1
|
Traves R, Opadchy T, Slobedman B, Abendroth A. Varicella Zoster Virus Downregulates Expression of the Nonclassical Antigen Presentation Molecule CD1d. J Infect Dis 2024; 230:e416-e426. [PMID: 37972257 PMCID: PMC11326826 DOI: 10.1093/infdis/jiad512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The nonclassical antigen presentation molecule CD1d presents lipid antigens to invariant natural killer T (iNKT) cells. Activation of these cells triggers a rapid cytokine response providing an interface between innate and adaptive immune responses. The importance of CD1d and iNKT cells in varicella zoster virus (VZV) infection has been emphasized by clinical reports of individuals with CD1d or iNKT cell deficiencies experiencing severe, disseminated varicella postvaccination. METHODS Three strains of VZV (VZV-S, rOka, and VZV rOka-66S) were used to infect Jurkat cells. Flow cytometry of VZV- and mock-infected cells assessed the modulatory impact of VZV on CD1d protein. Infected cell supernatant and transwell co-culture experiments explored the role of soluble factors in VZV-mediated immunomodulation. CD1d transcripts were assessed by reverse-transcription polymerase chain reaction. RESULTS Surface and intracellular flow cytometry demonstrated that CD1d was strikingly downregulated by VZV-S and rOka in both infected and VZV antigen-negative cells compared to mock. CD1d downregulation is cell-contact dependent and CD1d transcripts are targeted by VZV. Mechanistic investigations using rOka-66S (unable to express the viral kinase ORF66) implicate this protein in CD1d modulation in infected cells. CONCLUSIONS VZV implements multiple mechanisms targeting both CD1d transcript and protein. This provides evidence of VZV interaction with and manipulation of the CD1d-iNKT cell axis.
Collapse
Affiliation(s)
- Renee Traves
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Tara Opadchy
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Jacobsen C, Plückebaum N, Ssebyatika G, Beyer S, Mendes-Monteiro L, Wang J, Kropp KA, González-Motos V, Steinbrück L, Ritter B, Rodríguez-González C, Böning H, Nikolouli E, Kinchington PR, Lachmann N, Depledge DP, Krey T, Viejo-Borbolla A. Viral modulation of type II interferon increases T cell adhesion and virus spread. Nat Commun 2024; 15:5318. [PMID: 38909022 PMCID: PMC11193720 DOI: 10.1038/s41467-024-49657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
During primary varicella zoster virus (VZV) infection, infected lymphocytes drive primary viremia, causing systemic dissemination throughout the host, including the skin. This results in cytokine expression, including interferons (IFNs), which partly limit infection. VZV also spreads from skin keratinocytes to lymphocytes prior to secondary viremia. It is not clear how VZV achieves this while evading the cytokine response. Here, we show that VZV glycoprotein C (gC) binds IFN-γ and modifies its activity, increasing the expression of a subset of IFN-stimulated genes (ISGs), including intercellular adhesion molecule 1 (ICAM1), chemokines and immunomodulatory genes. The higher ICAM1 protein level at the plasma membrane of keratinocytes facilitates lymphocyte function-associated antigen 1-dependent T cell adhesion and expression of gC during infection increases VZV spread to peripheral blood mononuclear cells. This constitutes the discovery of a strategy to modulate IFN-γ activity, upregulating a subset of ISGs, promoting enhanced lymphocyte adhesion and virus spread.
Collapse
Affiliation(s)
- Carina Jacobsen
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - George Ssebyatika
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- Institute of Biochemistry, University of Lübeck, Lübeck, 23562, Germany
| | - Sarah Beyer
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | | | - Jiayi Wang
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Kai A Kropp
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Víctor González-Motos
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- University of Veterinary Medicine Hannover, Foundation, Hannover, 30559, Germany
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Claudio Rodríguez-González
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Eirini Nikolouli
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Paul R Kinchington
- Departments of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Daniel P Depledge
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- German, Center for Infection Research (DZIF), Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- Institute of Biochemistry, University of Lübeck, Lübeck, 23562, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Centre for Structural Systems Biology (CSSB), 22607, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 22607, Hamburg, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Zhou H, Ye Z, Gao Z, Xi C, Yin J, Sun Y, Sun B. Construction of a pathological model of skin lesions in acute herpes zoster virus infection and its molecular mechanism. Mamm Genome 2024; 35:296-307. [PMID: 38600211 DOI: 10.1007/s00335-024-10039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Varicella-zoster virus (VZV), a common pathogen with humans as the sole host, causes primary infection and undergoes a latent period in sensory ganglia. The recurrence of VZV is often accompanied by severe neuralgia in skin tissue, which has a serious impact on the life of patients. During the acute infection of VZV, there are few related studies on the pathophysiological mechanism of skin tissue. In this study, transcriptome sequencing data from the acute response period within 2 days of VZV antigen stimulation of the skin were used to explore a model of the trajectory of skin tissue changes during VZV infection. It was found that early VZV antigen stimulation caused activation of mainly natural immune-related signaling pathways, while in the late phase activation of mainly active immune-related signaling pathways. JAK-STAT, NFκB, and TNFα signaling pathways are gradually activated with the progression of infection, while Hypoxia is progressively inhibited. In addition, we found that dendritic cell-mediated immune responses play a dominant role in the lesion damage caused by VZV antigen stimulation of the skin. This study provides a theoretical basis for the study of the molecular mechanisms of skin lesions during acute VZV infection.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Anesthesia Surgery and Pain Management, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Zheng Ye
- Institute of Computational Science and Technology, Guangzhou University, Nanjing, 510006, China
| | - Zhao Gao
- Department of Anesthesia Surgery and Pain Management, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Chengxi Xi
- Department of Anesthesia Surgery and Pain Management, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Jinxia Yin
- Department of Anesthesia Surgery and Pain Management, Southeast University Zhongda Hospital, Nanjing, 210009, China
| | - Yanjun Sun
- Department of Anesthesia Surgery and Pain Management, Southeast University Zhongda Hospital, Nanjing, 210009, China.
| | - Bo Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
4
|
Jiang H, Nace R, Carrasco TF, Zhang L, Whye Peng K, Russell SJ. Oncolytic varicella-zoster virus engineered with ORF8 deletion and armed with drug-controllable interleukin-12. J Immunother Cancer 2024; 12:e008307. [PMID: 38527762 DOI: 10.1136/jitc-2023-008307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The varicella-zoster virus (VZV), belonging to the group of human α-herpesviruses, has yet to be developed as a platform for oncolytic virotherapy, despite indications from clinical case reports suggesting a potential association between VZV infection and cancer remission. METHODS Here, we constructed oncolytic VZV candidates based on the vaccine strain vOka and the laboratory strain Ellen. These newly engineered viruses were subsequently assessed for their oncolytic properties in the human MeWo melanoma xenograft model and the mouse B16-F10-nectin1 melanoma syngeneic model. RESULTS In the MeWo xenograft model, both vOka and Ellen exhibited potent antitumor efficacy. However, it was observed that introducing a hyperfusogenic mutation into glycoprotein B led to a reduction in VZV's effectiveness. Notably, the deletion of ORF8 (encodes viral deoxyuridine triphosphatase) attenuated the replication of VZV both in vitro and in vivo, but it did not compromise VZV's oncolytic potency. We further armed the VZV Ellen-ΔORF8 vector with a tet-off controlled mouse single-chain IL12 (scIL12) gene cassette. This augmented virus was validated for its oncolytic activity and triggered systemic antitumor immune responses in the immunocompetent B16-F10-nectin1 model. CONCLUSIONS These findings highlight the potential of using Ellen-ΔORF8-tet-off-scIL12 as a novel VZV-based oncolytic virotherapy.
Collapse
Affiliation(s)
- Haifei Jiang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
5
|
Oh SJ, Yu JW, Ahn JH, Choi ST, Park H, Yun J, Shin OS. Varicella zoster virus glycoprotein E facilitates PINK1/Parkin-mediated mitophagy to evade STING and MAVS-mediated antiviral innate immunity. Cell Death Dis 2024; 15:16. [PMID: 38184594 PMCID: PMC10771418 DOI: 10.1038/s41419-023-06400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/03/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Viruses have evolved to control mitochondrial quality and content to facilitate viral replication. Mitophagy is a selective autophagy, in which the damaged or unnecessary mitochondria are removed, and thus considered an essential mechanism for mitochondrial quality control. Although mitophagy manipulation by several RNA viruses has recently been reported, the effect of mitophagy regulation by varicella zoster virus (VZV) remains to be fully determined. In this study, we showed that dynamin-related protein-1 (DRP1)-mediated mitochondrial fission and subsequent PINK1/Parkin-dependent mitophagy were triggered during VZV infection, facilitating VZV replication. In addition, VZV glycoprotein E (gE) promoted PINK1/Parkin-mediated mitophagy by interacting with LC3 and upregulating mitochondrial reactive oxygen species. Importantly, VZV gE inhibited MAVS oligomerization and STING translocation to disrupt MAVS- and STING-mediated interferon (IFN) responses, and PINK1/Parkin-mediated mitophagy was required for VZV gE-mediated inhibition of IFN production. Similarly, carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-mediated mitophagy induction led to increased VZV replication but attenuated IFN production in a three-dimensional human skin organ culture model. Our results provide new insights into the immune evasion mechanism of VZV gE via PINK1/Parkin-dependent mitophagy.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seok Tae Choi
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hosun Park
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jeanho Yun
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Ok Sarah Shin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Jürgens C, Ssebyatika G, Beyer S, Plückebaum N, Kropp KA, González-Motos V, Ritter B, Böning H, Nikolouli E, Kinchington PR, Lachmann N, Depledge DP, Krey T, Viejo-Borbolla A. Viral modulation of type II interferon increases T cell adhesion and virus spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542397. [PMID: 37292914 PMCID: PMC10246016 DOI: 10.1101/2023.05.26.542397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During primary infection, varicella zoster virus (VZV) infects epithelial cells in the respiratory lymphoid organs and mucosa. Subsequent infection of lymphocytes, T cells in particular, causes primary viremia allowing systemic spread throughout the host, including the skin. This results in the expression of cytokines, including interferons (IFNs) which partly limit primary infection. VZV also spreads from skin keratinocytes to lymphocytes prior to secondary viremia. How VZV infects lymphocytes from epithelial cells while evading the cytokine response has not been fully established. Here, we show that VZV glycoprotein C (gC) binds IFN-γ and modifies its activity. Transcriptomic analysis revealed that gC in combination with IFN-γ increased the expression of a small subset of IFN-stimulated genes (ISGs), including intercellular adhesion molecule 1 (ICAM1), as well as several chemokines and immunomodulatory genes. The higher ICAM1 protein level at the plasma membrane of epithelial cells resulted in lymphocyte function-associated antigen 1 (LFA-1)-dependent T cell adhesion. This gC activity required a stable interaction with IFN-γ and signalling through the IFN-γ receptor. Finally, the presence of gC during infection increased VZV spread from epithelial cells to peripheral blood mononuclear cells. This constitutes the discovery of a novel strategy to modulate the activity of IFN-γ, inducing the expression of a subset of ISGs, leading to enhanced T cell adhesion and virus spread.
