1
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
2
|
Pseudotyped Viruses for Marburgvirus and Ebolavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:105-132. [PMID: 36920694 DOI: 10.1007/978-981-99-0113-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) of the Filoviridae family are the most lethal viruses in terms of mortality rate. However, the development of antiviral treatment is hampered by the requirement for biosafety level-4 (BSL-4) containment. The establishment of BSL-2 pseudotyped viruses can provide important tools for the study of filoviruses. This chapter summarizes general information on the filoviruses and then focuses on the construction of replication-deficient pseudotyped MARV and EBOV (e.g., lentivirus system and vesicular stomatitis virus system). It also details the potential applications of the pseudotyped viruses, including neutralization antibody detection, the study of infection mechanisms, the evaluation of antibody-dependent enhancement, virus entry inhibitor screening, and glycoprotein mutation analysis.
Collapse
|
3
|
Interferon-alpha or -beta facilitates SARS-CoV-2 pulmonary vascular infection by inducing ACE2. Angiogenesis 2021; 25:225-240. [PMID: 34714440 PMCID: PMC8554520 DOI: 10.1007/s10456-021-09823-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
Severe viral pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a hyperinflammatory state typified by elevated circulating pro-inflammatory cytokines, frequently leading to potentially lethal vascular complications including thromboembolism, disseminated intracellular coagulopathy and vasculitis. Though endothelial infection and subsequent endothelial damage have been described in patients with fatal COVID-19, the mechanism by which this occurs remains elusive, particularly given that, under naïve conditions, pulmonary endothelial cells demonstrate minimal cell surface expression of the SARS-CoV-2 binding receptor ACE2. Herein we describe SARS-CoV-2 infection of the pulmonary endothelium in postmortem lung samples from individuals who died of COVID-19, demonstrating both heterogeneous ACE2 expression and endothelial damage. In primary endothelial cell cultures, we show that SARS-CoV-2 infection is dependent on the induction of ACE2 protein expression and that this process is facilitated by type 1 interferon-alpha (IFNα) or -beta(β)—two of the main anti-viral cytokines induced in severe SARS-CoV-2 infection—but not significantly by other cytokines (including interleukin 6 and interferon γ/λ). Our findings suggest that the stereotypical anti-viral interferon response may paradoxically facilitate the propagation of COVID-19 from the respiratory epithelium to the vasculature, raising concerns regarding the use of exogenous IFNα/β in the treatment of patients with COVID-19.
Collapse
|
4
|
Diallo I, Ho J, Laffont B, Laugier J, Benmoussa A, Lambert M, Husseini Z, Soule G, Kozak R, Kobinger GP, Provost P. Altered microRNA Transcriptome in Cultured Human Liver Cells upon Infection with Ebola Virus. Int J Mol Sci 2021; 22:ijms22073792. [PMID: 33917562 PMCID: PMC8038836 DOI: 10.3390/ijms22073792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ebola virus (EBOV) is a virulent pathogen, notorious for inducing life-threatening hemorrhagic fever, that has been responsible for several outbreaks in Africa and remains a public health threat. Yet, its pathogenesis is still not completely understood. Although there have been numerous studies on host transcriptional response to EBOV, with an emphasis on the clinical features, the impact of EBOV infection on post-transcriptional regulatory elements, such as microRNAs (miRNAs), remains largely unexplored. MiRNAs are involved in inflammation and immunity and are believed to be important modulators of the host response to viral infection. Here, we have used small RNA sequencing (sRNA-Seq), qPCR and functional analyses to obtain the first comparative miRNA transcriptome (miRNome) of a human liver cell line (Huh7) infected with one of the following three EBOV strains: Mayinga (responsible for the first Zaire outbreak in 1976), Makona (responsible for the West Africa outbreak in 2013–2016) and the epizootic Reston (presumably innocuous to humans). Our results highlight specific miRNA-based immunity pathways and substantial differences between the strains beyond their clinical manifestation and pathogenicity. These analyses shed new light into the molecular signature of liver cells upon EBOV infection and reveal new insights into miRNA-based virus attack and host defense strategy.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jeffrey Ho
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Benoit Laffont
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jonathan Laugier
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Abderrahim Benmoussa
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Marine Lambert
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Zeinab Husseini
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Geoff Soule
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Gary P. Kobinger
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Département de Microbiologie Médicale, Université du Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Patrick Provost
