamate, endocannabinoid and neuropeptide systems, as well as ion channels and targets derived from phytochemicals. Examples of promising novel candidates currently in clinical development for generalised anxiety disorder, social anxiety disorder, panic disorder, obsessive compulsive disorder or post-traumatic stress disorder include ketamine, riluzole, xenon with one common pharmacological action of modulation of glutamatergic neurotransmission, as well as the neurosteroid aloradine. Finally, compounds such as D-cycloserine, MDMA, L-DOPA and cannabinoids have shown efficacy in enhancing fear-extinction learning in humans. They are thus investigated in clinical trials as an augmentative strategy for speeding up and enhancing the long-term effectiveness of exposure-based psychotherapy, which could render chronic anxiolytic drug treatment dispensable for many patients. These efforts are indicative of a rekindled interest and renewed optimism in the anxiety drug discovery field, after decades of relative stagnation.
Collapse
Affiliation(s)
- Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
35
|
Neumann ID, Landgraf R. Tracking oxytocin functions in the rodent brain during the last 30 years: From push-pull perfusion to chemogenetic silencing. J Neuroendocrinol 2019; 31:e12695. [PMID: 30748037 DOI: 10.1111/jne.12695] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
A short overview is provided of the last 30 years of oxytocin (and vasopressin) research performed in our laboratories, starting with attempts to monitor the release of this nonapeptide in the rodent brain during physiological conditions such as suckling in the lactating animal. Using push-pull perfusion and microdialysis approaches, release patterns in hypothalamic and limbic brain regions could be characterised to occur from intact neuronal structures, to be independent of peripheral secretion into blood, and to respond differentially to various stimuli, particularly those related to reproduction and stress. Parallel efforts focused on the functional impact of central oxytocin release, including neuroendocrine and behavioural effects mediated by nonapeptide receptor interactions and subsequent intraneuronal signalling cascades. The use of a variety of sophisticated behavioural paradigms to manipulate central oxytocin release, along with pharmacological, genetic and pharmacogenetic approaches, revealed multiple consequences on social behaviours, particularly social fear.
Collapse
Affiliation(s)
- Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Centre of Neurosciences, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
36
|
Borland JM, Rilling JK, Frantz KJ, Albers HE. Sex-dependent regulation of social reward by oxytocin: an inverted U hypothesis. Neuropsychopharmacology 2019; 44:97-110. [PMID: 29968846 PMCID: PMC6235847 DOI: 10.1038/s41386-018-0129-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
The rewarding properties of social interactions are essential for the expression of social behavior and the development of adaptive social relationships. Here, we review sex differences in social reward, and more specifically, how oxytocin (OT) acts in the mesolimbic dopamine system (MDS) to mediate the rewarding properties of social interactions in a sex-dependent manner. Evidence from rodents and humans suggests that same-sex social interactions may be more rewarding in females than in males. We propose that there is an inverted U relationship between OT dose, social reward, and neural activity within structures of the MDS in both males and females, and that this dose-response relationship is initiated at lower doses in females than males. As a result, depending on the dose of OT administered, OT could reduce social reward in females, while enhancing it in males. Sex differences in the neural mechanisms regulating social reward may contribute to sex differences in the incidence of a large number of psychiatric and neurodevelopmental disorders. This review addresses the potential significance of a sex-dependent inverted U dose-response function for OT's effects on social reward and in the development of gender-specific therapies for these disorders.