Collapse
Affiliation(s)
- Carina Jürgens
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - George Ssebyatika
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
- Institute of Biochemistry, University of Lübeck, Lübeck 23562, Germany
| | - Sarah Beyer
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Kai A. Kropp
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Víctor González-Motos
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
- University of Veterinary Medicine Hannover, Foundation, Hannover 30559, Germany
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
| | - Eirini Nikolouli
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover 30625, Germany
| | - Paul R. Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover 30625, Germany
| | - Daniel Pearce Depledge
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover 30625, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
- Institute of Biochemistry, University of Lübeck, Lübeck 23562, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover 30625, Germany
- Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 22607 Hamburg, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover 30625, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
7
|
Chen W, Zhu L, Shen LL, Si SY, Liu JL. T Lymphocyte Subsets Profile and Toll-Like Receptors Responses in Patients with Herpes Zoster. J Pain Res 2023; 16:1581-1594. [PMID: 37220634 PMCID: PMC10200109 DOI: 10.2147/jpr.s405157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Purpose Herpes zoster (HZ) is caused by the varicella-zoster virus (VZV), and 20% of healthy humans and 50% of people with immune dysfunction have a high probability of suffering from HZ. This study aimed to screen dynamic immune signatures and explore the potential mechanism during HZ progression. Patients and Methods Peripheral blood samples from 31 HZ patients and 32 age-sex-matched healthy controls were collected and analyzed. The protein levels and gene levels of toll-like receptors (TLRs) were detected in peripheral blood mononuclear cells (PBMCs) by flow cytometry and quantitative real-time PCR. Further, the characteristics of T cell subsets and cytokines were detected via a cytometric bead array. Results Compared to healthy controls, the mRNA levels of TLR2, TLR4, TLR7, and TLR9 mRNA in PBMCs were significantly increased in HZ patients. The protein level of TLR4 and TLR7 was significantly increased in HZ patients, but the levels of TLR2 and TLR9 were dramatically decreased. The CD3+ T cells were constant in HZ and healthy controls. CD4+ T cells were decreased in HZ patients, while CD8+ T cells were increased, resulting in an improved CD4+/CD8+ T cells ratio. Further, it was found that Th2 and Th17 were not changed, but the decreased Th1 and upregulated Treg cells were found in HZ. The Th1/Th2 and Th17/Treg ratios were significantly decreased. Last, the levels of IL-6, IL-10, and IFN-γ were significantly increased, but IL-2, IL-4, and IL-17A had no significant changes. Conclusion The dysfunction of host's lymphocytes and activation of TLRs in PBMCs were the important mechanism in varicella-zoster virus induced herpes zoster. TLRs might be the core targets for the therapy drug development in treating HZ.
Collapse
Affiliation(s)
- Wei Chen
- Dermatology, Zhejiang Provincial Dermatology Hospital, Huzhou, Zhejiang, People’s Republic of China
| | - Lu Zhu
- Dermatology, Zhejiang Provincial Dermatology Hospital, Huzhou, Zhejiang, People’s Republic of China
| | - Li-Ling Shen
- Dermatology, Zhejiang Provincial Dermatology Hospital, Huzhou, Zhejiang, People’s Republic of China
| | - Shao-Yan Si
- Department of Comprehensive Basic Experiment, Strategic Support Force Medical Center, Bejing, People’s Republic of China
| | - Jun-Lian Liu
- Dermatology, Chui Yang Liu Hospital Affiliated Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Jankeel A, Coimbra-Ibraim I, Messaoudi I. Simian Varicella Virus: Molecular Virology and Mechanisms of Pathogenesis. Curr Top Microbiol Immunol 2023; 438:163-188. [PMID: 34669041 PMCID: PMC9577235 DOI: 10.1007/82_2021_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Simian varicella virus (SVV) was first isolated in 1966 from African green monkeys (Cercopithecus aethiops) imported from Nairobi, Kenya, to the Liverpool School of Tropical Medicine in the United Kingdom (UK) (Clarkson et al., Arch Gesamte Virusforsch 22:219-234, 1967). SVV infection caused severe disease that resulted in a 56% case fatality rate (CFR) in the imported animals within 48 h of the appearance of a varicella-like rash (Clarkson et al., Arch Gesamte Virusforsch 22:219-234, 1967; Hemme et al., Am J Trop Med Hyg 94:1095-1099, 2016). The deceased animals presented with fever, widespread vesicular rash, and multiple hemorrhagic foci throughout the lungs, liver, and spleen (Clarkson et al., Arch Gesamte Virusforsch 22:219-234, 1967). This outbreak was quickly followed by a second outbreak in 47 patas monkeys (Erythrocebus patas) imported from Chad and Nigeria by Glaxo Laboratories (London, England, UK), which quickly spread within the facility (McCarthy et al., Lancet 2:856-857, 1968).
Collapse
Affiliation(s)
- Allen Jankeel
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, USA
| | - Izabela Coimbra-Ibraim
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, USA,Institute for Immunology, University of California Irvine, Irvine, CA, USA,Center for Virus Research, University of California Irvine, Irvine, CA, USA,To whom correspondence should be addressed: Ilhem Messaoudi, PhD, Molecular Biology and Biochemistry, University of California Irvine, 2400 Biological Sciences III, Irvine, CA 92697, Phone: 949-824-3078,
| |
Collapse
|
9
|
Peng Q, Guo X, Luo Y, Wang G, Zhong L, Zhu J, Li Y, Zeng X, Feng Z. Dynamic Immune Landscape and VZV-Specific T Cell Responses in Patients With Herpes Zoster and Postherpetic Neuralgia. Front Immunol 2022; 13:887892. [PMID: 35720399 PMCID: PMC9199063 DOI: 10.3389/fimmu.2022.887892] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Varicella-zoster virus (VZV) can induce herpes zoster (HZ) and postherpetic neuralgia (PHN). Immune cells play an important role in regulating HZ and PHN pathogenesis, but the dynamic immune profiles and molecular mechanisms remain unclear. This study aimed to screen dynamic immune signatures during HZ progression and elucidate the mechanism of VZV-specific T cells in PHN. Methods We used cytometry by time-of-flight (CyTOF) to analyze peripheral blood mononuclear cells (PBMC) samples from 45 patients with HZ and eight age-sex-matched healthy controls, eight PHN samples and seven non-PHN samples. Correlations between the immune subsets and clinical pain-related scores were performed. Further, the characteristics of VZV-specific T cells between PHN and non-PHN patients were evaluated by VZV peptide pools stimulation. The expression level of cytokines, including granzyme B, interleukin (IL)-2, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α was performed via cytometric bead array. Finally, we analyzed the alteration of Ca2+ signals in dorsal root ganglion (DRG)-derived cells after TNF-α stimulation. Results We investigated the dynamic characteristics of the immune landscape of peripheral blood samples of patients with HZ and PHN, and depicted two major dynamic signatures in NK, CD4+ and CD8+ T subsets in patients with HZ, which closely correlated with clinical pain-related scores. The frequency of PD-1+CD4+ T cells, VZV-specific PD-1+CD4+ T cells, and the amount of TNF-α produced by VZV-specific T cells were higher in patients with PHN than without PHN. Furthermore, we showed that TNF-α could induce calcium influx in DRG-derived cells in a dose-dependent manner. Conclusions Our results profiled the dynamic signatures of immune cells in patients with HZ and highlighted the important role of VZV-specific T cells in the pathogenesis of PHN.
Collapse
Affiliation(s)
- Qiao Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejiao Guo
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Luo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyu Zhong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Zhu
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunze Li
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Feng
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Quiñonez RL, Issa NT, Miteva M. A Case of Ill-Defined Erythematous Plaques Scattered on the Scalp. Skin Appendage Disord 2021; 7:520-523. [PMID: 34901188 DOI: 10.1159/000517803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Rebecca L Quiñonez
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Naiem T Issa
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
11
|
Zou A, Chen Y, Shi N, Ye Y. Risk of herpes zoster associated with biological therapies for psoriasis and psoriatic arthritis: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27368. [PMID: 34622837 PMCID: PMC8500657 DOI: 10.1097/md.0000000000027368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 09/10/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Biological therapy is effective for the treatment of psoriasis and psoriatic arthritis; however, adverse effects related to immunosuppression, such as viral infections, have been reported. Amongst these infections, herpes zoster (HZ) is common. OBJECTIVE To evaluate the risk of HZ in psoriasis and psoriatic arthritis patients treated with biological therapy. DATA SOURCES A comprehensive literature search of PubMed, Embase, and Web of Science was performed using certain keywords until October 9, 2020. Nine studies were included after a detailed assessment. STUDY ELIGIBILITY CRITERIA The eligibility criteria included randomized controlled trials (RCTs) and observational studies of patients with psoriasis or psoriatic arthritis treated with biological therapies; compared with non-biological therapies, non-biological systemic therapies, or controls; with the incidence of HZ reported in case and control groups. The Cochrane risk of bias tool and Newcastle-Ottawa scale were used to assess the quality of the RCTs and observational studies, respectively. Data were extracted from 9 eligible studies and then analyzed using Stata software (Version 12.0). RESULTS The risk of HZ in biological therapies was higher than that in non-biological (odds ratios [OR]: 1.48; 95% confidence interval [CI]: 1.18-1.86; I2 = 0%) and non-biological systemic (OR: 1.32; 95% CI: 1.02-1.71; I2 = 0%) therapies. Furthermore, the risk of HZ associated with tumor necrosis factor-α inhibitors increased significantly (OR: 1.50; 95% CI: 1.11-2.02; I2 = 0%). Notably, infliximab (OR: 2.43; 95% CI: 1.31-4.50; I2 = 0%) and etanercept (OR: 1.65; 95% CI: 1.07-2.56; I2 = 0%) increased the risk of HZ, while adalimumab (OR: 1.21; 95% CI: 0.64-2.30; I2 = 0%), ustekinumab (OR: 2.20; 95% CI: 0.89-5.44; I2 = 0%), alefacept (OR: 1.46; 95% CI: 0.20-10.47; I2 = 0%), and efalizumab (OR: 1.58; 95% CI: 0.22-11.34; I2 = 0%) did not. LIMITATIONS Few RCTs have reported HZ incidents; thus, our results require confirmation via large-scale RCTs. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS Biological therapies, especially tumor necrosis factor-α inhibitors, may lead to the risk of HZ in psoriasis and psoriatic arthritis patients. Amongst these agents, infliximab and etanercept have been shown to significantly increase the risk of HZ. Additionally, younger age and female sex may be risk factors. SYSTEMATIC REVIEW REGISTRATION NUMBER INPLASY202110027.