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Room T1-65, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
5
|
Jain S, Khaiboullina SF, Baranwal M. Immunological Perspective for Ebola Virus Infection and Various Treatment Measures Taken to Fight the Disease. Pathogens 2020; 9:E850. [PMID: 33080902 PMCID: PMC7603231 DOI: 10.3390/pathogens9100850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ebolaviruses, discovered in 1976, belongs to the Filoviridae family, which also includes Marburg and Lloviu viruses. They are negative-stranded RNA viruses with six known species identified to date. Ebola virus (EBOV) is a member of Zaire ebolavirus species and can cause the Ebola virus disease (EVD), an emerging zoonotic disease that results in homeostatic imbalance and multi-organ failure. There are three EBOV outbreaks documented in the last six years resulting in significant morbidity (> 32,000 cases) and mortality (> 13,500 deaths). The potential factors contributing to the high infectivity of this virus include multiple entry mechanisms, susceptibility of the host cells, employment of multiple immune evasion mechanisms and rapid person-to-person transmission. EBOV infection leads to cytokine storm, disseminated intravascular coagulation, host T cell apoptosis as well as cell mediated and humoral immune response. In this review, a concise recap of cell types targeted by EBOV and EVD symptoms followed by detailed run-through of host innate and adaptive immune responses, virus-driven regulation and their combined effects contributing to the disease pathogenesis has been presented. At last, the vaccine and drug development initiatives as well as challenges related to the management of infection have been discussed.
Collapse
Affiliation(s)
- Sahil Jain
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| | - Svetlana F. Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Tatarstan, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India;
| |
Collapse
|
6
|
Engineered Human Cathelicidin Antimicrobial Peptides Inhibit Ebola Virus Infection. iScience 2020; 23:100999. [PMID: 32252021 PMCID: PMC7104201 DOI: 10.1016/j.isci.2020.100999] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
The 2014–2016 West Africa Ebola virus (EBOV) outbreak coupled with the most recent outbreaks in Central Africa underscore the need to develop effective treatment strategies against EBOV. Although several therapeutic options have shown great potential, developing a wider breadth of countermeasures would increase our efforts to combat the highly lethal EBOV. Here we show that human cathelicidin antimicrobial peptide (AMP) LL-37 and engineered LL-37 AMPs inhibit the infection of recombinant virus pseudotyped with EBOV glycoprotein (GP) and the wild-type EBOV. These AMPs target EBOV infection at the endosomal cell-entry step by impairing cathepsin B-mediated processing of EBOV GP. Furthermore, two engineered AMPs containing D-amino acids are particularly potent in blocking EBOV infection in comparison with other AMPs, most likely owing to their resistance to intracellular enzymatic degradation. Our results identify AMPs as a novel class of anti-EBOV therapeutics and demonstrate the feasibility of engineering AMPs for improved therapeutic efficacy. Cathelicidin-derived antimicrobial peptides (AMPs) potently inhibit EBOV infection D-form AMPs are more resistant to proteolytic cleavage than L-form AMPs in the cell AMPs prevent cathepsin B-mediated processing of EBOV GP1, 2
Collapse
|
7
|
Perez-Zsolt D, Martinez-Picado J, Izquierdo-Useros N. When Dendritic Cells Go Viral: The Role of Siglec-1 in Host Defense and Dissemination of Enveloped Viruses. Viruses 2019; 12:v12010008. [PMID: 31861617 PMCID: PMC7019426 DOI: 10.3390/v12010008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are among the first cells that recognize incoming viruses at the mucosal portals of entry. Initial interaction between DCs and viruses facilitates cell activation and migration to secondary lymphoid tissues, where these antigen presenting cells (APCs) prime specific adaptive immune responses. Some viruses, however, have evolved strategies to subvert the migratory capacity of DCs as a way to disseminate infection systemically. Here we focus on the role of Siglec-1, a sialic acid-binding type I lectin receptor potently upregulated by type I interferons on DCs, that acts as a double edge sword, containing viral replication through the induction of antiviral immunity, but also favoring viral spread within tissues. Such is the case for distant enveloped viruses like human immunodeficiency virus (HIV)-1 or Ebola virus (EBOV), which incorporate sialic acid-containing gangliosides on their viral membrane and are effectively recognized by Siglec-1. Here we review how Siglec-1 is highly induced on the surface of human DCs upon viral infection, the way this impacts different antigen presentation pathways, and how enveloped viruses have evolved to exploit these APC functions as a potent dissemination strategy in different anatomical compartments.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Ctra. de Canyet s/n, 08916 Badalona, Spain;
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Ctra. de Canyet s/n, 08916 Badalona, Spain;
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
- Chair in Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Correspondence: (J.M.-P.); (N.I.-U.)
