1
|
Adeniyi-Ipadeola GO, Hankins JD, Kambal A, Zeng XL, Patil K, Poplaski V, Bomidi C, Nguyen-Phuc H, Grimm SL, Coarfa C, Stossi F, Crawford SE, Blutt SE, Speer AL, Estes MK, Ramani S. Infant and adult human intestinal enteroids are morphologically and functionally distinct. mBio 2024; 15:e0131624. [PMID: 38953637 PMCID: PMC11323560 DOI: 10.1128/mbio.01316-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We then validated differences in key pathways through functional studies and determined whether these cultures recapitulate known features of the infant intestinal epithelium. RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell, and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex vivo model to advance studies of infant-specific diseases and drug discovery for this population. IMPORTANCE Tissue or biopsy stem cell-derived human intestinal enteroids are increasingly recognized as physiologically relevant models of the human gastrointestinal epithelium. While enteroids from adults and fetal tissues have been extensively used for studying many infectious and non-infectious diseases, there are few reports on enteroids from infants. We show that infant enteroids exhibit both transcriptomic and morphological differences compared to adult cultures. They also differ in functional responses to barrier disruption and innate immune responses to infection, suggesting that infant and adult enteroids are distinct model systems. Considering the dramatic changes in body composition and physiology that begin during infancy, tools that appropriately reflect intestinal development and diseases are critical. Infant enteroids exhibit key features of the infant gastrointestinal epithelium. This study is significant in establishing infant enteroids as age-appropriate models for infant intestinal physiology, infant-specific diseases, and responses to pathogens.
Collapse
Affiliation(s)
| | - Julia D. Hankins
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Amal Kambal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria Poplaski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hoa Nguyen-Phuc
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Gulf Coast Consortium Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Allison L. Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Wilson AP, Moshal KS, Franca AP, Ramani S, Gallucci R, Chaaban H, Burge KY. Analyzing efficiency of a lentiviral shRNA knockdown system in human enteroids using western blot and flow cytometry. STAR Protoc 2024; 5:103082. [PMID: 38781076 PMCID: PMC11145376 DOI: 10.1016/j.xpro.2024.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Enteroids are in vitro models to study gastrointestinal pathologies and test personalized therapeutics; however, the inherent complexity of enteroids often renders standard gene editing approaches ineffective. Here, we introduce a refined lentiviral transfection protocol, ensuring sufficient lentiviral engagement with enteroids while considering spatiotemporal growth variability throughout the extracellular matrix. Additionally, we highlight a selection process for transduced cells, introduce a protocol to accurately measure transduction efficiency, and explore methodologies to gauge effects of gene knockdown on biological processes.
Collapse
Affiliation(s)
- Adam P Wilson
- Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Karni S Moshal
- Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Addison P Franca
- Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sasirekha Ramani
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Randle Gallucci
- Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hala Chaaban
- Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Kathryn Y Burge
- Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Adeniyi-Ipadeola GO, Hankins JD, Kambal A, Zeng XL, Patil K, Poplaski V, Bomidi C, Nguyen-Phuc H, Grimm SL, Coarfa C, Stossi F, Crawford SE, Blutt SE, Speer AL, Estes MK, Ramani S. Infant and Adult Human Intestinal Enteroids are Morphologically and Functionally Distinct. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.19.541350. [PMID: 37292968 PMCID: PMC10245709 DOI: 10.1101/2023.05.19.541350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background & Aims Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. Methods We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We validated differences in key pathways through functional studies and determined if these cultures recapitulate known features of the infant intestinal epithelium. Results RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. Conclusions HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex-vivo model to advance studies of infant-specific diseases and drug discovery for this population.