Collapse
Affiliation(s)
- Ailing Zou
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Health Care Group, Huangshi, Hubei, China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| | - Yongjun Chen
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Health Care Group, Huangshi, Hubei, China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| | - Nian Shi
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Health Care Group, Huangshi, Hubei, China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| | - Yu Ye
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Health Care Group, Huangshi, Hubei, China
| |
Collapse
|
12
|
Rad H, Röhl J, Stylianou N, Allenby M, Bazaz S, Warkiani ME, Guimaraes FSF, Clifton VL, Kulasinghe A. The Effects of COVID-19 on the Placenta During Pregnancy. Front Immunol 2021; 12:743022. [PMID: 34603330 PMCID: PMC8479199 DOI: 10.3389/fimmu.2021.743022] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. The virus primarily affects the lungs where it induces respiratory distress syndrome ranging from mild to acute, however, there is a growing body of evidence supporting its negative effects on other system organs that also carry the ACE2 receptor, such as the placenta. The majority of newborns delivered from SARS-CoV-2 positive mothers test negative following delivery, suggesting that there are protective mechanisms within the placenta. There appears to be a higher incidence of pregnancy-related complications in SARS-CoV-2 positive mothers, such as miscarriage, restricted fetal growth, or still-birth. In this review, we discuss the pathobiology of COVID-19 maternal infection and the potential adverse effects associated with viral infection, and the possibility of transplacental transmission.
Collapse
Affiliation(s)
- Habib Sadeghi Rad
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joan Röhl
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nataly Stylianou
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark C. Allenby
- School of Chemical Engineering, University of Queensland, St Lucia, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Majid E. Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Vicki L. Clifton
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Arutha Kulasinghe
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- The University of Queensland Diamantina Institute (UQDI), Brisbane, QLD, Australia
| |
Collapse
|
13
|
Varicella-zoster virus: molecular controls of cell fusion-dependent pathogenesis. Biochem Soc Trans 2021; 48:2415-2435. [PMID: 33259590 DOI: 10.1042/bst20190511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022]
Abstract
Varicella-zoster virus (VZV) is the causative agent of chicken pox (varicella) and shingles (zoster). Although considered benign diseases, both varicella and zoster can cause complications. Zoster is painful and can lead to post herpetic neuralgia. VZV has also been linked to stroke, related to giant cell arteritis in some cases. Vaccines are available but the attenuated vaccine is not recommended in immunocompromised individuals and the efficacy of the glycoprotein E (gE) based subunit vaccine has not been evaluated for the prevention of varicella. A hallmark of VZV pathology is the formation of multinucleated cells termed polykaryocytes in skin lesions. This cell-cell fusion (abbreviated as cell fusion) is mediated by the VZV glycoproteins gB, gH and gL, which constitute the fusion complex of VZV, also needed for virion entry. Expression of gB, gH and gL during VZV infection and trafficking to the cell surface enables cell fusion. Recent evidence supports the concept that cellular processes are required for regulating cell fusion induced by gB/gH-gL. Mutations within the carboxyl domains of either gB or gH have profound effects on fusion regulation and dramatically restrict the ability of VZV to replicate in human skin. This loss of regulation modifies the transcriptome of VZV infected cells. Furthermore, cellular proteins have significant effects on the regulation of gB/gH-gL-mediated cell fusion and the replication of VZV, exemplified by the cellular phosphatase, calcineurin. This review provides the current state-of-the-art knowledge about the molecular controls of cell fusion-dependent pathogenesis caused by VZV.
Collapse
|
14
|
Das B, Bisht P, Kinchington PR, Goldstein RS. Locked-nucleotide antagonists to varicella zoster virus small non-coding RNA block viral growth and have potential as an anti-viral therapy. Antiviral Res 2021; 193:105144. [PMID: 34303746 DOI: 10.1016/j.antiviral.2021.105144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022]
Abstract
Herpes zoster (HZ) remains a significant health burden with millions of cases in North America and Europe annually. HZ is frequently followed by long-term pain or post-herpetic neuralgia (PHN). Although effective vaccines for HZ are available, currently used nucleotide analogues often have limited effectiveness against HZ and especially PHN, so there remains a need for additional antiviral therapies for HZ. We recently identified a population of small non-coding RNA (sncRNA) encoded by Varicella Zoster Virus (VZV) and showed that single locked-nucleic acid antagonists (LNAA) to some sncRNA can modulate VZV replication in cell culture. In this work, we explored the antiviral effects of combinations of LNAA oligonucleotides targeting VZVsncRNA. Combinations of LNAA targeting three VZVsncRNA encoded in and near a critical viral regulatory gene were additive, achieving 96 % reduction in virus growth in a cell line. VZV growth was also inhibited by more than 90 % in primary human skin fibroblast cultures by individual and combinations of LNAA to VZVsncRNA. The inhibition by VZVsncRNA was specific and not a consequence of innate immune responses since LNAA to a different VZVsncRNA enhanced VZV growth. Targeted VZVsncRNA lack homologous sequences in the human transcriptome suggesting that LNAA to them would have reduced cytotoxicity if used as therapeutics. These results support further development of oligonucleotides targeting VZVsncRNA as a novel treatment for HZ.
Collapse
Affiliation(s)
- Biswajit Das
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel
| | - Punam Bisht
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel
| | - Paul R Kinchington
- Departments of Ophthalmology and of Microbiology and Molecular Genetics, University of Pittsburgh, 1020 EEI 203 Lothrop Street, Pittsburgh, PA, 15213-2588, USA
| | - Ronald S Goldstein
- Mina and Everard Goodman Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, 5900002, Israel.
| |
Collapse
|
15
|
Narang K, Cheek EH, Enninga EAL, Theiler RN. Placental Immune Responses to Viruses: Molecular and Histo-Pathologic Perspectives. Int J Mol Sci 2021; 22:2921. [PMID: 33805739 PMCID: PMC7998619 DOI: 10.3390/ijms22062921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
As most recently demonstrated by the SARS-CoV-2 pandemic, congenital and perinatal infections are of significant concern to the pregnant population as compared to the general population. These outcomes can range from no apparent impact all the way to spontaneous abortion or fetal infection with long term developmental consequences. While some pathogens have developed mechanisms to cross the placenta and directly infect the fetus, other pathogens lead to an upregulation in maternal or placental inflammation that can indirectly cause harm. The placenta is a temporary, yet critical organ that serves multiple important functions during gestation including facilitation of fetal nutrition, oxygenation, and prevention of fetal infection in utero. Here, we review trophoblast cell immunology and the molecular mechanisms utilized to protect the fetus from infection. Lastly, we discuss consequences in the placenta when these protections fail and the histopathologic result following infection.
Collapse
Affiliation(s)
- Kavita Narang
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| | - Elizabeth H. Cheek
- Department of Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| | - Elizabeth Ann L. Enninga
- Departments of Immunology, Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| | - Regan N. Theiler
- Division of Obstetrics, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Abstract
Varicella-zoster virus (VZV) causes varicella (chickenpox) as primary infection, and latently infects neuronal cells in the dorsal root ganglia (DRG). Reactivation of VZV from DRG results in herpes zoster, often decades later. VZV is the only airborne human herpesvirus and the only herpesvirus whose symptoms (both varicella and herpes zoster) can be prevented by vaccination. Herpes zoster is significantly more common in patients with bone marrow transplants, hematological malignancies, oral Jak inhibitors, SLE, and the elderly. The brand new subunit vaccine, ShingrixⓇ, for preventing herpes zoster is a mixture of adjuvant and recombinant VZV glycoprotein gE, which is highly effective in preventing zoster even in elderly people. In this review, the author discuss the onset mechanism of zoster from the clinical findings and summarize the result of clinical trials of the subunit vaccine.
Collapse
|
17
|
Determinants of neurological syndromes caused by varicella zoster virus (VZV). J Neurovirol 2020; 26:482-495. [PMID: 32495195 PMCID: PMC7438298 DOI: 10.1007/s13365-020-00857-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022]
Abstract
Varicella zoster virus (VZV) is a pathogenic human herpes virus which causes varicella as a primary infection, following which it becomes latent in peripheral autonomic, sensory, and cranial nerve ganglionic neurons from where it may reactivate after decades to cause herpes zoster. VZV reactivation may also cause a wide spectrum of neurological syndromes, in particular, acute encephalitis and vasculopathy. While there is potentially a large number of coding viral mutations that might predispose certain individuals to VZV infections, in practice, a variety of host factors are the main determinants of VZV infection, both disseminated and specifically affecting the nervous system. Host factors include increasing age with diminished cell-mediated immunity to VZV, several primary immunodeficiency syndromes, secondary immunodeficiency syndromes, and drug-induced immunosuppression. In some cases, the molecular immunological basis underlying the increased risk of VZV infections has been defined, in particular, the role of POL III mutations, but in other cases, the mechanisms have yet to be determined. The role of immunization in immunosuppressed individuals as well as its possible efficacy in preventing both generalized and CNS-specific infections will require further investigation to clarify in such patients.
Collapse
|
18
|
Expression of the Conserved Herpesvirus Protein Kinase (CHPK) of Marek's Disease Alphaherpesvirus in the Skin Reveals a Mechanistic Importance for CHPK during Interindividual Spread in Chickens. J Virol 2020; 94:JVI.01522-19. [PMID: 31801854 DOI: 10.1128/jvi.01522-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
The Herpesviridae encode many conserved genes, including the conserved herpesvirus protein kinase (CHPK) that has multifunctional properties. In most cases, herpesviruses lacking CHPK can propagate in cell culture to various degrees, depending on the virus and cell culture system. However, in the natural animal model system of Marek's disease alphaherpesvirus (MDV) in chickens, CHPK is absolutely required for interindividual spread from chicken to chicken. The lack of biological reagents for chicken and MDV has limited our understanding of this important gene during interindividual spread. Here, we engineered epitope-tagged proteins in the context of virus infection in order to detect CHPK in the host. Using immunofluorescence assays and Western blotting during infection in cell culture and in chickens, we determined that the invariant lysine 170 (K170) of MDV CHPK is required for interindividual spread and autophosphorylation of CHPK and that mutation to methionine (M170) results in instability of the CHPK protein. Using these newly generated viruses allowed us to examine the expression of CHPK in infected chickens, and these results showed that mutant CHPK localization and late viral protein expression were severely affected in feather follicles wherein MDV is shed, providing important information on the requirement of CHPK for interindividual spread.IMPORTANCE Marek's disease in chickens is caused by Gallid alphaherpesvirus 2, better known as Marek's disease alphaherpesvirus (MDV). Current vaccines only reduce tumor formation but do not block interindividual spread from chicken to chicken. Understanding MDV interindividual spread provides important information for the development of potential therapies to protect against Marek's disease while also providing a reliable natural host in order to study herpesvirus replication and pathogenesis in animals. Here, we studied the conserved Herpesviridae protein kinase (CHPK) in cell culture and during infection in chickens. We determined that MDV CHPK is not required for cell-to-cell spread, for disease induction, and for oncogenicity. However, it is required for interindividual spread, and mutation of the invariant lysine (K170) results in stability issues and aberrant expression in chickens. This study is important because it addresses the critical role CHPK orthologs play in the natural host.
