1
|
Nabeel Mustafa A, Salih Mahdi M, Ballal S, Chahar M, Verma R, Ali Al-Nuaimi AM, Kumar MR, Kadhim A Al-Hussein R, Adil M, Jasem Jawad M. Netrin-1: Key insights in neural development and disorders. Tissue Cell 2024; 93:102678. [PMID: 39719818 DOI: 10.1016/j.tice.2024.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors. By directing axonal growth cones toward the appropriate targets, netrin-1 is a critical actor in the formation of the intricate architecture of the nervous system. Netrin-1 is believed to be involved in additional biological and pathological processes in addition to its traditional function in neural development. The behavior of a diverse array of cell types is influenced by controlling cell adhesion and movement, which is impacted by netrin-1. It is a molecule of interest in both developmental biology and clinical research because of its involvement in angiogenesis, tumorigenesis, inflammation, and tissue regeneration, as confirmed by recent studies. The therapeutic capability of netrin-1 in disorders such as cancer, neurodegenerative disorders, and cardiovascular diseases warrants significant attention.
Collapse
Affiliation(s)
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bengaluru, Karnataka, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, Rajasthan, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | | | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | | | | | | |
Collapse
|
2
|
Netrin-1: An Emerging Player in Inflammatory Diseases. Cytokine Growth Factor Rev 2022; 64:46-56. [DOI: 10.1016/j.cytogfr.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
|
3
|
Induced Pluripotent Stem Cells to Understand Mucopolysaccharidosis. I: Demonstration of a Migration Defect in Neural Precursors. Cells 2020; 9:cells9122593. [PMID: 33287330 PMCID: PMC7761689 DOI: 10.3390/cells9122593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Mucopolysaccharidosis type I-Hurler (MPS1-H) is a severe genetic lysosomal storage disorder due to loss-of-function mutations in the IDUA gene. The subsequent complete deficiency of alpha l-iduronidase enzyme is directly responsible of a progressive accumulation of glycosaminoglycans (GAG) in lysosomes which affects the functions of many tissues. Consequently, MPS1 is characterized by systemic symptoms (multiorgan dysfunction) including respiratory and cardiac dysfunctions, skeletal abnormalities and early fatal neurodegeneration. Methods: To understand mechanisms underlying MPS1 neuropathology, we generated induced pluripotent stem cells (iPSC) from a MPS1-H patient with loss-of-function mutations in both IDUA alleles. To avoid variability due to different genetic background of iPSC, we established an isogenic control iPSC line by rescuing IDUA expression by a lentivectoral approach. Results: Marked differences between MPS1-H and IDUA-corrected isogenic controls were observed upon neural differentiation. A scratch assay revealed a strong migration defect of MPS1-H cells. Also, there was a massive impact of IDUA deficiency on gene expression (340 genes with an FDR <0.05). Conclusions: Our results demonstrate a hitherto unknown connection between lysosomal degradation, gene expression and neural motility, which might account at least in part for the phenotype of MPS1-H patients.
Collapse
|
4
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Zhang H, Vreeken D, Junaid A, Wang G, Sol WMPJ, de Bruin RG, van Zonneveld AJ, van Gils JM. Endothelial Semaphorin 3F Maintains Endothelial Barrier Function and Inhibits Monocyte Migration. Int J Mol Sci 2020; 21:ijms21041471. [PMID: 32098168 PMCID: PMC7073048 DOI: 10.3390/ijms21041471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In normal physiology, endothelial cells (ECs) form a vital barrier between the blood and underlying tissue controlling leukocyte diapedesis and vascular inflammation. Emerging data suggest that neuronal guidance cues, typically expressed during development, have roles outside the nervous system in vascular biology and immune responses. In particular, Class III semaphorins have been reported to affect EC migration and angiogenesis. While ECs express high levels of semaphorin 3F (SEMA3F), little is known about its function in mature ECs. Here we show that SEMA3F expression is reduced by inflammatory stimuli and increased by laminar flow. Endothelial cells exposed to laminar flow secrete SEMA3F, which subsequently binds to heparan sulfates on the surface of ECs. However, under pro-inflammatory conditions, reduced levels of SEMA3F make ECs more prone to monocyte diapedesis and display impaired barrier function as measured with an electric cell-substrate impedance sensing system and a microfluidic system. In addition, we demonstrate that SEMA3F can directly inhibit the migration of activated monocytes. Taken together, our data suggest an important homeostatic function for EC-expressed SEMA3F, serving as a mediator of endothelial quiescence.
Collapse
|
6
|
Beamish IV, Hinck L, Kennedy TE. Making Connections: Guidance Cues and Receptors at Nonneural Cell-Cell Junctions. Cold Spring Harb Perspect Biol 2018; 10:a029165. [PMID: 28847900 PMCID: PMC6211390 DOI: 10.1101/cshperspect.a029165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The field of axon guidance was revolutionized over the past three decades by the identification of highly conserved families of guidance cues and receptors. These proteins are essential for normal neural development and function, directing cell and axon migration, neuron-glial interactions, and synapse formation and plasticity. Many of these genes are also expressed outside the nervous system in which they influence cell migration, adhesion and proliferation. Because the nervous system develops from neural epithelium, it is perhaps not surprising that these guidance cues have significant nonneural roles in governing the specialized junctional connections between cells in polarized epithelia. The following review addresses roles for ephrins, semaphorins, netrins, slits and their receptors in regulating adherens, tight, and gap junctions in nonneural epithelia and endothelia.
Collapse
Affiliation(s)
- Ian V Beamish
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
7
|
Hei Yuan HS, Katyal S, Anderson JE. A mechanism for semaphorin-induced apoptosis: DNA damage of endothelial and myogenic cells in primary cultures from skeletal muscle. Oncotarget 2018; 9:22618-22630. [PMID: 29854302 PMCID: PMC5978252 DOI: 10.18632/oncotarget.25200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
One hallmark of cancer is its ability to recruit a vascular supply to support rapid growth. Suppression of angiogenesis holds potential as a second-line or adjuvant therapy to stunt cancer growth, progression, metastasis, and post-resection regeneration. To begin to test the hypothesis that semaphorin 3A and 3F together, will induce endothelial cell apoptosis by inducing DNA damage, mixed primary cultures isolated from normal adult mouse skeletal muscle were treated for 48 hr with Sema3A ± Sema3F (100ng/mL). Changes in surviving-cell density, DNA synthesis, DNA repair (gamma-Histone 2AX, γH2AX, an indirect measure for DNA damage), and apoptotic DNA fragmentation (TUNEL staining) were assayed in cultures of CD31+ endothelial and desmin+ muscle cells. Sema3F increased DNA damage-associated DNA repair in both cell types. Co-treatment with Sema3A+3F increased γH2AX staining ~25-fold over control levels, and further increased apoptosis compared to control and Sema3A alone. Results were negated by treatment with neutralizing anti-semaphorin antibodies and are interpreted as suggesting that Sema3A may sensitize endothelial but not muscle cells to Sema3F-induced DNA damage. These preliminary findings on a complex system of interacting cells may contribute to developing applications that could target angiogenic regulatory mechanisms for their therapeutic potential against cancer progression and metastasis.