Collapse
Affiliation(s)
- Johnathan M Borland
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - James K Rilling
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
- Anthropology, Emory University, Atlanta, GA, USA
- Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
- Center for Translational and Social Neuroscience, Emory University, Atlanta, GA, USA
| | - Kyle J Frantz
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - H Elliott Albers
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
37
|
Schiele MA, Costa B, Abelli M, Martini C, Baldwin DS, Domschke K, Pini S. Oxytocin receptor gene variation, behavioural inhibition, and adult separation anxiety: Role in complicated grief. World J Biol Psychiatry 2018; 19:471-479. [PMID: 29353531 DOI: 10.1080/15622975.2018.1430374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Complicated grief (CG) following bereavement significantly increases the risk for mood and anxiety disorders. The severity of grief reactions may be interactively influenced by temperamental and psychological factors such as behavioural inhibition (BI) and separation anxiety (SA) as well as biological factors. Given its central role in attachment and stress processing, a genetic variant in the oxytocin receptor (OXTR) gene was thus investigated in order to elucidate the direction of association as well as its interaction with BI and SA in the moderation of CG severity. METHODS Ninety-three patients with mood and anxiety disorders were evaluated for CG by means of the Inventory of Complicated Grief (ICG), for BI using the Retrospective Self-Report of Inhibition (RSRI), and for symptoms of SA during adulthood using the Adult Separation Anxiety Scale (ASA-27). All patients were genotyped for OXTR rs2254298. RESULTS OXTR genotype interacted with BI and, on a trend-level, with adult SA, to increase CG. Specifically, higher levels on the RSRI and ASA-27 scales, respectively, were related to higher ICG scores in GG genotype carriers. CONCLUSIONS The present study for the first time suggests a gene-environment interaction effect of an OXTR gene variant with BI and possibly also symptoms of adult SA in the moderation of vulnerability for CG.
Collapse
Affiliation(s)
- Miriam A Schiele
- a Department of Psychiatry and Psychotherapy, Medical Center -- University of Freiburg, Faculty of Medicine , University of Freiburg , Freiburg , Germany.,b Department of Clinical and Experimental Medicine, Section of Psychiatry , University of Pisa , Pisa , Italy
| | - Barbara Costa
- c Department of Pharmacy , University of Pisa , Pisa , Italy
| | - Marianna Abelli
- b Department of Clinical and Experimental Medicine, Section of Psychiatry , University of Pisa , Pisa , Italy
| | - Claudia Martini
- c Department of Pharmacy , University of Pisa , Pisa , Italy
| | - David S Baldwin
- d Clinical and Experimental Sciences , University of Southampton Faculty of Medicine , Southampton , UK.,e University Department of Psychiatry , University of Cape Town , Cape Town , South Africa
| | - Katharina Domschke
- a Department of Psychiatry and Psychotherapy, Medical Center -- University of Freiburg, Faculty of Medicine , University of Freiburg , Freiburg , Germany
| | - Stefano Pini
- b Department of Clinical and Experimental Medicine, Section of Psychiatry , University of Pisa , Pisa , Italy
| |
Collapse
|
38
|
Matthies S, Schiele MA, Koentges C, Pini S, Schmahl C, Domschke K. Please Don't Leave Me-Separation Anxiety and Related Traits in Borderline Personality Disorder. Curr Psychiatry Rep 2018; 20:83. [PMID: 30155649 DOI: 10.1007/s11920-018-0951-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In light of the apparent symptomatic resemblance of separation anxiety disorder (SAD) symptoms on the one hand and abandonment fears, anxiousness, and separation insecurity central to borderline personality disorder (BPD) on the other hand, a comprehensive overview of separation anxiety and related traits in BPD is provided. RECENT FINDINGS Epidemiological, environmental, psychological, and neurobiological data connecting BPD to separation events, feelings of loneliness, insecure attachment styles, dimensional separation anxiety as well as SAD per se suggest a partly shared etiological pathway model underlying BPD and SAD. Differential diagnostic aspects and implications for treatment are discussed, highlighting separation anxiety as a promising transdiagnostic target for specific psychotherapeutic and pharmacological treatment approaches in BPD. This innovative angle on cross-disorder symptomatology might carry potential for novel preventive and therapeutic avenues in clinical practice by guiding the development of interventions specifically targeting separation anxiety and attachment-related issues in BPD.
Collapse
Affiliation(s)
- Swantje Matthies
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104, Freiburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104, Freiburg, Germany
| | - Christa Koentges
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104, Freiburg, Germany
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, D-79104, Freiburg, Germany.
| |
Collapse
|