Collapse
|
19
|
Perciani CT, Sekhon M, Hundal S, Farah B, Ostrowski MA, Anzala AO, McKinnon LR, Jaoko W, MacDonald KS. Live Attenuated Zoster Vaccine Boosts Varicella Zoster Virus (VZV)-Specific Humoral Responses Systemically and at the Cervicovaginal Mucosa of Kenyan VZV-Seropositive Women. J Infect Dis 2019; 218:1210-1218. [PMID: 29800309 PMCID: PMC6129112 DOI: 10.1093/infdis/jiy320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022] Open
Abstract
Background Attenuated varicella zoster virus (VZV) is a promising vector for recombinant vaccines. Because human immunodeficiencyvirus (HIV) vaccines are believed to require mucosal immunogenicity, we characterized mucosal VZV-specific humoral immunity following VZVOka vaccination. Methods Adult Kenyan VZV-seropositive women (n = 44) received a single dose of the live zoster VZVOka vaccine. The anamnestic responses to the virus were followed longitudinally in both plasma and mucosal secretions using an in-house glycoprotein enzyme-linked immunosorbent assay and safety and reactogenicity monitored. VZV seroprevalence and baseline responses to the virus were also characterized in our cohorts (n = 288). Results Besides boosting anti-VZV antibody responses systemically, vaccination also boosted anti-VZV immunity in the cervicovaginal mucosa with a 2.9-fold rise in immunoglobulin G (P < .0001) and 1.6-fold rise in immunoglobulin A (IgA) (P = .004) from the time before immunization and 4 weeks postvaccination. Baseline analysis demonstrated high avidity antibodies at the gastrointestinal and genital mucosa of VZV-seropositive women. Measurement of VZV-specific IgA in saliva is a sensitive tool for detecting prior VZV infection. Conclusions VZVOka vaccine was safe and immunogenic in VZV-seropositive adult Kenyan women. We provided compelling evidence of VZV ability to induce genital mucosa immunity. Clinical Trials Registration NCT02514018.
Collapse
Affiliation(s)
- Catia T Perciani
- Department of Immunology, University of Toronto, Ontario, Canada
| | - Manmeet Sekhon
- Department of Immunology, University of Toronto, Ontario, Canada
| | - Sabrina Hundal
- Department of Immunology, University of Toronto, Ontario, Canada
| | - Bashir Farah
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research, Nairobi, Kenya
| | - Mario A Ostrowski
- Department of Immunology, University of Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, Ontario, Canada
| | - A Omu Anzala
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research, Nairobi, Kenya.,Department of Medical Microbiology, University of Nairobi, Kenya
| | - Lyle R McKinnon
- Department of Medical Microbiology, University of Nairobi, Kenya.,Department of Medical Microbiology and Infectious Diseases, Rady College of Medicine, University of Manitoba, Winnipeg, Canada.,Centre for the AIDS Programme of Research in South Africa, Durban
| | - Walter Jaoko
- Kenyan AIDS Vaccine Initiative-Institute of Clinical Research, Nairobi, Kenya.,Department of Medical Microbiology, University of Nairobi, Kenya
| | - Kelly S MacDonald
- Department of Immunology, University of Toronto, Ontario, Canada.,Section of Infectious Diseases, Department of Internal Medicine, Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
20
|
Schönrich G, Raftery MJ. The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Front Cell Infect Microbiol 2019; 9:207. [PMID: 31263684 PMCID: PMC6584848 DOI: 10.3389/fcimb.2019.00207] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death protein (PD-1) and its ligands play a fundamental role in the evasion of tumor cells from antitumor immunity. Less well appreciated is the fact that the PD-1/PD-L1 axis also regulates antiviral immune responses and is therefore modulated by a number of viruses. Upregulation of PD-1 and its ligands PD-L1 and PD-L2 is observed during acute virus infection and after infection with persistent viruses including important human pathogens such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and hepatitis B virus (HBV). Experimental evidence suggests that insufficient signaling through the PD-1 pathway promotes immunopathology during acute infection by exaggerating primary T cell responses. If chronic infection is established, however, high levels of PD-1 expression can have unfavorable immunological consequences. Exhaustion and suppression of antiviral immune responses can result in viral immune evasion. The role of the PD-1/PD-L1 axis during viral infections is further complicated by evidence that PD-L1 also mediates inflammatory effects in the acute phase of an immune response. In this review, we discuss the intricate interplay between viruses and the PD-1/PD-L1 axis.
Collapse
Affiliation(s)
- Günther Schönrich
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | | |
Collapse
|
21
|
Infection and Functional Modulation of Human Monocytes and Macrophages by Varicella-Zoster Virus. J Virol 2019; 93:JVI.01887-18. [PMID: 30404793 DOI: 10.1128/jvi.01887-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 02/08/2023] Open
Abstract
Varicella-zoster virus (VZV) is associated with viremia during primary infection that is presumed to stem from infection of circulating immune cells. While VZV has been shown to be capable of infecting a number of different subsets of circulating immune cells, such as T cells, dendritic cells, and NK cells, less is known about the interaction between VZV and monocytes. Here, we demonstrate that blood-derived human monocytes are permissive to VZV replication in vitro VZV-infected monocytes exhibited each temporal class of VZV gene expression, as evidenced by immunofluorescent staining. VZV virions were observed on the cell surface and viral nucleocapsids were observed in the nucleus of VZV-infected monocytes by scanning electron microscopy. In addition, VZV-infected monocytes were able to transfer infectious virus to human fibroblasts. Infected monocytes displayed impaired dextran-mediated endocytosis, and cell surface immunophenotyping revealed the downregulation of CD14, HLA-DR, CD11b, and the macrophage colony-stimulating factor (M-CSF) receptor. Analysis of the impact of VZV infection on M-CSF-stimulated monocyte-to-macrophage differentiation demonstrated the loss of cell viability, indicating that VZV-infected monocytes were unable to differentiate into viable macrophages. In contrast, macrophages differentiated from monocytes prior to exposure to VZV were highly permissive to infection. This study defines the permissiveness of these myeloid cell types to productive VZV infection and identifies the functional impairment of VZV-infected monocytes.IMPORTANCE Primary VZV infection results in the widespread dissemination of the virus throughout the host. Viral transportation is known to be directly influenced by susceptible immune cells in the circulation. Moreover, infection of immune cells by VZV results in attenuation of the antiviral mechanisms used to control infection and limit spread. Here, we provide evidence that human monocytes, which are highly abundant in the circulation, are permissive to productive VZV infection. Furthermore, monocyte-derived macrophages were also highly permissive to VZV infection, although VZV-infected monocytes were unable to differentiate into macrophages. Exploring the relationships between VZV and permissive immune cells, such as human monocytes and macrophages, elucidates novel immune evasion strategies and provides further insight into the control that VZV has over the immune system.
Collapse
|
22
|
Laing KJ, Ouwendijk WJD, Koelle DM, Verjans GMGM. Immunobiology of Varicella-Zoster Virus Infection. J Infect Dis 2018; 218:S68-S74. [PMID: 30247598 PMCID: PMC6151075 DOI: 10.1093/infdis/jiy403] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Varicella-zoster virus (VZV) causes clinically significant illness during acute and recurrent infection accompanied by robust innate and acquired immune responses. Innate immune cells in skin and ganglion secrete type I interferon (IFN-I) and proinflammatory cytokines to control VZV. Varicella-zoster virus subverts pattern recognition receptor sensing to modulate antigen presentation and IFN-I production. During primary infection, VZV hijacks T cells to disseminate to the skin and establishes latency in ganglia. Durable T- and B-cell memory formed within a few weeks of infection is boosted by reactivation or re-exposure. Antigen-specific T cells are recruited and potentially retained in VZV-infected skin to counteract reactivation. In latently VZV-infected ganglia, however, virus-specific T cells have not been recovered, suggesting that local innate immune responses control VZV latency. Antibodies prevent primary VZV infection, whereas T cells are fundamental to resolving disease, limiting severity, and preventing reactivation. In this study, we review current knowledge on the interactions between VZV and the human immune system.
Collapse
Affiliation(s)
- Kerry J Laing
- Department of Medicine, University of Washington, Seattle
- Department of Laboratory Medicine, University of Washington, Seattle
| | | | - David M Koelle
- Department of Laboratory Medicine, University of Washington, Seattle
- Department of Global Health, University of Washington, Seattle
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Benaroya Research Institute, Seattle, Washington
| | - Georges M G M Verjans
- Department of Laboratory Medicine, University of Washington, Seattle
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
23
|
Zerboni L, Sung P, Sommer M, Arvin A. The C-terminus of varicella-zoster virus glycoprotein M contains trafficking motifs that mediate skin virulence in the SCID-human model of VZV pathogenesis. Virology 2018; 523:110-120. [PMID: 30119012 DOI: 10.1016/j.virol.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 11/16/2022]
Abstract
Knowledge about the function of varicella-zoster virus glycoprotein M is limited; the requirement of gM for skin and neural tropism are unknown. VZV gM contains two predicted YXXΦ trafficking motifs and a dileucine motif in the carboxyl-terminus. We constructed a recombinant VZV with gM truncated from the first YXXΦ and five additional viruses with YXXΦ tyrosine substitutions, alone and in combination with dileucine substitution. All recombinant viruses grew to high titer but mutation of the membrane-proximal YXXΦ motif reduced plaque size in cultured cells and altered gM localization. C-terminus truncation had a pronounced effect on virion morphogenesis and plaque size, but not on overall replication kinetics in vitro. Mutation of gM trafficking motifs and truncation attenuated replication in human skin xenografts in vivo; gM truncation did not alter neurotropism. Our results demonstrate that the gM C-terminus is dispensable for virus replication in cultured cells but is important for skin pathogenesis.
Collapse
Affiliation(s)
- Leigh Zerboni
- Departments of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States.
| | - Phillip Sung
- Departments of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Marvin Sommer
- Departments of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Ann Arvin
- Departments of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Departments of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
24
|
Koyuncu OO, MacGibeny MA, Enquist LW. Latent versus productive infection: the alpha herpesvirus switch. Future Virol 2018; 13:431-443. [PMID: 29967651 DOI: 10.2217/fvl-2018-0023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Abstract
Alpha herpesviruses are common pathogens of mammals. They establish a productive infection in many cell types, but a life-long latent infection occurs in PNS neurons. A vast majority of the human population has latent HSV-1 infections. Currently, there is no cure to clear latent infections. Even though HSV-1 is among the best studied viral pathogens, regulation of latency and reactivation is not well understood due to several challenges including a lack of animal models that precisely recapitulate latency/reactivation episodes; a difficulty in modeling in vitro latency; and a limited understanding of neuronal biology. In this review, we discuss insights gained from in vitro latency models with a focus on the neuronal and viral factors that determine the mode of infection.