Collapse
Affiliation(s)
| | - Julia D. Hankins
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Amal Kambal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Victoria Poplaski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Hoa Nguyen-Phuc
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Golf Coast Consortium Center for Advanced Microscopy and Image Informatics, Houston, TX
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Allison L. Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, TX
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
4
|
Cifuentes MP, Chapman JA, Stewart CJ. Gut microbiome derived short chain fatty acids: Promising strategies in necrotising enterocolitis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100219. [PMID: 38303965 PMCID: PMC10831176 DOI: 10.1016/j.crmicr.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Necrotising enterocolitis (NEC) is a devastating condition that poses a significant risk of morbidity and mortality, particularly among preterm babies. Extensive research efforts have been directed at identifying optimal treatment and diagnostic strategies but results from such studies remain unclear and controversial. Among the most promising candidates are prebiotics, probiotics and their metabolites, including short chain fatty acids (SCFAs). Such metabolites have been widely explored as possible biomarkers of gut health for different clinical conditions, with overall positive effects on the host observed. This review aims to describe the role of gut microbiome derived SCFAs in necrotising enterocolitis. Until now, information has been conflicting, with the primary focus on the main three SCFAs (acetic acid, propionic acid, and butyric acid). While numerous studies have indicated the relationship between SCFAs and NEC, the current evidence is insufficient to draw definitive conclusions about the use of these metabolites as NEC biomarkers or their potential in treatment strategies. Ongoing research in this area will help enhance both our understanding of SCFAs as valuable indicators of NEC and their practical application in clinical settings.
Collapse
Affiliation(s)
- María P Cifuentes
- Translational and Clinical Research Institute, Newcastle University, Newcastle. UK
| | - Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, Newcastle. UK
| | | |
Collapse
|
5
|
Abstract
Breast milk bioactives are important for infant microbiome and immunity.
Collapse
|
6
|
Co JY, Klein JA, Kang S, Homan KA. Suspended hydrogel culture as a method to scale up intestinal organoids. Sci Rep 2023; 13:10412. [PMID: 37369732 DOI: 10.1038/s41598-023-35657-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Primary tissue-derived epithelial organoids are a physiologically relevant in vitro intestinal model that have been implemented for both basic research and drug development applications. The existing method of culturing intestinal organoids in surface-attached native extracellular matrix (ECM) hydrogel domes is not readily amenable to large-scale culture and contributes to culture heterogeneity. We have developed a method of culturing intestinal organoids within suspended basement membrane extract (BME) hydrogels of various geometries, which streamlines the protocol, increases the scalability, enables kinetic sampling, and improves culture uniformity without specialized equipment or additional expertise. We demonstrate the compatibility of this method with multiple culture formats, and provide examples of suspended BME hydrogel organoids in downstream applications: implementation in a medium-throughput drug screen and generation of Transwell monolayers for barrier evaluation. The suspended BME hydrogel culture method will allow intestinal organoids, and potentially other organoid types, to be used more widely and at higher throughputs than previously possible.
Collapse
Affiliation(s)
- Julia Y Co
- Complex in vitro Systems, Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jessica A Klein
- Complex in vitro Systems, Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Serah Kang
- Complex in vitro Systems, Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kimberly A Homan
- Complex in vitro Systems, Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
7
|
Kiu R, Shaw AG, Sim K, Acuna-Gonzalez A, Price CA, Bedwell H, Dreger SA, Fowler WJ, Cornwell E, Pickard D, Belteki G, Malsom J, Phillips S, Young GR, Schofield Z, Alcon-Giner C, Berrington JE, Stewart CJ, Dougan G, Clarke P, Douce G, Robinson SD, Kroll JS, Hall LJ. Particular genomic and virulence traits associated with preterm infant-derived toxigenic Clostridium perfringens strains. Nat Microbiol 2023; 8:1160-1175. [PMID: 37231089 PMCID: PMC10234813 DOI: 10.1038/s41564-023-01385-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Clostridium perfringens is an anaerobic toxin-producing bacterium associated with intestinal diseases, particularly in neonatal humans and animals. Infant gut microbiome studies have recently indicated a link between C. perfringens and the preterm infant disease necrotizing enterocolitis (NEC), with specific NEC cases associated with overabundant C. perfringens termed C. perfringens-associated NEC (CPA-NEC). In the present study, we carried out whole-genome sequencing of 272 C. perfringens isolates from 70 infants across 5 hospitals in the United Kingdom. In this retrospective analysis, we performed in-depth genomic analyses (virulence profiling, strain tracking and plasmid analysis) and experimentally characterized pathogenic traits of 31 strains, including 4 from CPA-NEC patients. We found that the gene encoding toxin perfringolysin O, pfoA, was largely deficient in a human-derived hypovirulent lineage, as well as certain colonization factors, in contrast to typical pfoA-encoding virulent lineages. We determined that infant-associated pfoA+ strains caused significantly more cellular damage than pfoA- strains in vitro, and further confirmed this virulence trait in vivo using an oral-challenge C57BL/6 murine model. These findings suggest both the importance of pfoA+ C. perfringens as a gut pathogen in preterm infants and areas for further investigation, including potential intervention and therapeutic strategies.