Collapse
Affiliation(s)
- Haynes Shek Hei Yuan
- Department of Biological Sciences, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, CancerCare Manitoba, Winnipeg, MB, Canada.,University of Manitoba, Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Sachin Katyal
- Department of Pharmacology and Therapeutics, CancerCare Manitoba, Winnipeg, MB, Canada.,University of Manitoba, Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Judy E Anderson
- Department of Biological Sciences, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Condomitti G, de Wit J. Heparan Sulfate Proteoglycans as Emerging Players in Synaptic Specificity. Front Mol Neurosci 2018; 11:14. [PMID: 29434536 PMCID: PMC5790772 DOI: 10.3389/fnmol.2018.00014] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022] Open
Abstract
Neural circuits consist of distinct neuronal cell types connected in specific patterns. The specificity of these connections is achieved in a series of sequential developmental steps that involve the targeting of neurites, the identification of synaptic partners, and the formation of specific types of synapses. Cell-surface proteins play a critical role in each of these steps. The heparan sulfate proteoglycan (HSPG) family of cell-surface proteins is emerging as a key regulator of connectivity. HSPGs are expressed throughout brain development and play important roles in axon guidance, synapse development and synapse function. New insights indicate that neuronal cell types express unique combinations of HSPGs and HS-modifying enzymes. Furthermore, HSPGs interact with cell type-specific binding partners to mediate synapse development. This suggests that cell type-specific repertoires of HSPGs and specific patterns of HS modifications on the cell surface are required for the development of specific synaptic connections. Genome-wide association studies have linked these proteins to neurodevelopmental and neuropsychiatric diseases. Thus, HSPGs play an important role in the development of specific synaptic connectivity patterns important for neural circuit function, and their dysfunction may be involved in the development of brain disorders.
Collapse
Affiliation(s)
- Giuseppe Condomitti
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev 2017. [PMID: 28643862 DOI: 10.1002/med.21452] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since Judah Folkman hypothesized in 1971 that angiogenesis is required for solid tumor growth, numerous studies have been conducted to unravel the angiogenesis process, analyze its role in primary tumor growth, metastasis and angiogenic diseases, and to develop inhibitors of proangiogenic factors. These studies have led in 2004 to the approval of the first antiangiogenic agent (bevacizumab, a humanized antibody targeting vascular endothelial growth factor) for the treatment of patients with metastatic colorectal cancer. This approval launched great expectations for the use of antiangiogenic therapy for malignant diseases. However, these expectations have not been met and, as knowledge of blood vessel formation accumulates, many of the original paradigms no longer hold. Therefore, the regulators and clinical implications of angiogenesis need to be revisited. In this review, we discuss recently identified angiogenesis mediators and pathways, new concepts that have emerged over the past 10 years, tumor resistance and toxicity associated with the use of currently available antiangiogenic treatment and potentially new targets and/or approaches for malignant and nonmalignant neovascular diseases.
Collapse
Affiliation(s)
- Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mohammed Benkheil
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
10
|
Mooney MA, McWeeney SK, Faraone SV, Hinney A, Hebebrand J, Nigg JT, Wilmot B. Pathway analysis in attention deficit hyperactivity disorder: An ensemble approach. Am J Med Genet B Neuropsychiatr Genet 2016; 171:815-26. [PMID: 27004716 PMCID: PMC4983253 DOI: 10.1002/ajmg.b.32446] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/07/2016] [Indexed: 12/21/2022]
Abstract
Despite a wealth of evidence for the role of genetics in attention deficit hyperactivity disorder (ADHD), specific and definitive genetic mechanisms have not been identified. Pathway analyses, a subset of gene-set analyses, extend the knowledge gained from genome-wide association studies (GWAS) by providing functional context for genetic associations. However, there are numerous methods for association testing of gene sets and no real consensus regarding the best approach. The present study applied six pathway analysis methods to identify pathways associated with ADHD in two GWAS datasets from the Psychiatric Genomics Consortium. Methods that utilize genotypes to model pathway-level effects identified more replicable pathway associations than methods using summary statistics. In addition, pathways implicated by more than one method were significantly more likely to replicate. A number of brain-relevant pathways, such as RhoA signaling, glycosaminoglycan biosynthesis, fibroblast growth factor receptor activity, and pathways containing potassium channel genes, were nominally significant by multiple methods in both datasets. These results support previous hypotheses about the role of regulation of neurotransmitter release, neurite outgrowth and axon guidance in contributing to the ADHD phenotype and suggest the value of cross-method convergence in evaluating pathway analysis results. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael A. Mooney
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon,OHSU Knight Cancer Institute, Portland, Oregon
| | - Shannon K. McWeeney
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon,OHSU Knight Cancer Institute, Portland, Oregon,Oregon Clinical and Translational Research Institute, Portland, Oregon
| | - Stephen V. Faraone
- Departments of Psychiatry and Neuroscience & Physiology, State University of New York, Syracuse, New York,K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Joel T. Nigg
- Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, Oregon,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Beth Wilmot
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon,OHSU Knight Cancer Institute, Portland, Oregon,Oregon Clinical and Translational Research Institute, Portland, Oregon,Correspondence to: Beth Wilmot, Ph.D., Division of Bioinformatics & Computational Biology, Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail code: CR145, Portland, OR 97239.