Collapse
Affiliation(s)
- Orkide O Koyuncu
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Margaret A MacGibeny
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Lynn W Enquist
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
25
|
Cytoskeletons in the Closet-Subversion in Alphaherpesvirus Infections. Viruses 2018; 10:v10020079. [PMID: 29438303 PMCID: PMC5850386 DOI: 10.3390/v10020079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Actin filaments, microtubules and intermediate filaments form the cytoskeleton of vertebrate cells. Involved in maintaining cell integrity and structure, facilitating cargo and vesicle transport, remodelling surface structures and motility, the cytoskeleton is necessary for the successful life of a cell. Because of the broad range of functions these filaments are involved in, they are common targets for viral pathogens, including the alphaherpesviruses. Human-tropic alphaherpesviruses are prevalent pathogens carried by more than half of the world’s population; comprising herpes simplex virus (types 1 and 2) and varicella-zoster virus, these viruses are characterised by their ability to establish latency in sensory neurons. This review will discuss the known mechanisms involved in subversion of and transport via the cytoskeleton during alphaherpesvirus infections, focusing on protein-protein interactions and pathways that have recently been identified. Studies on related alphaherpesviruses whose primary host is not human, along with comparisons to more distantly related beta and gammaherpesviruses, are also presented in this review. The need to decipher as-yet-unknown mechanisms exploited by viruses to hijack cytoskeletal components—to reveal the hidden cytoskeletons in the closet—will also be addressed.
Collapse
|
26
|
Arnold N, Messaoudi I. Herpes zoster and the search for an effective vaccine. Clin Exp Immunol 2017; 187:82-92. [PMID: 27164323 PMCID: PMC5167054 DOI: 10.1111/cei.12809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022] Open
Abstract
Primary infection with varicella zoster virus (VZV), an exclusively human neurotrophic alphaherpsesvirus, results in varicella, known more commonly as chickenpox. Like other alphaherpesviruses, VZV establishes latency in the sensory ganglia and can reactivate to cause herpes zoster (also known as shingles), a painful and debilitating disease, especially in elderly and immunocompromised individuals. The overall incidence of herpes zoster in Europe and the United States is three per 1000 people, but increases sharply after 60 years of age to 10 per 1000 people. Zostavax® is a vaccine approved by the Federal Drug Administration for the prevention of herpes zoster. Unfortunately, this vaccine reduces the incidence of disease by only 51% and the incidence of post-herpetic neuralgia by 66·5% when administered to those aged 60 and older. Moreover, it is contraindicated for individuals who are immunocompromised or receiving immunosuppressant treatments, although they are at higher risk for herpes zoster compared to immune-competent older individuals. This paper reviews VZV pathogenesis, host responses and current vaccines available to prevent herpes zoster.
Collapse
Affiliation(s)
- N Arnold
- Graduate Program in Microbiology, University of California-Riverside, Riverside, CA, USA
| | - I Messaoudi
- Graduate Program in Microbiology, University of California-Riverside, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
27
|
Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection. J Virol 2016; 91:JVI.01613-16. [PMID: 27795423 DOI: 10.1128/jvi.01613-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. IMPORTANCE The highly infectious, human-restricted pathogen varicella-zoster virus (VZV) causes chickenpox and shingles. Postherpetic neuralgia (PHN) is a common complication of shingles that manifests as prolonged excruciating pain, which has proven difficult to treat. The formation of fused multinucleated cells in ganglia might be associated with this condition. An effective vaccine against VZV is available but not recommended for immunocompromised individuals, highlighting the need for new therapies. This study investigated the viral and cellular responses to hyperfusion, a condition where the usual constraints of cell membranes are overcome and cells form multinucleated cells. This process hinders VZV and is regulated by a viral glycoprotein, gB. A combination of live-cell imaging and next-generation genomics revealed an alteration in viral and cellular responses during hyperfusion that was caused by the loss of gB regulation. These studies reveal mechanisms central to VZV pathogenesis, potentially leading to improved therapies.
Collapse
|
28
|
Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL, Brehm MA, Shultz LD. Humanized Mouse Models of Clinical Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:187-215. [PMID: 27959627 DOI: 10.1146/annurev-pathol-052016-100332] [Citation(s) in RCA: 380] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immunodeficient mice engrafted with functional human cells and tissues, that is, humanized mice, have become increasingly important as small, preclinical animal models for the study of human diseases. Since the description of immunodeficient mice bearing mutations in the IL2 receptor common gamma chain (IL2rgnull) in the early 2000s, investigators have been able to engraft murine recipients with human hematopoietic stem cells that develop into functional human immune systems. These mice can also be engrafted with human tissues such as islets, liver, skin, and most solid and hematologic cancers. Humanized mice are permitting significant progress in studies of human infectious disease, cancer, regenerative medicine, graft-versus-host disease, allergies, and immunity. Ultimately, use of humanized mice may lead to the implementation of truly personalized medicine in the clinic. This review discusses recent progress in the development and use of humanized mice and highlights their utility for the study of human diseases.
Collapse
Affiliation(s)
- Nicole C Walsh
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Laurie L Kenney
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sonal Jangalwe
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Ken-Edwin Aryee
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Michael A Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | |
Collapse
|
29
|
Arnold N, Girke T, Sureshchandra S, Messaoudi I. Acute Simian Varicella Virus Infection Causes Robust and Sustained Changes in Gene Expression in the Sensory Ganglia. J Virol 2016; 90:10823-10843. [PMID: 27681124 PMCID: PMC5110160 DOI: 10.1128/jvi.01272-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Primary infection with varicella-zoster virus (VZV), a neurotropic alphaherpesvirus, results in varicella. VZV establishes latency in the sensory ganglia and can reactivate later in life to cause herpes zoster. The relationship between VZV and its host during acute infection in the sensory ganglia is not well understood due to limited access to clinical specimens. Intrabronchial inoculation of rhesus macaques with simian varicella virus (SVV) recapitulates the hallmarks of VZV infection in humans. We leveraged this animal model to characterize the host-pathogen interactions in the ganglia during both acute and latent infection by measuring both viral and host transcriptomes on days postinfection (dpi) 3, 7, 10, 14, and 100. SVV DNA and transcripts were detected in sensory ganglia 3 dpi, before the appearance of rash. CD4 and CD8 T cells were also detected in the sensory ganglia 3 dpi. Moreover, lung-resident T cells isolated from the same animals 3 dpi also harbored SVV DNA and transcripts, suggesting that T cells may be responsible for trafficking SVV to the ganglia. Transcriptome sequencing (RNA-Seq) analysis showed that cessation of viral transcription 7 dpi coincides with a robust antiviral innate immune response in the ganglia. Interestingly, a significant number of genes that play a critical role in nervous system development and function remained downregulated into latency. These studies provide novel insights into host-pathogen interactions in the sensory ganglia during acute varicella and demonstrate that SVV infection results in profound and sustained changes in neuronal gene expression. IMPORTANCE Many aspects of VZV infection of sensory ganglia remain poorly understood, due to limited access to human specimens and the fact that VZV is strictly a human virus. Infection of rhesus macaques with simian varicella virus (SVV), a homolog of VZV, provides a robust model of the human disease. Using this model, we show that SVV reaches the ganglia early after infection, most likely by T cells, and that the induction of a robust innate immune response correlates with cessation of virus transcription. We also report significant changes in the expression of genes that play an important role in neuronal function. Importantly, these changes persist long after viral replication ceases. Given the homology between SVV and VZV, and the genetic and physiological similarities between rhesus macaques and humans, our results provide novel insight into the interactions between VZV and its human host and explain some of the neurological consequences of VZV infection.
Collapse
Affiliation(s)
- Nicole Arnold
- Graduate Program in Microbiology, University of California-Riverside, Riverside, California, USA
| | - Thomas Girke
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California, USA
| | - Suhas Sureshchandra
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, Riverside, California, USA
| | - Ilhem Messaoudi
- Graduate Program in Microbiology, University of California-Riverside, Riverside, California, USA
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, Riverside, California, USA
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
30
|
el Hayderi L, Colson F, Dezfoulian B, Nikkels AF. Herpes zoster in psoriasis patients undergoing treatment with biological agents: prevalence, impact, and management challenges. PSORIASIS (AUCKLAND, N.Z.) 2016; 6:145-151. [PMID: 29387601 PMCID: PMC5683123 DOI: 10.2147/ptt.s102202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As TNF-α is a major factor in the immune defense against herpes zoster (HZ); an increased incidence and severity of HZ cases were suspected in patients undergoing treatment with TNF antagonists. Several studies and clinical experience provided evidence that the incidence of HZ increases by twofold to threefold in this patient category. The number of severe cases of HZ, with multisegmental, disseminated cutaneous, and/or systemic involvement, is also increased. Concerning psoriasis patients under biologicals, the clinician should be more alert for an eventual HZ event, in particular during the first year of biological treatment, and be aware of the possibility of more severe HZ cases. HZ may also undergo an age-shift toward younger patients. Rapid identification of risk factors for severe HZ, such as severe prodromal pains and/or the presence of satellite lesions, is recommended. The treatment recommendations of HZ in this patient group are identical to the recently published guidelines for the management of HZ. The live attenuated viral vaccine OKA/Merck strain anti-HZ vaccination is recommended before initiating biological treatment in psoriasis patients. The new adjuvanted anti-HZ vaccine will probably also benefit patients while on biological treatment.
Collapse
Affiliation(s)
- Lara el Hayderi
- Department of Dermatology, CHU du Sart Tilman, University Hospital of Liège, Liège, Belgium
| | - Fany Colson
- Department of Dermatology, CHU du Sart Tilman, University Hospital of Liège, Liège, Belgium
| | - Bita Dezfoulian
- Department of Dermatology, CHU du Sart Tilman, University Hospital of Liège, Liège, Belgium
| | - Arjen F Nikkels
- Department of Dermatology, CHU du Sart Tilman, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
31
|
Oliver SL, Yang E, Arvin AM. Varicella-Zoster Virus Glycoproteins: Entry, Replication, and Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016; 3:204-215. [PMID: 28367398 DOI: 10.1007/s40588-016-0044-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Varicella-zoster virus (VZV), an alphaherpesvirus that causes chicken pox (varicella) and shingles (herpes zoster), is a medically important pathogen that causes considerable morbidity and, on occasion, mortality in immunocompromised patients. Herpes zoster can afflict the elderly with a debilitating condition, postherpetic neuralgia, triggering severe, untreatable pain for months or years. The lipid envelope of VZV, similar to all herpesviruses, contains numerous glycoproteins required for replication and pathogenesis. PURPOSE OF REVIEW To summarize the current knowledge about VZV glycoproteins and their roles in cell entry, replication and pathogenesis. RECENT FINDINGS The functions for some VZV glycoproteins are known, such as gB, gH and gL in membrane fusion, cell-cell fusion regulation, and receptor binding properties. However, the molecular mechanisms that trigger or mediate VZV glycoproteins remains poorly understood. SUMMARY VZV glycoproteins are central to successful replication but their modus operandi during replication and pathogenesis remain elusive requiring further mechanistic based studies.