Collapse
Affiliation(s)
- Raymond Kiu
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | | | - Kathleen Sim
- Faculty of Medicine, Imperial College London, London, UK
| | | | | | - Harley Bedwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Sally A Dreger
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Wesley J Fowler
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Emma Cornwell
- Faculty of Medicine, Imperial College London, London, UK
| | - Derek Pickard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gusztav Belteki
- Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge, UK
| | - Jennifer Malsom
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Sarah Phillips
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Gregory R Young
- Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, UK
| | - Zoe Schofield
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | | | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Neonatal Services, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Neonatal Services, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul Clarke
- Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Gillian Douce
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - J Simon Kroll
- Faculty of Medicine, Imperial College London, London, UK
| | - Lindsay J Hall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
- Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
8
|
Abstract
The last decade has witnessed a meteoric rise in research focused on characterizing the human microbiome and identifying associations with disease risk. The advent of sequencing technology has all but eradicated gel-based fingerprinting approaches for studying microbial ecology, while at the same time traditional microbiological culture is undergoing a renaissance. Although multiplexed high-throughput sequencing is relatively new, the discoveries leading to this are nearly 50 years old, coinciding with the inaugural Microbiology Society Fleming Prize lecture. It was an honour to give the 2022 Fleming Prize lecture and this review will cover the topics from that lecture. The focus will be on the bacterial community in early life, beginning with term infants before moving on to infants delivered prematurely. The review will discuss recent work showing how human milk oligosaccharides (HMOs), an abundant but non-nutritious component of breast milk, can modulate infant microbiome and promote the growth of Bifidobacterium spp. This has important connotations for preterm infants at risk of necrotizing enterocolitis, a devastating intestinal disease representing the leading cause of death and long-term morbidity in this population. With appropriate mechanistic studies, it may be possible to harness the power of breast milk bioactive factors and infant gut microbiome to improve short- and long-term health in infants.
Collapse
|
9
|
Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF, Bouwmeester H. Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. FRONTIERS IN TOXICOLOGY 2023; 5:1112212. [PMID: 36777263 PMCID: PMC9911716 DOI: 10.3389/ftox.2023.1112212] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Plastic particles in the nanometer range-called nanoplastics-are environmental contaminants with growing public health concern. As plastic particles are present in water, soil, air and food, human exposure via intestine and lung is unavoidable, but possible health effects are still to be elucidated. To better understand the Mode of Action of plastic particles, it is key to use experimental models that best reflect human physiology. Novel assessment methods like advanced cell models and several alternative approaches are currently used and developed in the scientific community. So far, the use of cancer cell line-based models is the standard approach regarding in vitro nanotoxicology. However, among the many advantages of the use of cancer cell lines, there are also disadvantages that might favor other approaches. In this review, we compare cell line-based models with stem cell-based in vitro models of the human intestine and lung. In the context of nanoplastics research, we highlight the advantages that come with the use of stem cells. Further, the specific challenges of testing nanoplastics in vitro are discussed. Although the use of stem cell-based models can be demanding, we conclude that, depending on the research question, stem cells in combination with advanced exposure strategies might be a more suitable approach than cancer cell lines when it comes to toxicological investigation of nanoplastics.