| |
Collapse
|
11
|
Anderson JE, Do MKQ, Daneshvar N, Suzuki T, Dort J, Mizunoya W, Tatsumi R. The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres. Biol Rev Camb Philos Soc 2016; 92:1389-1405. [PMID: 27296513 DOI: 10.1111/brv.12286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 01/03/2023]
Abstract
Current research on skeletal muscle injury and regeneration highlights the crucial role of nerve-muscle interaction in the restoration of innervation during that process. Activities of muscle satellite or stem cells, recognized as the 'currency' of myogenic repair, have a pivotal role in these events, as shown by ongoing research. More recent investigation of myogenic signalling events reveals intriguing roles for semaphorin3A (Sema3A), secreted by activated satellite cells, in the muscle environment during development and regeneration. For example, Sema3A makes important contributions to regulating the formation of blood vessels, balancing bone formation and bone remodelling, and inflammation, and was recently implicated in the establishment of fibre-type distribution through effects on myosin heavy chain gene expression. This review highlights the active or potential contributions of satellite-cell-derived Sema3A to regulation of the processes of motor neurite ingrowth into a regenerating muscle bed. Successful restoration of functional innervation during muscle repair is essential; this review emphasizes the integrative role of satellite-cell biology in the progressive coordination of adaptive cellular and tissue responses during the injury-repair process in voluntary muscle.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Junio Dort
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| |
Collapse
|
12
|
Corredor M, Bonet R, Moure A, Domingo C, Bujons J, Alfonso I, Pérez Y, Messeguer À. Cationic Peptides and Peptidomimetics Bind Glycosaminoglycans as Potential Sema3A Pathway Inhibitors. Biophys J 2016; 110:1291-303. [PMID: 27028639 PMCID: PMC4816699 DOI: 10.1016/j.bpj.2016.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
Semaphorin3A (Sema3A) is a vertebrate-secreted protein that was initially characterized as a repulsive-guidance cue. Semaphorins have crucial roles in several diseases; therefore, the development of Sema3A inhibitors is of therapeutic interest. Sema3A interacts with glycosaminoglycans (GAGs), presumably through its C-terminal basic region. We used different biophysical techniques (i.e., NMR, surface plasmon resonance, isothermal titration calorimetry, fluorescence, and UV-visible spectroscopy) to characterize the binding of two Sema3A C-terminus-derived basic peptides (FS2 and NFS3) to heparin and chondroitin sulfate A. We found that these peptides bind to both GAGs with affinities in the low-micromolar range. On the other hand, a peptoid named SICHI (semaphorin-induced chemorepulsion inhibitor), which is positively charged at physiological pH, was first identified by our group as being able to block Sema3A chemorepulsion and growth-cone collapse in axons at the extracellular level. To elucidate the direct target for the reported SICHI inhibitory effect in the Sema3A signaling pathway, we looked first to the protein-protein interaction between secreted Sema3A and the Nrp1 receptor. However, our results show that SICHI does not bind directly to the Sema3A sema domain or to Nrp1 extracellular domains. We evaluated a new, to our knowledge, hypothesis, according to which SICHI binds to GAGs, thereby perturbing the Sema3A-GAG interaction. By using the above-mentioned techniques, we observed that SICHI binds to GAGs and competes with Sema3A C-terminus-derived basic peptides for binding to GAGs. These data support the ability of SICHI to block the biologically relevant interaction between Sema3A and GAGs, thus revealing SICHI as a new, to our knowledge, class of inhibitors that target the GAG-protein interaction.
Collapse
Affiliation(s)
- Miriam Corredor
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Roman Bonet
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Alejandra Moure
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Cecilia Domingo
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Jordi Bujons
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Ignacio Alfonso
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain
| | - Yolanda Pérez
- Servicio de Resonancia Magnética Nuclear, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain.
| | - Àngel Messeguer
- Departamento de Química Biológica y Modelización Molecular, Instituto de Química Avanzada de Catalunya, IQAC-CSIC, Barcelona, Spain.
| |
Collapse
|
13
|
Masu M. Proteoglycans and axon guidance: a new relationship between old partners. J Neurochem 2016; 139 Suppl 2:58-75. [PMID: 26709493 DOI: 10.1111/jnc.13508] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 01/12/2023]
Abstract
Neural circuits are formed with great precision during development. Accumulated evidence over the past three decades has demonstrated that growing axons are navigated toward their targets by the combined actions of attractants and repellents together with their receptors. It has long been known that proteoglycans, glycosylated proteins possessing covalently attached glycosaminoglycans, play a critical role in axon guidance; however, the molecular mechanisms by which proteoglycans regulate axon behaviors remain largely unknown. Glycosaminoglycans such as heparan sulfate and chondroitin sulfate are large linear polysaccharides composed of repeating disaccharide units that are highly modified by specific sulfation and epimerization. Recent biochemical and molecular biological studies have identified the enzymes that are involved in the biosynthesis of glycosaminoglycans. Interestingly, many mutants lacking glycosaminoglycan-synthesizing enzymes or proteoglycans in several model organisms show defects in specific nerve tract formation. In parallel, detailed biochemical studies have identified the molecular interactions between axon guidance molecules and glycosaminoglycans that have specific modification in their sugar chains. This review summarizes the structure and function of axon guidance molecules and glycosaminoglycans, and then tries to combine the knowledge from these studies to understand the role of proteoglycans from a new vantage point. Deciphering the sugar code is important for understanding the complicated nature of proteoglycans in axon guidance. Neural circuits are formed by the combined actions of axon guidance molecules. Proteoglycans play critical roles in regulating axon guidance through the interaction between signaling molecules and glycosaminoglycan chains attached to the core protein. This paper summarizes the structure and functions of axon guidance molecules and glycosaminoglycans and reviews the molecular mechanisms by which proteoglycans regulate axon guidance from a new vantage point. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Masayuki Masu
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
14
|
Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets. Neural Plast 2016; 2016:5214961. [PMID: 26881114 PMCID: PMC4736403 DOI: 10.1155/2016/5214961] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/17/2022] Open
Abstract
Synapses are specialized structures that mediate rapid and efficient signal transmission between neurons and are surrounded by glial cells. Astrocytes develop an intimate association with synapses in the central nervous system (CNS) and contribute to the regulation of ion and neurotransmitter concentrations. Together with neurons, they shape intercellular space to provide a stable milieu for neuronal activity. Extracellular matrix (ECM) components are synthesized by both neurons and astrocytes and play an important role in the formation, maintenance, and function of synapses in the CNS. The components of the ECM have been detected near glial processes, which abut onto the CNS synaptic unit, where they are part of the specialized macromolecular assemblies, termed perineuronal nets (PNNs). PNNs have originally been discovered by Golgi and represent a molecular scaffold deposited in the interface between the astrocyte and subsets of neurons in the vicinity of the synapse. Recent reports strongly suggest that PNNs are tightly involved in the regulation of synaptic plasticity. Moreover, several studies have implicated PNNs and the neural ECM in neuropsychiatric diseases. Here, we highlight current concepts relating to neural ECM and PNNs and describe an in vitro approach that allows for the investigation of ECM functions for synaptogenesis.