Collapse
Affiliation(s)
- Stefan L Oliver
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, 94305-5208
| | - Edward Yang
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, 94305-5208
| | - Ann M Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, 94305-5208
| |
Collapse
|
32
|
Amirian ES, Scheurer ME, Zhou R, Wrensch MR, Armstrong G, Lachance D, Olson SH, Lau CC, Claus EB, Barnholtz‐Sloan J, Il'yasova D, Schildkraut J, Ali‐Osman F, Sadetzki S, Jenkins RB, Bernstein JL, Merrell RT, Davis FG, Lai R, Shete S, Amos CI, Melin BS, Bondy ML. History of chickenpox in glioma risk: a report from the glioma international case-control study (GICC). Cancer Med 2016; 5:1352-8. [PMID: 26972449 PMCID: PMC4924393 DOI: 10.1002/cam4.682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/02/2015] [Accepted: 12/20/2015] [Indexed: 01/30/2023] Open
Abstract
Varicella zoster virus (VZV) is a neurotropic α-herpesvirus that causes chickenpox and establishes life-long latency in the cranial nerve and dorsal root ganglia of the host. To date, VZV is the only virus consistently reported to have an inverse association with glioma. The Glioma International Case-Control Study (GICC) is a large, multisite consortium with data on 4533 cases and 4171 controls collected across five countries. Here, we utilized the GICC data to confirm the previously reported associations between history of chickenpox and glioma risk in one of the largest studies to date on this topic. Using two-stage random-effects restricted maximum likelihood modeling, we found that a positive history of chickenpox was associated with a 21% lower glioma risk, adjusting for age and sex (95% confidence intervals (CI): 0.65-0.96). Furthermore, the protective effect of chickenpox was stronger for high-grade gliomas. Our study provides additional evidence that the observed protective effect of chickenpox against glioma is unlikely to be coincidental. Future studies, including meta-analyses of the literature and investigations of the potential biological mechanism, are warranted.
Collapse
Affiliation(s)
- E. Susan Amirian
- Department of PediatricsDivision of Hematology‐OncologyDan L. Duncan Cancer CenterBaylor College of MedicineHoustonTexas
| | - Michael E. Scheurer
- Department of PediatricsDivision of Hematology‐OncologyDan L. Duncan Cancer CenterBaylor College of MedicineHoustonTexas
| | - Renke Zhou
- Department of PediatricsDivision of Hematology‐OncologyDan L. Duncan Cancer CenterBaylor College of MedicineHoustonTexas
| | - Margaret R. Wrensch
- Department of Neurological SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Georgina N. Armstrong
- Department of PediatricsDivision of Hematology‐OncologyDan L. Duncan Cancer CenterBaylor College of MedicineHoustonTexas
| | - Daniel Lachance
- Department of NeurologyMayo Clinic Comprehensive Cancer CenterMayo ClinicRochesterMinnesota
| | - Sara H. Olson
- Department of Epidemiology and BiostatisticsMemorial Sloan‐Kettering Cancer CenterNew YorkNew York
| | - Ching C. Lau
- Department of PediatricsDivision of Hematology‐OncologyDan L. Duncan Cancer CenterBaylor College of MedicineHoustonTexas
| | - Elizabeth B. Claus
- Department of Epidemiology and Public HealthYale University School of MedicineNew HavenConnecticut
- Department of NeurosurgeryBrigham and Women's HospitalBostonMassachusetts
| | - Jill S. Barnholtz‐Sloan
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhio
| | - Dora Il'yasova
- Department of Epidemiology and BiostatisticsGeorgia State University School of Public HealthAtlantaGeorgia
- Department of Community and Family MedicineCancer Control and Prevention ProgramDuke University Medical CenterDurhamNorth Carolina
| | - Joellen Schildkraut
- Department of Community and Family MedicineCancer Control and Prevention ProgramDuke University Medical CenterDurhamNorth Carolina
| | - Francis Ali‐Osman
- Department of SurgeryDuke University Medical CenterDurhamNorth Carolina
| | - Siegal Sadetzki
- Cancer and Radiation Epidemiology UnitGertner InstituteChaim Sheba Medical CenterTel HashomerIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Robert B. Jenkins
- Department of Laboratory Medicine and PathologyMayo Clinic Comprehensive Cancer CenterMayo ClinicRochesterMinnesota
| | - Jonine L. Bernstein
- Department of Epidemiology and BiostatisticsMemorial Sloan‐Kettering Cancer CenterNew YorkNew York
| | - Ryan T. Merrell
- Department of NeurologyNorthShore University HealthSystemEvanstonIllinois
| | - Faith G. Davis
- Department of Public Health ServicesUniversity of AlbertaEdmontonAlbertaCanada
| | - Rose Lai
- Departments of Neurology, Neurosurgery, and Preventive MedicineThe University of Southern California Keck School of MedicineLos AngelesCalifornia
| | - Sanjay Shete
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Christopher I. Amos
- Department of Community and Family MedicineDepartment of GeneticsNorris Cotton Cancer CenterGeisel School of Medicine at DartmouthHanoverNew Hampshire
| | | | - Melissa L. Bondy
- Department of PediatricsDivision of Hematology‐OncologyDan L. Duncan Cancer CenterBaylor College of MedicineHoustonTexas
| |
Collapse
|
33
|
Gershon AA, Gershon MD. THE JEREMIAH METZGER LECTURE VARICELLA ZOSTER VIRUS: FROM OUTSIDE TO INSIDE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2016; 127:282-299. [PMID: 28066065 PMCID: PMC5216500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Varicella zoster virus (VZV) gives rise to two diseases, a primary infection, varicella, and a secondary infection, zoster. Morbidity and mortality from VZV in the United States has decreased by 80% to 90% due to the effective use of attenuated live viral vaccines. Because latent VZV continues to reactivate, however, serious VZV-induced disease persists. Newly developed molecular analyses have revealed that zoster is more common than previously realized; moreover, the establishment of VZV latency in neurons, such as those of the enteric nervous system, which do not project to the skin, leads to unexpected, serious, and clandestine manifestations of disease, including perforating gastrointestinal ulcers and intestinal pseudo-obstruction. The development of the first animal model of zoster, in guinea pigs, now enables the pathophysiology of latency and reactivation to be analyzed.
Collapse
|
34
|
Pseudorabies virus triggers glycoprotein gE-mediated ERK1/2 activation and ERK1/2-dependent migratory behavior in T cells. J Virol 2014; 89:2149-56. [PMID: 25473050 DOI: 10.1128/jvi.02549-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The interaction between viruses and immune cells of the host may lead to modulation of intracellular signaling pathways and to subsequent changes in cellular behavior that are of benefit for either virus or host. ERK1/2 (extracellular signal regulated kinase 1/2) signaling represents one of the key cellular signaling axes. Here, using wild-type and gE null virus, recombinant gE, and gE-transfected cells, we show that the gE glycoprotein of the porcine Varicellovirus pseudorabies virus (PRV) triggers ERK1/2 phosphorylation in Jurkat T cells and primary porcine T lymphocytes. PRV-induced ERK1/2 signaling resulted in homotypic T cell aggregation and increased motility of T lymphocytes. Our study reveals a new function of the gE glycoprotein of PRV and suggests that PRV, through activation of ERK1/2 signaling, has a substantial impact on T cell behavior. IMPORTANCE Herpesviruses are known to be highly successful in evading the immune system of their hosts, subverting signaling pathways of the host to their own advantage. The ERK1/2 signaling pathway, being involved in many cellular processes, represents a particularly attractive target for viral manipulation. Glycoprotein E (gE) is an important virulence factor of alphaherpesviruses, involved in viral spread. In this study, we show that gE has the previously uncharacterized ability to trigger ERK1/2 phosphorylation in T lymphocytes. We also show that virus-induced ERK1/2 signaling leads to increased migratory behavior of T cells and that migratory T cells can spread the infection to susceptible cells. In conclusion, our results point to a novel function for gE and suggest that virus-induced ERK1/2 activation may trigger PRV-carrying T lymphocytes to migrate and infect other cells susceptible to PRV replication.
Collapse
|
35
|
Gan L, Wang M, Chen JJ, Gershon MD, Gershon AA. Infected peripheral blood mononuclear cells transmit latent varicella zoster virus infection to the guinea pig enteric nervous system. J Neurovirol 2014; 20:442-56. [PMID: 24965252 PMCID: PMC4206585 DOI: 10.1007/s13365-014-0259-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 11/30/2022]
Abstract
Latent wild-type (WT) and vaccine (vOka) varicella zoster virus (VZV) are found in the human enteric nervous system (ENS). VZV also infects guinea pig enteric neurons in vitro, establishes latency and can be reactivated. We therefore determined whether lymphocytes infected in vitro with VZV secrete infectious virions and can transfer infection in vivo to the ENS of recipient guinea pigs. T lymphocytes (CD3-immunoreactive) were preferentially infected following co-culture of guinea pig or human peripheral blood mononuclear cells with VZV-infected HELF. VZV proliferated in the infected T cells and expressed immediate early and late VZV genes. Electron microscopy confirmed that VZV-infected T cells produced encapsulated virions. Extracellular virus, however, was pleomorphic, suggesting degradation occurred prior to release, which was confirmed by the failure of VZV-infected T cells to secrete infectious virions. Intravenous injection of WT- or vOka-infected PBMCs, nevertheless, transmitted VZV to recipient animals (guinea pig > human lymphocytes). Two days post-inoculation, lung and liver, but not gut, contained DNA and transcripts encoding ORFs 4, 40, 66 and 67. Twenty-eight days after infection, gut contained DNA and transcripts encoding ORFs 4 and 66 but neither DNA nor transcripts could any longer be found in lung or liver. In situ hybridization revealed VZV DNA in enteric neurons, which also expressed ORF63p (but not ORF68p) immunoreactivity. Observations suggest that VZV infects T cells, which can transfer VZV to and establish latency in enteric neurons in vivo. Guinea pigs may be useful for studies of VZV pathogenesis in the ENS.