Collapse
Affiliation(s)
- Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Hugo Brouwer
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Germaine Aalderink
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Gerrit Bredeck
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Roel P. F. Schins
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Hans Bouwmeester,
| |
Collapse
|
10
|
Chapman JA, Stewart CJ. Methodological challenges in neonatal microbiome research. Gut Microbes 2023; 15:2183687. [PMID: 36843005 PMCID: PMC9980642 DOI: 10.1080/19490976.2023.2183687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/16/2023] [Indexed: 02/28/2023] Open
Abstract
Following microbial colonization at birth, the gut microbiome plays a vital role in the healthy development of human neonates and impacts both health and disease in later life. Understanding the development of the neonatal gut microbiome and how it interacts with the neonatal host are therefore important areas of study. However, research within this field must address a range of specific challenges that impact the design and implementation of research methods. If not considered ahead of time, these challenges have the potential to introduce biases into studies, negatively affecting the relevance, reproducibility, and impact of any findings. This review outlines the nature of these challenges and points to current and future solutions, as outlined in the literature, to assist researchers in the early stages of study design.
Collapse
Affiliation(s)
- Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Intestinal Norovirus Binding Patterns in Nonsecretor Individuals. J Virol 2022; 96:e0086522. [PMID: 36121297 PMCID: PMC9555158 DOI: 10.1128/jvi.00865-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human norovirus (HuNoV) infection is associated with an active FUT2 gene, which characterizes the secretor phenotype. However, nonsecretor individuals are also affected by HuNoV infection although in a lesser proportion. Here, we studied GII.3, GII.4, and GII.17 HuNoV interactions in nonsecretor individuals using virus-like particles (VLPs). Only GII.4 HuNoV specifically interacted with nonsecretor saliva. Competition experiments using histo-blood group antigen (HBGA)-specific monoclonal antibodies (MAbs) demonstrate that GII.4 VLPs recognized the Lewis a (Lea) antigen. We also analyzed HuNoV VLP interactions on duodenum tissue blocks from healthy nonsecretor individuals. VLP binding was observed for the three HuNoV genotypes in 10 of the 13 individuals, and competition experiments demonstrated that VLP recognition was driven by an interaction with the Lea antigen. In 3 individuals, binding was restricted to either GII.4 alone or GII.3 and GII.17. Finally, we performed a VLP binding assay on proximal and distal colon tissue blocks from a nonsecretor patient with Crohn's disease. VLP binding to inflammatory tissues was genotype specific since GII.4 and GII.17 VLPs were able to interact with regenerative mucosa, whereas GII.3 VLP was not. The binding of GII.4 and GII.17 HuNoV VLPs was linked to Lea in regenerative mucosae from the proximal and distal colon. Overall, our data clearly showed that Lea has a pivotal role in the recognition of HuNoV in nonsecretors. We also showed that Lea is expressed in inflammatory/regenerative tissues and interacts with HuNoV in a nonsecretor individual. The physiological and immunological consequences of such interactions in nonsecretors have yet to be elucidated. IMPORTANCE Human norovirus (HuNoV) is the main etiological agent of viral gastroenteritis in all age classes. HuNoV infection affects mainly secretor individuals where ABO(H) and Lewis histo-blood group antigens (HBGAs) are present in the small intestine. Nonsecretor individuals, who only express Lewis (Le) antigens, are less susceptible to HuNoV infection. Here, we studied the interaction of common HuNoV genotypes (GII.3, GII.4, and GII.17) in nonsecretor individuals using synthetic viral particles. Saliva binding assays showed that only GII.4 interacted with nonsecretor saliva via the Lewis a (Lea) antigen Surprisingly, the three genotypes interacted with nonsecretor enterocytes via the Lea antigen on duodenal tissue blocks, which were more relevant for HuNoV/HBGA studies. The Lea antigen also played a pivotal role in the recognition of GII.4 and GII.17 particles by inflammatory colon tissue from a nonsecretor Crohn's disease patient. The implications of HuNoV binding in nonsecretors remain to be elucidated in physiological and pathological conditions encountered in other intestinal diseases.