Collapse
|
15
|
Li X, Parker MW, Vander Kooi CW. Control of cellular motility by neuropilin-mediated physical interactions. Biomol Concepts 2015; 5:157-66. [PMID: 25018786 DOI: 10.1515/bmc-2013-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The neuropilin (Nrp) family consists of multifunctional cell surface receptors with critical roles in a number of different cell and tissue types. A core aspect of Nrp function is in ligand-dependent cellular migration, where it controls the multistep process of cellular motility through integration of ligand binding and receptor signaling. At a molecular level, the role of Nrp in migration is intimately connected to the control of adhesive interactions and cytoskeletal reorganization. Here, we review the physiological role of Nrp in cellular adhesion and motility in the cardiovascular and nervous systems. We also discuss the emerging pathological role of Nrp in tumor cell migration and metastasis, providing motivation for continued efforts toward developing Nrp inhibitors.
Collapse
|
16
|
Abstract
The assembly of functional neural circuits requires the combined action of progressive and regressive events. Regressive events encompass a variety of inhibitory developmental processes, including axon and dendrite pruning, which facilitate the removal of exuberant neuronal connections. Most axon pruning involves the removal of axons that had already made synaptic connections; thus, axon pruning is tightly associated with synapse elimination. In many instances, these developmental processes are regulated by the interplay between neurons and glial cells that act instructively during neural remodeling. Owing to the importance of axon and dendritic pruning, these remodeling events require precise spatial and temporal control, and this is achieved by a range of distinct molecular mechanisms. Disruption of these mechanisms results in abnormal pruning, which has been linked to brain dysfunction. Therefore, understanding the mechanisms of axon and dendritic pruning will be instrumental in advancing our knowledge of neural disease and mental disorders.
Collapse
Affiliation(s)
- Martin M Riccomagno
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521;
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
17
|
Bruyère J, Roy E, Ausseil J, Lemonnier T, Teyre G, Bohl D, Etienne-Manneville S, Lortat-Jacob H, Heard JM, Vitry S. Heparan Sulfate Saccharides Modify Focal Adhesions: Implication in Mucopolysaccharidosis Neuropathophysiology. J Mol Biol 2015; 427:775-791. [DOI: 10.1016/j.jmb.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
|
18
|
Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta Gen Subj 2014; 1840:2506-19. [PMID: 24418517 PMCID: PMC4081568 DOI: 10.1016/j.bbagen.2014.01.010] [Citation(s) in RCA: 876] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 02/08/2023]
Abstract
Background Extracellular matrix (ECM) is a dynamic and complex environment characterized by biophysical, mechanical and biochemical properties specific for each tissue and able to regulate cell behavior. Stem cells have a key role in the maintenance and regeneration of tissues and they are located in a specific microenvironment, defined as niche. Scope of review We overview the progresses that have been made in elucidating stem cell niches and discuss the mechanisms by which ECM affects stem cell behavior. We also summarize the current tools and experimental models for studying ECM–stem cell interactions. Major conclusions ECM represents an essential player in stem cell niche, since it can directly or indirectly modulate the maintenance, proliferation, self-renewal and differentiation of stem cells. Several ECM molecules play regulatory functions for different types of stem cells, and based on its molecular composition the ECM can be deposited and finely tuned for providing the most appropriate niche for stem cells in the various tissues. Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior. General significance ECM is a key component of stem cell niches and is involved in various aspects of stem cell behavior, thus having a major impact on tissue homeostasis and regeneration under physiological and pathological conditions. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Stem cells have a key role in the maintenance and regeneration of tissues. The extracellular matrix is a critical regulator of stem cell function. Stem cells reside in a dynamic and specialized microenvironment denoted as niche. The extracellular matrix represents an essential component of stem cell niches. Bioengineered niches can be used for investigating stem cell–matrix interactions.
Collapse
Affiliation(s)
- Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Anna Urciuolo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
19
|
Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, Deschoemaeker S, Van Ginderachter JA, Tamagnone L, Mazzone M. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 2013; 24:695-709. [PMID: 24332039 DOI: 10.1016/j.ccr.2013.11.007] [Citation(s) in RCA: 461] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 10/04/2013] [Accepted: 11/10/2013] [Indexed: 10/25/2022]
Abstract
Recruitment of tumor-associated macrophages (TAMs) into avascular areas sustains tumor progression; however, the underlying guidance mechanisms are unknown. Here, we report that hypoxia-induced Semaphorin 3A (Sema3A) acts as an attractant for TAMs by triggering vascular endothelial growth factor receptor 1 phosphorylation through the associated holoreceptor, composed of Neuropilin-1 (Nrp1) and PlexinA1/PlexinA4. Importantly, whereas Nrp1 levels are downregulated in the hypoxic environment, Sema3A continues to regulate TAMs in an Nrp1-independent manner by eliciting PlexinA1/PlexinA4-mediated stop signals, which retain them inside the hypoxic niche. Consistently, gene deletion of Nrp1 in macrophages favors TAMs' entrapment in normoxic tumor regions, which abates their pro-angiogenic and immunosuppressive functions, hence inhibiting tumor growth and metastasis. This study shows that TAMs' heterogeneity depends on their localization, which is tightly controlled by Sema3A/Nrp1 signaling.
Collapse
Affiliation(s)
- Andrea Casazza
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, 3000 Leuven, Belgium
| | - Damya Laoui
- Laboratory of Myeloid Cell Immunology, VIB, 1050 Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Mathias Wenes
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, 3000 Leuven, Belgium
| | - Sabrina Rizzolio
- Institute for Cancer Research at Candiolo, Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy
| | - Nicklas Bassani
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, 3000 Leuven, Belgium
| | - Marco Mambretti
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, 3000 Leuven, Belgium
| | - Sofie Deschoemaeker
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, 3000 Leuven, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB, 1050 Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Luca Tamagnone
- Institute for Cancer Research at Candiolo, Department of Oncology, University of Torino, 10060 Candiolo, Torino, Italy
| | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, 3000 Leuven, Belgium; Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, Vesalius Research Center, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
20
|
Vo T, Carulli D, Ehlert EM, Kwok JC, Dick G, Mecollari V, Moloney EB, Neufeld G, de Winter F, Fawcett JW, Verhaagen J. The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol Cell Neurosci 2013; 56:186-200. [DOI: 10.1016/j.mcn.2013.04.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/30/2013] [Indexed: 01/22/2023] Open
|
21
|
de Wit J, O'Sullivan ML, Savas JN, Condomitti G, Caccese MC, Vennekens KM, Yates JR, Ghosh A. Unbiased discovery of glypican as a receptor for LRRTM4 in regulating excitatory synapse development. Neuron 2013; 79:696-711. [PMID: 23911103 DOI: 10.1016/j.neuron.2013.06.049] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 11/27/2022]
Abstract
Leucine-rich repeat (LRR) proteins have recently been identified as important regulators of synapse development and function, but for many LRR proteins the ligand-receptor interactions are not known. Here we identify the heparan sulfate (HS) proteoglycan glypican as a receptor for LRRTM4 using an unbiased proteomics-based approach. Glypican binds LRRTM4, but not LRRTM2, in an HS-dependent manner. Glypican 4 (GPC4) and LRRTM4 localize to the pre- and postsynaptic membranes of excitatory synapses, respectively. Consistent with a trans-synaptic interaction, LRRTM4 triggers GPC4 clustering in contacting axons and GPC4 induces clustering of LRRTM4 in contacting dendrites in an HS-dependent manner. LRRTM4 positively regulates excitatory synapse development in cultured neurons and in vivo, and the synaptogenic activity of LRRTM4 requires the presence of HS on the neuronal surface. Our results identify glypican as an LRRTM4 receptor and indicate that a trans-synaptic glypican-LRRTM4 interaction regulates excitatory synapse development.