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Ctra. de Canyet s/n, 08916 Badalona, Spain;
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
- Correspondence: (J.M.-P.); (N.I.-U.)
| |
Collapse
|
8
|
Evans JP, Liu SL. Multifaceted Roles of TIM-Family Proteins in Virus-Host Interactions. Trends Microbiol 2019; 28:224-235. [PMID: 31732320 DOI: 10.1016/j.tim.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/16/2023]
Abstract
To enhance infection, enveloped viruses exploit adhesion molecules expressed on the surface of host cells. Specifically, phosphatidylserine (PS) receptors - including members of the human T cell immunoglobulin and mucin domain (TIM)-family - have gained attention for their ability to mediate the entry of many enveloped viruses. However, recent evidence that TIM-1 can restrict viral release reveals a new role for these PS receptors. Additionally, viral factors such as the HIV-1 accessory protein Nef can antagonize this antiviral activity of TIM-1 while host restriction factors such as SERINC5 can enhance it. In this review, we examine the various roles of PS receptors, specifically TIM-family proteins, and the intricate relationship between host and viral factors. Elucidating the multifunctional roles of PS receptors in virus-host interaction is important for understanding viral pathogenesis and developing novel antiviral therapeutics.
Collapse
Affiliation(s)
- John P Evans
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Zhu W, Banadyga L, Emeterio K, Wong G, Qiu X. The Roles of Ebola Virus Soluble Glycoprotein in Replication, Pathogenesis, and Countermeasure Development. Viruses 2019; 11:v11110999. [PMID: 31683550 PMCID: PMC6893644 DOI: 10.3390/v11110999] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/30/2022] Open
Abstract
Ebola virus (EBOV) is a highly lethal pathogen that has caused several outbreaks of severe hemorrhagic fever in humans since its emergence in 1976. The EBOV glycoprotein (GP1,2) is the sole viral envelope protein and a major component of immunogenicity; it is encoded by the GP gene along with two truncated versions: soluble GP (sGP) and small soluble GP (ssGP). sGP is, in fact, the primary product of the GP gene, and it is secreted in abundance during EBOV infection. Since sGP shares large portions of its sequence with GP1,2, it has been hypothesized that sGP may subvert the host immune response by inducing antibodies against sGP rather than GP1,2. Several reports have shown that sGP plays multiple roles that contribute to the complex pathogenesis of EBOV. In this review, we focus on sGP and discuss its possible roles with regards to the pathogenesis of EBOV and the development of specific antiviral drugs.
Collapse
Affiliation(s)
- Wenjun Zhu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Logan Banadyga
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| | - Karla Emeterio
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Gary Wong
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.
| |
Collapse
|
10
|
Cagigi A, Misasi J, Ploquin A, Stanley DA, Ambrozak D, Tsybovsky Y, Mason RD, Roederer M, Sullivan NJ. Vaccine Generation of Protective Ebola Antibodies and Identification of Conserved B-Cell Signatures. J Infect Dis 2019; 218:S528-S536. [PMID: 30010811 DOI: 10.1093/infdis/jiy333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We recently identified a single potently neutralizing monoclonal antibody (mAb), mAb114, isolated from a human survivor of natural Zaire ebolavirus (EBOV) infection, which fully protects nonhuman primates (NHPs) against lethal EBOV challenge. To evaluate the ability of vaccination to generate mAbs such as mAb114, we cloned antibodies from NHPs vaccinated with vectors encoding the EBOV glycoprotein (GP). We identified 14 unique mAbs with potent binding to GP, 4 of which were neutralized and had the functional characteristics of mAb114. These vaccine-induced macaque mAbs share many sequence similarities with mAb114 and use the same mAb114 VH gene (ie, IGHV3-13) when classified using the macaque IMGT database. The antigen-specific VH-gene repertoire present after each immunization indicated that IGHV3-13 mAbs populate an EBOV-specific B-cell repertoire that appears to become more prominent with subsequent boosting. These findings will support structure-based vaccine design aimed at enhanced induction of antibodies such as mAb114.