Collapse
Affiliation(s)
- Lin Gan
- Department of Microbiology, Anhui Medical University, Hefei, 230032, China
| | - Mingli Wang
- Department of Microbiology, Anhui Medical University, Hefei, 230032, China
| | - Jason J. Chen
- Department of Microbiology, Anhui Medical University, Hefei, 230032, China
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Michael D. Gershon
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Anne A. Gershon
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
36
|
Carpenter JE, Grose C. Varicella-zoster virus glycoprotein expression differentially induces the unfolded protein response in infected cells. Front Microbiol 2014; 5:322. [PMID: 25071735 PMCID: PMC4076746 DOI: 10.3389/fmicb.2014.00322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/11/2014] [Indexed: 02/03/2023] Open
Abstract
Varicella-zoster virus (VZV) is a human herpesvirus that spreads to children as varicella or chicken pox. The virus then establishes latency in the nervous system and re-emerges, typically decades later, as zoster or shingles. We have reported previously that VZV induces autophagy in infected cells as well as exhibiting evidence of the Unfolded Protein Response (UPR): XBP1 splicing, a greatly expanded Endoplasmic Reticulum (ER) and CHOP expression. Herein we report the results of a UPR specific PCR array that measures the levels of mRNA of 84 different components of the UPR in VZV infected cells as compared to tunicamycin treated cells as a positive control and uninfected, untreated cells as a negative control. Tunicamycin is a mixture of chemicals that inhibits N-linked glycosylation in the ER with resultant protein misfolding and the UPR. We found that VZV differentially induces the UPR when compared to tunicamycin treatment. For example, tunicamycin treatment moderately increased (8-fold) roughly half of the array elements while downregulating only three (one ERAD and two FOLD components). VZV infection on the other hand upregulated 33 components including a little described stress sensor CREB-H (64-fold) as well as ER membrane components INSIG and gp78, which modulate cholesterol synthesis while downregulating over 20 components mostly associated with ERAD and FOLD. We hypothesize that this expression pattern is associated with an expanding ER with downregulation of active degradation by ERAD and apoptosis as the cell attempts to handle abundant viral glycoprotein synthesis.
Collapse
Affiliation(s)
- John E Carpenter
- Virology Laboratory, Department of Infectious Diseases, University of Iowa Children's Hospital Iowa City, IA, USA
| | - Charles Grose
- Virology Laboratory, Department of Infectious Diseases, University of Iowa Children's Hospital Iowa City, IA, USA
| |
Collapse
|
37
|
Zerboni L, Sen N, Oliver SL, Arvin AM. Molecular mechanisms of varicella zoster virus pathogenesis. Nat Rev Microbiol 2014; 12:197-210. [PMID: 24509782 PMCID: PMC4066823 DOI: 10.1038/nrmicro3215] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Varicella zoster virus (VZV) is the causative agent of varicella (chickenpox) and zoster (shingles). Investigating VZV pathogenesis is challenging as VZV is a human-specific virus and infection does not occur, or is highly restricted, in other species. However, the use of human tissue xenografts in mice with severe combined immunodeficiency (SCID) enables the analysis of VZV infection in differentiated human cells in their typical tissue microenvironment. Xenografts of human skin, dorsal root ganglia or foetal thymus that contains T cells can be infected with mutant viruses or in the presence of inhibitors of viral or cellular functions to assess the molecular mechanisms of VZV-host interactions. In this Review, we discuss how these models have improved our understanding of VZV pathogenesis.
Collapse
Affiliation(s)
- Leigh Zerboni
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nandini Sen
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Stefan L Oliver
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ann M Arvin
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
38
|
Li Y, Wu R, Liu Z, Fan J, Yang H. Enforced expression of microRNA-21 influences the replication of varicella-zoster virus by triggering signal transducer and activator of transcription 3. Exp Ther Med 2014; 7:1291-1296. [PMID: 24940427 PMCID: PMC3991484 DOI: 10.3892/etm.2014.1588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/20/2014] [Indexed: 12/11/2022] Open
Abstract
Varicella-zoster virus (VZV) causes chronic pain and serious complications, including zoster paresis. However, the mechanism of VZV replication, a critical part of VZV pathogenesis, remains largely unknown and was investigated in the present study. The upregulation of microRNA-21 (miR-21) was identified following VZV infection in vitro by quantitative polymerase chain reaction. The hypothesis that the overexpression of miR-21 activates the signal transducer and activator of transcription 3 (STAT3) signaling pathway was validated by measuring the mRNA expression levels of STAT3 and the anti-apoptotic protein survivin in human malignant melanoma (MeWo) and human embryonic lung fibroblast (HELF) cell lines transfected with miR-21-mimic and comparing them with those in cells transfected with miR-control. To further study the interaction of miR-21, STAT3 and VZV replication, the effects of miR-21 overexpression and STAT3 knockdown were evaluated. Higher virus titers were detected when miR-21 was upregulated in vitro. Moreover, it was identified that significantly lower virus titers were present in MeWo cells in which STAT3 was knocked down. In addition, the overexpression of miR-21 did not stimulate VZV replication in the MeWo cell line when the STAT3 gene was silenced. Therefore, the observations of the present study indicate that the enforced expression of miR-21 promotes the replication of VZV by activating STAT3 in vitro.
Collapse
Affiliation(s)
- Yan Li
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China ; Department of Dermatology, Affiliated Hospital of Inner Mongolia Medical University, Hohehot, Inner Mongolia 010050, P.R. China
| | - Rina Wu
- Department of Dermatology, Affiliated Hospital of Inner Mongolia Medical University, Hohehot, Inner Mongolia 010050, P.R. China
| | - Zhongrong Liu
- Department of Dermatology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Jianyong Fan
- Department of Dermatology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Huilan Yang
- Department of Dermatology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
39
|
Gershon AA, Gershon MD. Pathogenesis and current approaches to control of varicella-zoster virus infections. Clin Microbiol Rev 2013; 26:728-43. [PMID: 24092852 PMCID: PMC3811230 DOI: 10.1128/cmr.00052-13] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Varicella-zoster virus (VZV) was once thought to be a fairly innocuous pathogen. That view is no longer tenable. The morbidity and mortality due to the primary and secondary diseases that VZV causes, varicella and herpes zoster (HZ), are significant. Fortunately, modern advances, including an available vaccine to prevent varicella, a therapeutic vaccine to diminish the incidence and ameliorate sequelae of HZ, effective antiviral drugs, a better understanding of VZV pathogenesis, and advances in diagnostic virology have made it possible to control VZV in the United States. Occult forms of VZV-induced disease have been recognized, including zoster sine herpete and enteric zoster, which have expanded the field. Future progress should include development of more effective vaccines to prevent HZ and a more complete understanding of the consequences of VZV latency in the enteric nervous system.
Collapse
|
40
|
T-Cell tropism of simian varicella virus during primary infection. PLoS Pathog 2013; 9:e1003368. [PMID: 23675304 PMCID: PMC3649965 DOI: 10.1371/journal.ppat.1003368] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022] Open
Abstract
Varicella-zoster virus (VZV) causes varicella, establishes a life-long latent infection of ganglia and reactivates to cause herpes zoster. The cell types that transport VZV from the respiratory tract to skin and ganglia during primary infection are unknown. Clinical, pathological, virological and immunological features of simian varicella virus (SVV) infection of non-human primates parallel those of primary VZV infection in humans. To identify the host cell types involved in virus dissemination and pathology, we infected African green monkeys intratracheally with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) and with wild-type SVV (SVV-wt) as a control. The SVV-infected cell types and virus kinetics were determined by flow cytometry and immunohistochemistry, and virus culture and SVV-specific real-time PCR, respectively. All monkeys developed fever and skin rash. Except for pneumonitis, pathology produced by SVV-EGFP was less compared to SVV-wt. In lungs, SVV infected alveolar myeloid cells and T-cells. During viremia the virus preferentially infected memory T-cells, initially central memory T-cells and subsequently effector memory T-cells. In early non-vesicular stages of varicella, SVV was seen mainly in perivascular skin infiltrates composed of macrophages, dendritic cells, dendrocytes and memory T-cells, implicating hematogenous spread. In ganglia, SVV was found primarily in neurons and occasionally in memory T-cells adjacent to neurons. In conclusion, the data suggest the role of memory T-cells in disseminating SVV to its target organs during primary infection of its natural and immunocompetent host. Varicella-zoster virus (VZV) causes varicella, establishes life-long latent infection in ganglia and reactivates later in life to cause zoster. VZV is acquired via the respiratory route, with skin rash occurring up to 3 weeks after exposure. The cell types that transport VZV to skin and ganglia during primary infection are unknown. Simian varicella virus (SVV) infection of non-human primates mimics clinical, pathological and immunological features of human VZV infection. African green monkeys were infected with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) or wild-type SVV (SVV-wt) as a control. By visualizing SVV-EGFP−infected cells in the living animal and in tissue samples, we identified the virus-infected cell types in blood, lungs, skin and ganglia during primary infection. Our data demonstrate that during viremia, SVV predominantly infects peripheral blood memory T-cells. Detection of SVV-infected memory T-cells in lungs, in early varicella skin lesions and also, albeit to a lesser extent, in ganglia suggests a role for memory T-cells in transporting virus to these organs. Our study provides novel insights into the cell types involved in virus dissemination and the overall pathology of varicella in a non-human primate model.
Collapse
|
41
|
Gershon AA. Varicella zoster vaccines and their implications for development of HSV vaccines. Virology 2013; 435:29-36. [PMID: 23217613 DOI: 10.1016/j.virol.2012.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/29/2012] [Accepted: 10/01/2012] [Indexed: 02/01/2023]
Abstract
Live attenuated vaccines to prevent varicella and zoster have been available in the US for the past 17 years, with a resultant dramatic decrease in varicella incidence and a predicted future decrease in the incidence of zoster. The pathogenesis and immune responses to varicella zoster virus (VZV) as well as the safety and effectiveness of VZV vaccines are reviewed. The lack of sterilizing immunity provided by VZV vaccines has not prevented them from being safe and effective. Virological and pathological information concerning parallels and differences between VZV and herpes simplex virus (HSV) are highlighted. Although VZV and HSV are distinct pathogens, they appear to have similarities in target organs and immunity that provide an expectation of a high likelihood for the success of vaccination against HSV, and predicted to be similar to that of VZV.
Collapse
Affiliation(s)
- Anne A Gershon
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, NY, NY 10032, USA.
| |
Collapse
|
42
|
|
43
|
Abstract
Varicella zoster virus (VZV) is a highly successful human pathogen, which is never completely eliminated from the host. VZV causes two clinically distinct diseases, varicella (chickenpox) during primary infection and herpes zoster (shingles) following virus reactivation from latency. Throughout its lifecycle the virus encounters the innate and adaptive immune response, and in order to prevent eradication it has developed many mechanisms to evade and overcome these responses. This review will provide a comprehensive overview of the host immune response to VZV infection, during the multiple stages of the virus lifecycle and at key sites of VZV infection. We will also briefly describe some of the strategies employed by the virus to overcome the host immune response and the ongoing challenges in further elucidating the interplay between VZV and the host immune response in an attempt to lead to better therapies and a ‘second generation’ vaccine for VZV disease.