Collapse
Affiliation(s)
- Joris de Wit
- Neurobiology Section, Division of Biology, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schwend T, Deaton RJ, Zhang Y, Caterson B, Conrad GW. Corneal sulfated glycosaminoglycans and their effects on trigeminal nerve growth cone behavior in vitro: roles for ECM in cornea innervation. Invest Ophthalmol Vis Sci 2012; 53:8118-37. [PMID: 23132805 PMCID: PMC3522437 DOI: 10.1167/iovs.12-10832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/16/2012] [Accepted: 10/27/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Sensory trigeminal nerve growth cones innervate the cornea in a highly coordinated fashion. The purpose of this study was to determine if extracellular matrix glycosaminoglycans (ECM-GAGs), including keratan sulfate (KS), dermatan sulfate (DS), and chondroitin sulfate A (CSA) and C (CSC), polymerized in developing eyefronts, may provide guidance cues to nerves during cornea innervation. METHODS Immunostaining using antineuron-specific-β-tubulin and monoclonal antibodies for KS, DS, and CSA/C was performed on eyefronts from embryonic day (E) 9 to E14 and staining visualized by confocal microscopy. Effects of purified GAGs on trigeminal nerve growth cone behavior were tested using in vitro neuronal explant cultures. RESULTS At E9 to E10, nerves exiting the pericorneal nerve ring grew as tight fascicles, advancing straight toward the corneal stroma. In contrast, upon entering the stroma, nerves bifurcated repeatedly as they extended anteriorly toward the epithelium. KS was localized in the path of trigeminal nerves, whereas DS and CSA/C-rich areas were avoided by growth cones. When E10 trigeminal neurons were cultured on different substrates comprised of purified GAG molecules, their neurite growth cone behavior varied depending on GAG type, concentration, and mode of presentation (immobilized versus soluble). High concentrations of immobilized KS, DS, and CSA/C inhibited neurite growth to varying degrees. Neurites traversing lower, permissive concentrations of immobilized DS and CSA/C displayed increased fasciculation and decreased branching, whereas KS caused decreased fasciculation and increased branching. Enzymatic digestion of sulfated GAGs canceled their effects on trigeminal neurons. CONCLUSIONS Data herein suggest that GAGs may direct the movement of trigeminal nerve growth cones innervating the cornea.
Collapse
Affiliation(s)
- Tyler Schwend
- From the Division of Biology, Kansas State University, Manhattan, Kansas
| | - Ryan J. Deaton
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Yuntao Zhang
- From the Division of Biology, Kansas State University, Manhattan, Kansas
| | - Bruce Caterson
- Connective Tissue Biology Laboratories, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Gary W. Conrad
- From the Division of Biology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
23
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
24
|
Moore SW, Zhang X, Lynch CD, Sheetz MP. Netrin-1 attracts axons through FAK-dependent mechanotransduction. J Neurosci 2012; 32:11574-85. [PMID: 22915102 PMCID: PMC3461192 DOI: 10.1523/jneurosci.0999-12.2012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/01/2012] [Accepted: 06/29/2012] [Indexed: 11/21/2022] Open
Abstract
The mechanism by which extracellular cues influence intracellular biochemical cascades that guide axons is important, yet poorly understood. Because of the mechanical nature of axon extension, we explored whether the physical interactions of growth cones with their guidance cues might be involved. In the context of mouse spinal commissural neuron axon attraction to netrin-1, we found that mechanical attachment of netrin-1 to the substrate was required for axon outgrowth, growth cone expansion, axon attraction and phosphorylation of focal adhesion kinase (FAK) and Crk-associated substrate (CAS). Myosin II activity was necessary for traction forces >30 pN on netrin-1. Interestingly, while these myosin II-dependent forces on netrin-1 substrates or beads were needed to increase the kinase activity and phosphorylation of FAK, they were not necessary for netrin-1 to increase CAS phosphorylation. When FAK kinase activity was inhibited, the growth cone's ability to recruit additional adhesions and to generate forces >60 pN on netrin-1 was disrupted. Together, these findings demonstrate an important role for mechanotransduction during chemoattraction to netrin-1 and that mechanical activation of FAK reinforces interactions with netrin-1 allowing greater forces to be exerted.
Collapse
Affiliation(s)
- Simon W Moore
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | | | | | |
Collapse
|
25
|
Corley MJ, Meyza KZ, Blanchard DC, Blanchard RJ. Reduced sulfate plasma concentrations in the BTBR T+tf/J mouse model of autism. Physiol Behav 2012; 107:663-5. [PMID: 22538115 DOI: 10.1016/j.physbeh.2012.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 12/13/2022]
Abstract
Clinical studies have shown that children diagnosed with autism show abnormal sulfate chemistry, which is critical for cellular and metabolic processes. To determine if the inbred BTBR T+tf/J mouse shows autism-relevant aberrations in sulfate chemistry, the present study examined plasma sulfate concentrations in BTBR T+tf/J, inbred C57BL/6J, and outbred CD-1 mice. Results showed that the BTBR T+tf/J mouse exhibits significantly lower plasma sulfate concentrations in comparison to both C57BL/6J and CD-1 mice. These results suggest that the BTBR mouse shows autism-relevant abnormalities in sulfate chemistry and may serve additional utility in examining the role of sulfate and sulfate-dependent systems in relation to autism-relevant behavioral aberrations.