Collapse
|
12
|
Beck LC, Masi AC, Young GR, Vatanen T, Lamb CA, Smith R, Coxhead J, Butler A, Marsland BJ, Embleton ND, Berrington JE, Stewart CJ. Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nat Microbiol 2022; 7:1525-1535. [PMID: 36163498 PMCID: PMC9519454 DOI: 10.1038/s41564-022-01213-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/25/2022] [Indexed: 12/23/2022]
Abstract
The development of the gut microbiome from birth plays important roles in short- and long-term health, but factors influencing preterm gut microbiome development are poorly understood. In the present study, we use metagenomic sequencing to analyse 1,431 longitudinal stool samples from 123 very preterm infants (<32 weeks' gestation) who did not develop intestinal disease or sepsis over a study period of 10 years. During the study period, one cohort had no probiotic exposure whereas two cohorts were given different probiotic products: Infloran (Bifidobacterium bifidum and Lactobacillus acidophilus) or Labinic (B. bifidum, B. longum subsp. infantis and L. acidophilus). Mothers' own milk, breast milk fortifier, antibiotics and probiotics were significantly associated with the gut microbiome, with probiotics being the most significant factor. Probiotics drove microbiome transition into different preterm gut community types (PGCTs), each enriched in a different Bifidobacterium sp. and significantly associated with increased postnatal age. Functional analyses identified stool metabolites associated with PGCTs and, in preterm-derived organoids, sterile faecal supernatants impacted intestinal, organoid monolayer, gene expression in a PGCT-specific manner. The present study identifies specific influencers of gut microbiome development in very preterm infants, some of which overlap with those impacting term infants. The results highlight the importance of strain-specific differences in probiotic products and their impact on host interactions in the preterm gut.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Gregory R Young
- Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle, UK
| | - Tommi Vatanen
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Rachel Smith
- Bioscience Institute, Newcastle University, Newcastle, UK
| | | | - Alana Butler
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle, UK
- Population Health Sciences Institute, Newcastle University, Newcastle, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK.
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle, UK.
| | | |
Collapse
|
13
|
Swanson JR, Hair A, Clark RH, Gordon PV. Spontaneous intestinal perforation (SIP) will soon become the most common form of surgical bowel disease in the extremely low birth weight (ELBW) infant. J Perinatol 2022; 42:423-429. [PMID: 35177793 DOI: 10.1038/s41372-022-01347-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Recent data have revealed declines in the prevalence rates of NEC over the last decade in premature infants. In contrast, SIP has either remained steady or risen during the same epoch. These trends are consistent with our knowledge of the clinical arena. The ability to discern SIP contamination within NEC datasets has slowly improved. Additionally, quality improvement efforts are being utilized to reduce NEC through stewardship of antibiotics, acid inhibitors, central lines and blood products, as well as optimization of human milk diets. These forces are moving us to a new era, where NEC will no longer be the dominant surgical intestinal disease of the extremely preterm neonate. Indeed, in the extremely low birth weight (ELBW) population, SIP may already be the most prevalent reason for abdominal surgery. In this perspective, the reader will find supporting data and references for these assertions as well as predictions for the future.