Collapse
Affiliation(s)
- Megan Steain
- Discipline of Infectious Diseases & Immunology, The University of Sydney, NSW, Australia
- Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases & Immunology, The University of Sydney, NSW, Australia
- Centre for Virus Research, Westmead Millennium Institute, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases & Immunology, The University of Sydney, NSW, Australia
| |
Collapse
|
44
|
Kinchington PR, Leger AJS, Guedon JMG, Hendricks RL. Herpes simplex virus and varicella zoster virus, the house guests who never leave. HERPESVIRIDAE 2012; 3:5. [PMID: 22691604 PMCID: PMC3541251 DOI: 10.1186/2042-4280-3-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/12/2012] [Indexed: 12/16/2022]
Abstract
Human alphaherpesviruses including herpes simplex viruses (HSV-1, HSV-2) and varicella zoster virus (VZV) establish persistent latent infection in sensory neurons for the life of the host. All three viruses have the potential to reactivate causing recurrent disease. Regardless of the homology between the different virus strains, the three viruses are characterized by varying pathologies. This review will highlight the differences in infection pattern, immune response, and pathogenesis associated with HSV-1 and VZV.
Collapse
Affiliation(s)
- Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
45
|
3D reconstruction of VZV infected cell nuclei and PML nuclear cages by serial section array scanning electron microscopy and electron tomography. PLoS Pathog 2012; 8:e1002740. [PMID: 22685402 PMCID: PMC3369938 DOI: 10.1371/journal.ppat.1002740] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 04/25/2012] [Indexed: 12/21/2022] Open
Abstract
Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell level. Varicella-zoster virus (VZV), the cause of varicella and zoster, is a human herpesvirus that replicates in the host cell nucleus where viral genomes are packaged into virion nucleocapsids. We have recently identified antiviral PML (promyelocytic leukemia) nuclear cages that sequester VZV nucleocapsids and inhibit formation of infectious particles. Here we developed a novel three-dimensional (3D) imaging and reconstruction strategy, termed Serial Section Array-Scanning Electron Microscopy (SSA-SEM) that together with electron tomography made it possible to derive 3D reconstructions of complete herpesvirus infected host cell nuclei and of PML cages with ultrastructural precision for the first time. We determined the 3D distribution of several thousand nucleocapsids within reconstructed volumes of single host cell nuclei and in PML cages as well as their sequestration efficiency and sequestration capacity: more than 98% of nucleocapsids were entrapped within PML cages and individual PML cages could sequester nearly 3,000 nucleocapsids which were cross-linked by an irregular electron-dense meshwork within the PML cages. This 3D analysis provides a proof of concept for using SSA-SEM to investigate virion assembly at the whole cell level and further elucidates our observation that PML cages are antiviral nuclear domains which block VZV nucleocapsid egress from the infected cell nucleus.
Collapse
|
46
|
Jarosinski KW. Dual infection and superinfection inhibition of epithelial skin cells by two alphaherpesviruses co-occur in the natural host. PLoS One 2012; 7:e37428. [PMID: 22629393 PMCID: PMC3357410 DOI: 10.1371/journal.pone.0037428] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/23/2012] [Indexed: 12/18/2022] Open
Abstract
Hosts can be infected with multiple herpesviruses, known as superinfection; however, superinfection of cells is rare due to the phenomenon known as superinfection inhibition. It is believed that dual infection of cells occurs in nature, based on studies examining genetic exchange between homologous alphaherpesviruses in the host, but to date, this has not been directly shown in a natural model. In this report, gallid herpesvirus 2 (GaHV-2), better known as Marek's disease virus (MDV), was used in its natural host, the chicken, to determine whether two homologous alphaherpesviruses can infect the same cells in vivo. MDV shares close similarities with the human alphaherpesvirus, varicella zoster virus (VZV), with respect to replication in the skin and exit from the host. Recombinant MDVs were generated that express either the enhanced GFP (eGFP) or monomeric RFP (mRFP) fused to the UL47 (VP13/14) herpesvirus tegument protein. These viruses exhibited no alteration in pathogenic potential and expressed abundant UL47-eGFP or -mRFP in feather follicle epithelial cells in vivo. Using laser scanning confocal microscopy, it was evident that these two similar, but distinguishable, viruses were able to replicate within the same cells of their natural host. Evidence of superinfection inhibition was also observed. These results have important implications for two reasons. First, these results show that during natural infection, both dual infection of cells and superinfection inhibition can co-occur at the cellular level. Secondly, vaccination against MDV with homologous alphaherpesvirus like attenuated GaHV-2, or non-oncogenic GaHV-3 or meleagrid herpesvirus (MeHV-1) has driven the virus to greater virulence and these results implicate the potential for genetic exchange between homologous avian alphaherpesviruses that could drive increased virulence. Because the live attenuated varicella vaccine is currently being administered to children, who in turn could be superinfected by wild-type VZV, this could potentiate recombination events of VZV as well.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, United States of America.
| |
Collapse
|
47
|
Varicella-zoster virus infects human embryonic stem cell-derived neurons and neurospheres but not pluripotent embryonic stem cells or early progenitors. J Virol 2012; 86:3211-8. [PMID: 22238301 DOI: 10.1128/jvi.06810-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pluripotent human stem cells are a powerful tool for the generation of differentiated cells that can be used for the study of human disease. We recently demonstrated that neurons derived from pluripotent human embryonic stem cells (hESC) can be infected by the highly host-restricted human alphaherpesvirus varicella-zoster virus (VZV), permitting the interaction of VZV with neurons to be readily evaluated in culture. In the present study, we examine whether pluripotent hESC and neural progenitors at intermediate stages of differentiation are permissive for VZV infection. We demonstrate here that VZV infection is blocked in naïve hESC. A block to VZV replication is also seen when a bacterial artificial chromosome (BAC) containing the VZV genome is transfected into hESC. In contrast, related alphaherpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PrV) productively infect naïve hESC in a cell-free manner, and PrV replicates from a BAC transfected into hESC. Neurons differentiate from hESC via neural progenitor intermediates, as is the case in the embryo. The first in vitro stage at which permissiveness of hESC-derived neural precursors to VZV replication is observed is upon formation of "neurospheres," immediately after detachment from the inductive stromal feeder layer. These findings suggest that hESC may be useful in deciphering the yet enigmatic mechanisms of specificity of VZV infection and replication.
Collapse
|
48
|
Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis. Proc Natl Acad Sci U S A 2011; 109:600-5. [PMID: 22190485 DOI: 10.1073/pnas.1114232109] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Varicella-zoster virus (VZV) is a human α-herpesvirus that causes varicella (chickenpox) during primary infection and zoster (shingles) upon reactivation. Like other viruses, VZV must subvert the intrinsic antiviral defenses of differentiated human cells to produce progeny virions. Accordingly, VZV inhibits the activation of the cellular transcription factors IFN regulatory factor 3 (IRF3) and signal transducers and activators of transcription 1 (STAT1), thereby downregulating antiviral factors, including IFNs. Conversely, in this study, we found that VZV triggers STAT3 phosphorylation in cells infected in vitro and in human skin xenografts in SCID mice in vivo and that STAT3 activation induces the anti-apoptotic protein survivin. Small-molecule inhibitors of STAT3 phosphorylation and survivin restrict VZV replication in vitro, and VZV infection of skin xenografts in vivo is markedly impaired by the administration of the phospho-STAT3 inhibitor S3I-201. STAT3 and survivin are required for malignant transformation caused by γ-herpesviruses, such as Kaposi's sarcoma virus. We show that STAT3 activation is also critical for VZV, a nononcogenic herpesvirus, via a survivin-dependent mechanism. Furthermore, STAT3 activation is critical for the life cycle of the virus because VZV skin infection is necessary for viral transmission and persistence in the human population. Therefore, we conclude that takeover of this major cell-signaling pathway is necessary, independent of cell transformation, for herpesvirus pathogenesis and that STAT3 activation and up-regulation of survivin is a common mechanism important for the pathogenesis of lytic as well as tumorigenic herpesviruses.
Collapse
|
49
|
Zerboni L, Arvin A. Investigation of varicella-zoster virus neurotropism and neurovirulence using SCID mouse-human DRG xenografts. J Neurovirol 2011; 17:570-7. [PMID: 22161683 DOI: 10.1007/s13365-011-0066-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/11/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
Abstract
Varicella-zoster virus (VZV) is a medically important human alphaherpesvirus. Investigating pathogenic mechanisms that contribute to VZV neurovirulence are made difficult by a marked host restriction. Our approach to investigating VZV neurotropism and neurovirulence has been to develop a mouse-human xenograft model in which human dorsal root ganglia (DRG) are maintained in severe compromised immunodeficient (SCID) mice. In this review, we will describe our key findings using this model in which we have demonstrated that VZV infection of SCID DRG xenograft results in rapid and efficient spread, enabled by satellite cell infection and polykaryon formation, which facilitates robust viral replication and release of infectious virus. In neurons that persist following this acute replicative phase, VZV genomes are present at low frequency with limited gene transcription and no protein synthesis, a state that resembles VZV latency in the natural human host. VZV glycoprotein I and interaction between glycoprotein I and glycoprotein E are critical for neurovirulence. Our work demonstrates that the DRG model can reveal characteristics about VZV replication and long-term persistence of latent VZV genomes in human neuronal tissues, in vivo, in an experimental system that may contribute to our knowledge of VZV neuropathogenesis.
Collapse
Affiliation(s)
- Leigh Zerboni
- Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Dr., Stanford, CA 94305, USA.
| | | |
Collapse
|
50
|
Kinchington PR, Goins WF. Varicella zoster virus-induced pain and post-herpetic neuralgia in the human host and in rodent animal models. J Neurovirol 2011; 17:590-9. [PMID: 22205584 PMCID: PMC3946975 DOI: 10.1007/s13365-011-0069-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
Abstract
Pain and post-herpetic neuralgia (PHN) are common and highly distressing complications of herpes zoster that remain a significant public health concern and in need of improved therapies. Zoster results from reactivation of the herpesvirus varicella zoster virus (VZV) from a neuronal latent state established at the primary infection (varicella). PHN occurs in some one fifth to one third of zoster cases with severity, incidence, and duration of pain increasing with rising patient age. While VZV reactivation and the ensuing ganglionic damage trigger the pain response, the mechanisms underlying protracted PHN are not understood, and the lack of an animal model of herpes zoster (reactivation) makes this issue more challenging. A recent preclinical rodent model has developed that opens up the potential to allow the exploration of the underlying mechanisms and treatments for VZV-induced pain. Rats inoculated with live cell-associated human VZV into the hind paw reliably demonstrate thermal hyperalgesia and mechanical allodynia for extended periods and then spontaneously recover. Dorsal root ganglia express a limited VZV gene subset, including the IE62 regulatory protein, and upregulate expression of markers suggesting a neuropathic pain state. The model has been used to investigate treatment modalities and aspects of pain signaling and is under investigation by the authors to delineate VZV genetics involved in the induction of pain. This article compares human zoster-associated pain and PHN to the pain indicators in the rat and poses important questions that, if answered, could be the basis for new treatments.
Collapse
Affiliation(s)
- Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh, 1020 EEI Building, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|