Collapse
Affiliation(s)
- Michael J Corley
- Department of Psychology, University of Hawaii, Honolulu, HI, USA.
| | | | | | | |
Collapse
|
26
|
Wilkinson AE, McCormick AM, Leipzig ND. Central Nervous System Tissue Engineering: Current Considerations and Strategies. ACTA ACUST UNITED AC 2011. [DOI: 10.2200/s00390ed1v01y201111tis008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Myers JP, Santiago-Medina M, Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol 2011; 71:901-23. [PMID: 21714101 PMCID: PMC3192254 DOI: 10.1002/dneu.20931] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
28
|
The role of GABAergic inhibition in ocular dominance plasticity. Neural Plast 2011; 2011:391763. [PMID: 21826276 PMCID: PMC3150150 DOI: 10.1155/2011/391763] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/27/2011] [Indexed: 12/12/2022] Open
Abstract
During the last decade, we have gained much insight into the mechanisms that open and close a sensitive period of plasticity in the visual cortex. This brings the hope that novel treatments can be developed for brain injuries requiring renewed plasticity potential and neurodevelopmental brain disorders caused by defective synaptic plasticity. One of the central mechanisms responsible for opening the sensitive period is the maturation of inhibitory innervation. Many molecular and cellular events have been identified that drive this developmental process, including signaling through BDNF and IGF-1, transcriptional control by OTX2, maturation of the extracellular matrix, and GABA-regulated inhibitory synapse formation. The mechanisms through which the development of inhibitory innervation triggers and potentially closes the sensitive period may involve plasticity of inhibitory inputs or permissive regulation of excitatory synapse plasticity. Here, we discuss the current state of knowledge in the field and open questions to be addressed.
Collapse
|
29
|
Pyka M, Wetzel C, Aguado A, Geissler M, Hatt H, Faissner A. Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons. Eur J Neurosci 2011; 33:2187-202. [PMID: 21615557 DOI: 10.1111/j.1460-9568.2011.07690.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been shown that astrocyte-derived extracellular matrix (ECM) is important for formation and maintenance of CNS synapses. In order to study the effects of glial-derived ECM on synaptogenesis, E18 rat hippocampal neurons and primary astrocytes were co-cultivated using a cell-insert system. Under these conditions, neurons differentiated under low density conditions (3500 cells/cm(2) ) in defined, serum-free medium and in the absence of direct, membrane-mediated neuron-astrocyte interactions. Astrocytes promoted the formation of structurally intact synapses, as documented by the co-localisation of bassoon- and ProSAP1/Shank2-positive puncta, markers of the pre- and postsynapse, respectively. The development of synapses was paralleled by the emergence of perineuronal net (PNN)-like structures that contained various ECM components such as hyaluronic acid, brevican and neurocan. In order to assess potential functions for synaptogenesis, the ECM was removed by treatment with hyaluronidase or chondroitinase ABC. Both enzymes significantly enhanced the number of synaptic puncta. Whole-cell voltage-clamp recordings of control and enzyme-treated hippocampal neurons revealed that chondroitinase ABC treatment led to a significant decrease in amplitude and a reduced charge of miniature excitatory postsynaptic currents, whereas inhibitory postsynaptic currents were not affected. When the response to the application of glutamate was measured, a reduced sensitivity could be detected and resulted in decreased currents in response to the excitatory neurotransmitter. These findings are consistent with the interpretation that the ECM partakes in the regulation of the density of glutamate receptors in subsynaptic sites.
Collapse
Affiliation(s)
- Martin Pyka
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitätsstr. 150, NDEF 05/594, D-44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Dityatev A, Seidenbecher CI, Schachner M. Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 2011; 33:503-12. [PMID: 20832873 DOI: 10.1016/j.tins.2010.08.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/13/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
The extracellular matrix (ECM) of the central nervous system is well recognized as a migration and diffusion barrier that allows for the trapping and presentation of growth factors to their receptors at the cell surface. Recent data highlight the importance of ECM molecules as synaptic and perisynaptic scaffolds that direct the clustering of neurotransmitter receptors in the postsynaptic compartment and that present barriers to reduce the lateral diffusion of membrane proteins away from synapses. The ECM also contributes to the migration and differentiation of stem cells in the neurogenic niche and organizes the polarized localization of ion channels and transporters at contacts between astrocytic processes and blood vessels. Thus, the ECM contributes to functional compartmentalization in the brain.
Collapse
Affiliation(s)
- Alexander Dityatev
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, via Morego 30, Genova, Italy.
| | | | | |
Collapse
|
31
|
Rakus JF, Mahal LK. New technologies for glycomic analysis: toward a systematic understanding of the glycome. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:367-392. [PMID: 21456971 DOI: 10.1146/annurev-anchem-061010-113951] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Carbohydrates are the most difficult class of biological molecules to study by high-throughput methods owing to the chemical similarities between the constituent monosaccharide building blocks, template-less biosynthesis, and the lack of clearly identifiable consensus sequences for the glycan modification of cohorts of glycoproteins. These molecules are crucial for a wide variety of cellular processes ranging from cell-cell communication to immunity, and they are altered in disease states such as cancer and inflammation. Thus, there has been a dedicated effort to develop glycan analysis into a high-throughput analytical field termed glycomics. Herein we highlight major advances in applying separation, mass spectrometry, and microarray methods to the fields of glycomics and glycoproteomics. These new analytical techniques are rapidly advancing our understanding of the importance of glycosylation in biology and disease.
Collapse
Affiliation(s)
- John F Rakus
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
32
|
Klausmeyer A, Conrad R, Faissner A, Wiese S. Influence of glial-derived matrix molecules, especially chondroitin sulfates, on neurite growth and survival of cultured mouse embryonic motoneurons. J Neurosci Res 2010; 89:127-41. [PMID: 21162121 DOI: 10.1002/jnr.22531] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 12/24/2022]
Abstract
Mechanisms controlling neuronal survival and regeneration play an important role during development, after birth, and under lesion conditions. Isolated embryonic mouse motoneurons have been a useful tool for studying such basic mechanisms. These cultured motoneurons depend on extracellular matrix (ECM) molecules, which are potent mediators of survival and axonal growth and guidance in the CNS and in vitro, exhibiting either attractive or repellent guidance cues. Additionally, ECM proteoglycans and glycoproteins are components of the glial scar acting as a growth barrier for regenerating axons. Compared with CNS axon outgrowth, less is known about the cues that guide motoneurons toward their peripheral targets. Because we are interested in the effects of glial-derived chondroitin sulfate proteoglycans (CSPGs), we have worked out a model system for investigating the influences of glial-derived matrix molecules on motoneuron outgrowth and survival. We used cultured embryonic mouse motoneurons to investigate axon growth effects of matrix molecules produced by the glial-derived cell lines A7, Neu7, and Oli-neu primary astrocytes as well as the immortalized Schwann cell line IMS32. The results indicate that molecules of the ECM, especially chondroitin sulfates, play an important role as axon growth-promoting cues. We could demonstrate a modifying effect of the matrix components on motoneuron survival and caspase3-induced apoptosis.