Collapse
Affiliation(s)
- Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Division of Infectious Diseases, Boston Children's Hospital, Massachusetts
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daphne A Stanley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Maryland
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Hume AJ, Mühlberger E. Distinct Genome Replication and Transcription Strategies within the Growing Filovirus Family. J Mol Biol 2019; 431:4290-4320. [PMID: 31260690 PMCID: PMC6879820 DOI: 10.1016/j.jmb.2019.06.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022]
Abstract
Research on filoviruses has historically focused on the highly pathogenic ebola- and marburgviruses. Indeed, until recently, these were the only two genera in the filovirus family. Recent advances in sequencing technologies have facilitated the discovery of not only a new ebolavirus, but also three new filovirus genera and a sixth proposed genus. While two of these new genera are similar to the ebola- and marburgviruses, the other two, discovered in saltwater fishes, are considerably more diverse. Nonetheless, these viruses retain a number of key features of the other filoviruses. Here, we review the key characteristics of filovirus replication and transcription, highlighting similarities and differences between the viruses. In particular, we focus on key regulatory elements in the genomes, replication and transcription strategies, and the conservation of protein domains and functions among the viruses. In addition, using computational analyses, we were able to identify potential homology and functions for some of the genes of the novel filoviruses with previously unknown functions. Although none of the newly discovered filoviruses have yet been isolated, initial studies of some of these viruses using minigenome systems have yielded insights into their mechanisms of replication and transcription. In general, the Cuevavirus and proposed Dianlovirus genera appear to follow the transcription and replication strategies employed by the ebola- and marburgviruses, respectively. While our knowledge of the fish filoviruses is currently limited to sequence analysis, the lack of certain conserved motifs and even entire genes necessitates that they have evolved distinct mechanisms of replication and transcription.
Collapse
Affiliation(s)
- Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
12
|
Shtanko O, Reyes AN, Jackson WT, Davey RA. Autophagy-Associated Proteins Control Ebola Virus Internalization Into Host Cells. J Infect Dis 2019; 218:S346-S354. [PMID: 29947774 PMCID: PMC6249560 DOI: 10.1093/infdis/jiy294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ebola virus (EBOV) enters host cells by macropinocytosis, a poorly understood process. Recent studies have suggested that cell factors involved in autophagy, an evolutionally conserved pathway leading to the lysosomal degradation of protein aggregates and organelles during cellular stress, also have roles in macropinocytosis. Here, we demonstrate that autophagy-associated proteins are required for trafficking of EBOV into the cell body. Depleting cells of beclin 1, autophagy-related protein 7, or microtubule-associated protein 1A/B light chain 3B (LC3B) abolished EBOV uptake, owing to a block in vesicle formation at the cell surface. Both LC3B-I and LC3B-II interacted with macropinocytic structures. Our work indicates that, although various forms of LC3B possess an inherent ability to associate with forming macropinosomes, LC3B-II is critical for internalization of macropinocytic vesicles and, therefore, EBOV from the cell surface.
Collapse
Affiliation(s)
- Olena Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Ann N Reyes
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - William T Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| |
Collapse
|
13
|
Kämper L, Zierke L, Schmidt ML, Müller A, Wendt L, Brandt J, Hartmann E, Braun S, Holzerland J, Groseth A, Hoenen T. Assessment of the function and intergenus-compatibility of Ebola and Lloviu virus proteins. J Gen Virol 2019; 100:760-772. [DOI: 10.1099/jgv.0.001261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lennart Kämper
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Lukas Zierke
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Marie Luisa Schmidt
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Andreas Müller
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Lisa Wendt
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Janine Brandt
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Eric Hartmann
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Stefanie Braun
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Julia Holzerland
- 2 Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Allison Groseth
- 2 Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Thomas Hoenen
- 1 Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| |
Collapse
|
14
|
Edwards MR, Basler CF. Current status of small molecule drug development for Ebola virus and other filoviruses. Curr Opin Virol 2019; 35:42-56. [PMID: 31003196 PMCID: PMC6556423 DOI: 10.1016/j.coviro.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
The filovirus family includes some of the deadliest viruses known, including Ebola virus and Marburg virus. These viruses cause periodic outbreaks of severe disease that can be spread from person to person, making the filoviruses important public health threats. There remains a need for approved drugs that target all or most members of this virus family. Small molecule inhibitors that target conserved functions hold promise as pan-filovirus therapeutics. To date, compounds that effectively target virus entry, genome replication, gene expression, and virus egress have been described. The most advanced inhibitors are nucleoside analogs that target viral RNA synthesis reactions.