Collapse
Affiliation(s)
- Alice Klausmeyer
- Department of Cellmorphology and Molecular Neurobiology, Laboratory of Molecular Cellbiology, Faculty of Biology and Biotechnology, Ruhr-University-Bochum, Bochum, Germany
| | | | | | | |
Collapse
|
33
|
Kwok JCF, Carulli D, Fawcett JW. In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity. J Neurochem 2010; 114:1447-59. [PMID: 20584105 DOI: 10.1111/j.1471-4159.2010.06878.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that all perineuronal nets (PNNs) bearing neurons express a hyaluronan synthase (HAS), a link protein (usually cartilage link protein-1; Crtl1) and a chondroitin sulfate proteoglycan (usually aggrecan). Animal lacking Crtl1 in the CNS lacks normal PNNs. PNNs are implicated in the control of neuronal plasticity, and interventions to modulate PNN formation will be useful for manipulating plasticity. We have developed an in vitro model which demonstrates how the structural components of PNNs trigger their formation, using human embryonic kidney cells, which do not normally produce a pericellular matrix. Expression of HAS3 leads to the production of a diffuse matrix. It was converted into a compact PNN-like structure when the cells also expressed Crtl1 and aggrecan. This matrix was stained by Wisteria floribunda, contained Crtl1 and aggrecan, and like PNNs, could only be solubilized in 6 M urea. In the absence of hyaluronan produced by HAS3, aggrecan and Crtl1 dissipated into the medium, but when the cells were transfected to produce a hyaluronan matrix, Crtl1 and aggrecan were incorporated into it. Cells lacking any one of these molecules showed impaired integrity of the PNNs. Cells expressing HAS3 and Crtl1 were able to incorporate exogenous aggrecan into their pericellular matrix.
Collapse
Affiliation(s)
- Jessica C F Kwok
- Cambridge University Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
34
|
Gammill LS, Roffers-Agarwal J. Division of labor during trunk neural crest development. Dev Biol 2010; 344:555-65. [PMID: 20399766 DOI: 10.1016/j.ydbio.2010.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/09/2010] [Accepted: 04/09/2010] [Indexed: 01/13/2023]
Abstract
Neural crest cells, the migratory precursors of numerous cell types including the vertebrate peripheral nervous system, arise in the dorsal neural tube and follow prescribed routes into the embryonic periphery. While the timing and location of neural crest migratory pathways has been well documented in the trunk, a comprehensive collection of signals that guides neural crest migration along these paths has only recently been established. In this review, we outline the molecular cascade of events during trunk neural crest development. After describing the sequential routes taken by trunk neural crest cells, we consider the guidance cues that pattern these neural crest trajectories. We pay particular attention to segmental neural crest development and the steps and signals that generate a metameric peripheral nervous system, attempting to reconcile conflicting observations in chick and mouse. Finally, we compare cranial and trunk neural crest development in order to highlight common themes.
Collapse
Affiliation(s)
- Laura S Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
35
|
Abstract
CNS synapse assembly typically follows after stable contacts between "appropriate" axonal and dendritic membranes are made. We show that presynaptic boutons selectively form de novo following neuronal fiber adhesion to beads coated with poly-d-lysine (PDL), an artificial cationic polypeptide. As demonstrated by atomic force and live confocal microscopy, functional presynaptic boutons self-assemble as rapidly as 1 h after bead contact, and are found to contain a variety of proteins characteristic of presynaptic endings. Interestingly, presynaptic compartment assembly does not depend on the presence of a biological postsynaptic membrane surface. Rather, heparan sulfate proteoglycans, including syndecan-2, as well as others possibly adsorbed onto the bead matrix or expressed on the axon surface, are required for assembly to proceed by a mechanism dependent on the dynamic reorganization of F-actin. Our results indicate that certain (but not all) nonspecific cationic molecules like PDL, with presumably electrostatically mediated adhesive properties, can effectively bypass cognate and natural postsynaptic ligands to trigger presynaptic assembly in the absence of specific target recognition. In contrast, we find that postsynaptic compartment assembly depends on the prior presence of a mature presynaptic ending.
Collapse
|
36
|
Lau E, Margolis RU. Inhibitors of slit protein interactions with the heparan sulphate proteoglycan glypican-1: potential agents for the treatment of spinal cord injury. Clin Exp Pharmacol Physiol 2009; 37:417-21. [PMID: 19843094 DOI: 10.1111/j.1440-1681.2009.05318.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. The heparan sulphate proteoglycan glypican-1 is a major high-affinity ligand of the Slit proteins. 2. Messenger RNA for both Slit-2 and glypican-1 is strongly upregulated and coexpressed in the reactive astrocytes of injured adult brain, suggesting a possible function of Slit proteins and glypican-1 in the adult central nervous system as significant components of the inhibitory environment that prevents axonal regeneration after injury. 3. Based on the hypothesis that adverse effects on axonal regeneration may be due to a glypican-Slit complex or the retention of glypican-binding C-terminal proteolytic processing fragments of Slit at the injury site, we used ELISA to examine a number of small molecules and low molecular weight heparin analogues for their ability to inhibit glypican-Slit interactions. 4. Our studies have led to the identification of several potent inhibitors with a favourable therapeutic profile that can now be tested in a spinal cord injury model. Among the most promising of these are a low molecular weight heparin produced by periodate oxidation and having no significant anticoagulant activity, the chemically sulphonated yeast-derived phosphomannan PI-88 and a number of randomly derivatized water-soluble sulphated dextrans.
Collapse
Affiliation(s)
- Elizabeth Lau
- Department of Pharmacology, New York University Medical Center, New York, New York 10016, USA
| | | |
Collapse
|
37
|
Abstract
The netrins are a family of extracellular proteins that direct cell and axon migration during embryogenesis. The name netrin is derived from the Sanskrit Netr, meaning 'guide'. Netrins are a family of extracellular proteins that direct cell and axon migration during embryogenesis. Three secreted netrins (netrins 1, 3 and 4), and two glycosylphosphatidylinositol (GPI)-anchored membrane proteins, netrins G1 and G2, have been identified in mammals. The secreted netrins are bifunctional, acting as attractants for some cell types and repellents for others. Receptors for the secreted netrins include the Deleted in Colorectal Cancer (DCC) family, the Down's syndrome cell adhesion molecule (DSCAM), and the UNC-5 homolog family: Unc5A, B, C and D in mammals. Netrin Gs do not appear to interact with these receptors, but regulate synaptic interactions between neurons by binding to the transmembrane netrin G ligands NGL1 and 2. The chemotropic function of secreted netrins has been best characterized with regard to axon guidance during the development of the nervous system. Extending axons are tipped by a flattened, membranous structure called the growth cone. Multiple extracellular guidance cues direct axonal growth cones to their ultimate targets where synapses form. Such cues can be locally derived (short-range), or can be secreted diffusible cues that allow target cells to signal axons from a distance (long-range). The secreted netrins function as short-range and long-range guidance cues in different circumstances. In addition to directing cell migration, functional roles for netrins have been identified in the regulation of cell adhesion, the maturation of cell morphology, cell survival and tumorigenesis.
Collapse
Affiliation(s)
- Sathyanath Rajasekharan
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|
38
|
Jovanov-Milosević N, Culjat M, Kostović I. Growth of the human corpus callosum: modular and laminar morphogenetic zones. Front Neuroanat 2009; 3:6. [PMID: 19562029 PMCID: PMC2697006 DOI: 10.3389/neuro.05.006.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 05/21/2009] [Indexed: 01/15/2023] Open
Abstract
The purpose of this focused review is to present and discuss recent data on the changing organization of cerebral midline structures that support the growth and development of the largest commissure in humans, the corpus callosum. We will put an emphasis on the callosal growth during the period between 20 and 45 postconceptual weeks (PCW) and focus on the advantages of a correlated histological/magnetic resonance imaging (MRI) approach. The midline structures that mediate development of the corpus callosum in rodents, also mediate its early growth in humans. However, later phases of callosal growth in humans show additional medial transient structures: grooves made up of callosal septa and the subcallosal zone. These modular (septa) and laminar (subcallosal zone) structures enable the growth of axons along the ventral callosal tier after 18 PCW, during the rapid increase in size of the callosal midsagittal cross-section area. Glial fibrillary acidic protein positive cells, neurons, guidance molecule semaphorin3A in cells and extracellular matrix (ECM), and chondroitin sulfate proteoglycan in the ECM have been identified along the ventral callosal tier in the protruding septa and subcallosal zone. Postmortem MRI at 3 T can demonstrate transient structures based on higher water content in ECM, and give us the possibility to follow the growth of the corpus callosum in vivo, due to the characteristic MR signal. Knowledge about structural properties of midline morphogenetic structures may facilitate analysis of the development of interhemispheric connections in the normal and abnormal fetal human brain.
Collapse
|
39
|
Prasad AA, Pasterkamp RJ. Axon guidance in the dopamine system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:91-100. [PMID: 19731554 DOI: 10.1007/978-1-4419-0322-8_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Meso-diencephalic dopamine neurons (mdDA) neurons are located in the retrorubral field (RRF), substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) and give rise to prominent ascending axon projections. These so-called mesotelencephalic projections are organized into three main pathways: the mesostriatal, mesocortical and mesolimbic pathways. Mesotelencephalic pathways in the adult nervous system have been studied in much detail as a result of their important physiological functions and their implication in psychiatric, neurological and neurodegenerative disease. In comparison, relatively little is known about the formation of these projection systems during embryonic and postnatal development. However, understanding the formation of mdDA neurons and their projections is essential for the design of effective therapies for mdDA neuron-associated neurological and neurodegenerative disorders. Here we summarize our current knowledge of the ontogeny of mdDA axon projections in subsystems of the developing rodent central nervous system (CNS) and discuss the cellular and molecular mechanisms that mediate mdDA axon guidance in these CNS regions.
Collapse
Affiliation(s)
- Asheeta A Prasad
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
40
|
Brauer MM. Cellular and molecular mechanisms underlying plasticity in uterine sympathetic nerves. Auton Neurosci 2008; 140:1-16. [DOI: 10.1016/j.autneu.2008.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 01/14/2008] [Accepted: 02/19/2008] [Indexed: 12/15/2022]
|
41
|
Farrar NR, Spencer GE. Pursuing a 'turning point' in growth cone research. Dev Biol 2008; 318:102-11. [PMID: 18436201 DOI: 10.1016/j.ydbio.2008.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 01/13/2023]
Abstract
Growth cones are highly motile structures found at the leading edge of developing and regenerating nerve processes. Their role in axonal pathfinding has been well established and many guidance cues that influence growth cone behavior have now been identified. Many studies are now providing insights into the transduction and integration of signals in the growth cone, though a full understanding of growth cone behavior still eludes us. This review focuses on recent studies adding to the growing body of literature on growth cone behavior, focusing particularly on the level of autonomy the growth cone possesses and the role of local protein synthesis.
Collapse
Affiliation(s)
- Nathan R Farrar
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | | |
Collapse
|
42
|
Harvey AR, Hu Y, Leaver SG, Mellough CB, Park K, Verhaagen J, Plant GW, Cui Q. Gene therapy and transplantation in CNS repair: The visual system. Prog Retin Eye Res 2006; 25:449-89. [PMID: 16963308 DOI: 10.1016/j.preteyeres.2006.07.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Normal visual function in humans is compromised by a range of inherited and acquired degenerative conditions, many of which affect photoreceptors and/or retinal pigment epithelium. As a consequence the majority of experimental gene- and cell-based therapies are aimed at rescuing or replacing these cells. We provide a brief overview of these studies, but the major focus of this review is on the inner retina, in particular how gene therapy and transplantation can improve the viability and regenerative capacity of retinal ganglion cells (RGCs). Such studies are relevant to the development of new treatments for ocular conditions that cause RGC loss or dysfunction, for example glaucoma, diabetes, ischaemia, and various inflammatory and neurodegenerative diseases. However, RGCs and associated central visual pathways also serve as an excellent experimental model of the adult central nervous system (CNS) in which it is possible to study the molecular and cellular mechanisms associated with neuroprotection and axonal regeneration after neurotrauma. In this review we present the current state of knowledge pertaining to RGC responses to injury, neurotrophic and gene therapy strategies aimed at promoting RGC survival, and how best to promote the regeneration of RGC axons after optic nerve or optic tract injury. We also describe transplantation methods being used in attempts to replace lost RGCs or encourage the regrowth of RGC axons back into visual centres in the brain via peripheral nerve bridges. Cooperative approaches including novel combinations of transplantation, gene therapy and pharmacotherapy are discussed. Finally, we consider a number of caveats and future directions, such as problems associated with compensatory sprouting and the reformation of visuotopic maps, the need to develop efficient, regulatable viral vectors, and the need to develop different but sequential strategies that target the cell body and/or the growth cone at appropriate times during the repair process.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|