Collapse
Affiliation(s)
- Megan R Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, United States
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, United States.
| |
Collapse
|
15
|
Flint M, Chatterjee P, Lin DL, McMullan LK, Shrivastava-Ranjan P, Bergeron É, Lo MK, Welch SR, Nichol ST, Tai AW, Spiropoulou CF. A genome-wide CRISPR screen identifies N-acetylglucosamine-1-phosphate transferase as a potential antiviral target for Ebola virus. Nat Commun 2019; 10:285. [PMID: 30655525 PMCID: PMC6336797 DOI: 10.1038/s41467-018-08135-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
There are no approved therapies for Ebola virus infection. Here, to find potential therapeutic targets, we perform a screen for genes essential for Ebola virus (EBOV) infection. We identify GNPTAB, which encodes the α and β subunits of N-acetylglucosamine-1-phosphate transferase. We show that EBOV infection of a GNPTAB knockout cell line is impaired, and that this is reversed by reconstituting GNPTAB expression. Fibroblasts from patients with mucolipidosis II, a disorder associated with mutations in GNPTAB, are refractory to EBOV, whereas cells from their healthy parents support infection. Impaired infection correlates with loss of the expression of cathepsin B, known to be essential for EBOV entry. GNPTAB activity is dependent upon proteolytic cleavage by the SKI-1/S1P protease. Inhibiting this protease with the small-molecule PF-429242 blocks EBOV entry and infection. Disruption of GNPTAB function may represent a strategy for a host-targeted therapy for EBOV. Genetic screens are important tools to identify host factors associated with viral infections. Here, Flint et al. perform a genome-wide CRISPR screen using infectious Ebola virus (EBOV) and show that the host transferase GNPTAB is required for EBOV infection and a potential target for antiviral therapies
Collapse
Affiliation(s)
- Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA.
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - David L Lin
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Andrew W Tai
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA.
| |
Collapse
|
16
|
Gordon TB, Hayward JA, Marsh GA, Baker ML, Tachedjian G. Host and Viral Proteins Modulating Ebola and Marburg Virus Egress. Viruses 2019; 11:v11010025. [PMID: 30609802 PMCID: PMC6357148 DOI: 10.3390/v11010025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
The filoviruses Ebolavirus and Marburgvirus are among the deadliest viral pathogens known to infect humans, causing emerging diseases with fatality rates of up to 90% during some outbreaks. The replication cycles of these viruses are comprised of numerous complex molecular processes and interactions with their human host, with one key feature being the means by which nascent virions exit host cells to spread to new cells and ultimately to a new host. This review focuses on our current knowledge of filovirus egress and the viral and host factors and processes that are involved. Within the virus, these factors consist of the major matrix protein, viral protein 40 (VP40), which is necessary and sufficient for viral particle release, and nucleocapsid and glycoprotein that interact with VP40 to promote egress. In the host cell, some proteins are hijacked by filoviruses in order to enhance virion budding capacity that include members of the family of E3 ubiquitin ligase and the endosomal sorting complexes required for transport (ESCRT) pathway, while others such as tetherin inhibit viral egress. An understanding of these molecular interactions that modulate viral particle egress provides an important opportunity to identify new targets for the development of antivirals to prevent and treat filovirus infections.
Collapse
Affiliation(s)
- Tamsin B Gordon
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
| | - Joshua A Hayward
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
| | - Glenn A Marsh
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC 3220, Australia.
| | - Michelle L Baker
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC 3220, Australia.
| | - Gilda Tachedjian
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne VIC 3010, Australia.
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
17
|
Basler CF, Krogan NJ, Leung DW, Amarasinghe GK. Virus and host interactions critical for filoviral RNA synthesis as therapeutic targets. Antiviral Res 2018; 162:90-100. [PMID: 30550800 DOI: 10.1016/j.antiviral.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 01/24/2023]
Abstract
Filoviruses, which include Ebola virus (EBOV) and Marburg virus, are negative-sense RNA viruses associated with sporadic outbreaks of severe viral hemorrhagic fever characterized by uncontrolled virus replication. The extreme virulence and emerging nature of these zoonotic pathogens make them a significant threat to human health. Replication of the filovirus genome and production of viral RNAs require the function of a complex of four viral proteins, the nucleoprotein (NP), viral protein 35 (VP35), viral protein 30 (VP30) and large protein (L). The latter performs the enzymatic activities required for production of viral RNAs and capping of viral mRNAs. Although it has been recognized that interactions between the virus-encoded components of the EBOV RNA polymerase complex are required for viral RNA synthesis reactions, specific molecular details have, until recently, been lacking. New efforts have combined structural biology and molecular virology to reveal in great detail the molecular basis for critical protein-protein interactions (PPIs) necessary for viral RNA synthesis. These efforts include recent studies that have identified a range of interacting host factors and in some instances demonstrated unique mechanisms by which they act. For a select number of these interactions, combined use of mutagenesis, over-expressing of peptides corresponding to PPI interfaces and identification of small molecules that disrupt PPIs have demonstrated the functional significance of virus-virus and virus-host PPIs and suggest several as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Cross RW, Fenton KA, Geisbert TW. Small animal models of filovirus disease: recent advances and future directions. Expert Opin Drug Discov 2018; 13:1027-1040. [DOI: 10.1080/17460441.2018.1527827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Robert W. Cross
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A. Fenton
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
19
|
McElroy AK, Mühlberger E, Muñoz-Fontela C. Immune barriers of Ebola virus infection. Curr Opin Virol 2018; 28:152-160. [PMID: 29452995 PMCID: PMC5886007 DOI: 10.1016/j.coviro.2018.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 01/10/2023]
Abstract
Since its initial emergence in 1976 in northern Democratic Republic of Congo (DRC), Ebola virus (EBOV) has been a global health concern due to its virulence in humans, the mystery surrounding the identity of its host reservoir and the unpredictable nature of Ebola virus disease (EVD) outbreaks. Early after the first clinical descriptions of a disease resembling a 'septic-shock-like syndrome', with coagulation abnormalities and multi-system organ failure, researchers began to evaluate the role of the host immune response in EVD pathophysiology. In this review, we summarize how data gathered during the last 40 years in the laboratory as well as in the field have provided insight into EBOV immunity. From molecular mechanisms involved in EBOV recognition in infected cells, to antigen processing and adaptive immune responses, we discuss current knowledge on the main immune barriers of infection as well as outstanding research questions.
Collapse
Affiliation(s)
- Anita K McElroy
- Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 3501 Fifth Ave, Pittsburgh, PA 15261, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, 620 Albany Street, 02118 Boston, MA, USA
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Strasse 74, 20359 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg, Germany.
| |
Collapse
|
20
|
Rajakumar T, Munkacsi AB, Sturley SL. Exacerbating and reversing lysosomal storage diseases: from yeast to humans. MICROBIAL CELL 2017; 4:278-293. [PMID: 28913343 PMCID: PMC5597791 DOI: 10.15698/mic2017.09.588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lysosomal storage diseases (LSDs) arise from monogenic deficiencies in lysosomal proteins and pathways and are characterized by a tissue-wide accumulation of a vast variety of macromolecules, normally specific to each genetic lesion. Strategies for treatment of LSDs commonly depend on reduction of the offending metabolite(s) by substrate depletion or enzyme replacement. However, at least 44 of the ~50 LSDs are currently recalcitrant to intervention. Murine models have provided significant insights into our understanding of many LSD mechanisms; however, these systems do not readily permit phenotypic screening of compound libraries, or the establishment of genetic or gene-environment interaction networks. Many of the genes causing LSDs are evolutionarily conserved, thus facilitating the application of models system to provide additional insight into LSDs. Here, we review the utility of yeast models of 3 LSDs: Batten disease, cystinosis, and Niemann-Pick type C disease. We will focus on the translation of research from yeast models into human patients suffering from these LSDs. We will also discuss the use of yeast models to investigate the penetrance of LSDs, such as Niemann-Pick type C disease, into more prevalent syndromes including viral infection and obesity.
Collapse
Affiliation(s)
- Tamayanthi Rajakumar
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Stephen L Sturley
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|