Collapse
Affiliation(s)
- Jonathan R Swanson
- Division of Neonatology, University of Virginia Children's Hospital, Charlottesville, VA, USA.
| | - Amy Hair
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Reese H Clark
- Pediatrix-Obstetrix Center for Research and Education, Sunrise, FL, USA
| | | |
Collapse
|
14
|
3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert. Nat Protoc 2022; 17:910-939. [PMID: 35110737 PMCID: PMC9675318 DOI: 10.1038/s41596-021-00674-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022]
Abstract
Human intestinal morphogenesis establishes 3D epithelial microarchitecture and spatially organized crypt-villus characteristics. This unique structure is necessary to maintain intestinal homeostasis by protecting the stem cell niche in the basal crypt from exogenous microbial antigens and their metabolites. Also, intestinal villi and secretory mucus present functionally differentiated epithelial cells with a protective barrier at the intestinal mucosal surface. Thus, re-creating the 3D epithelial structure is critical to building in vitro intestine models. Notably, an organomimetic gut-on-a-chip can induce spontaneous 3D morphogenesis of an intestinal epithelium with enhanced physiological function and biomechanics. Here we provide a reproducible protocol to robustly induce intestinal morphogenesis in a microfluidic gut-on-a-chip as well as in a Transwell-embedded hybrid chip. We describe detailed methods for device fabrication, culture of Caco-2 or intestinal organoid epithelial cells in conventional setups as well as on microfluidic platforms, induction of 3D morphogenesis and characterization of established 3D epithelium using multiple imaging modalities. This protocol enables the regeneration of functional intestinal microarchitecture by controlling basolateral fluid flow within 5 d. Our in vitro morphogenesis method employs physiologically relevant shear stress and mechanical motions, and does not require complex cellular engineering or manipulation, which may be advantageous over other existing techniques. We envision that our proposed protocol may have a broad impact on biomedical research communities, providing a method to regenerate in vitro 3D intestinal epithelial layers for biomedical, clinical and pharmaceutical applications.
Collapse
|
15
|
Masi AC, Fofanova TY, Lamb CA, Auchtung JM, Britton RA, Estes MK, Ramani S, Cockell SJ, Coxhead J, Embleton ND, Berrington JE, Petrosino JF, Stewart CJ. Distinct gene expression profiles between human preterm-derived and adult-derived intestinal organoids exposed to Enterococcus faecalis: a pilot study. Gut 2021; 71:gutjnl-2021-326552. [PMID: 34921063 PMCID: PMC9231289 DOI: 10.1136/gutjnl-2021-326552] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tatiana Y Fofanova
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Christopher A Lamb
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jennifer M Auchtung
- Nebraska Food for Health Center and Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K Estes
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Simon J Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle Upon Tyne, UK
| | - Jonathan Coxhead
- Bioscience Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Janet E Berrington
- Newcastle Neonatal Service, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Joseph F Petrosino
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, The Baylor College of Medicine, Houston, Texas, USA
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Franco YL, Da Silva L, Cristofoletti R. Navigating Through Cell-Based In vitro Models Available for Prediction of Intestinal Permeability and Metabolism: Are We Ready for 3D? AAPS J 2021; 24:2. [PMID: 34811603 PMCID: PMC8925318 DOI: 10.1208/s12248-021-00665-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/23/2021] [Indexed: 01/07/2023] Open
Abstract
Traditionally, in vitro studies to quantify the
intestinal permeability of drugs have relied on two-dimensional cell culture models using human colorectal carcinoma cell lines, namely Caco-2, HT 29 and T84 cells. Although these models have been commonly used for high-throughput screening of xenobiotics in preclinical studies, they do not fully recapitulate the morphology and functionality of enterocytes found in the human intestine in vivo. Efforts to improve the physiological and functional relevance of in vitro intestinal models have led to the development of enteroids/intestinal organoids and microphysiological systems. These models leverage advances in three-dimensional cell culture techniques and stem cell technology (in addition to microfluidics for microphysiological systems), to mimic the architecture and microenvironment of the in vivo intestine more accurately. In this commentary, we will discuss the advantages and limitations of these established and emerging intestinal models, as well as their current and potential future applications for the pre-clinical assessment of oral therapies.
Collapse
Affiliation(s)
- Yesenia L Franco
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Lais Da Silva
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA.
| |
Collapse
|
17
|
Shin W, Wu A, Min S, Shin YC, Fleming RYD, Eckhardt SG, Kim HJ. Spatiotemporal Gradient and Instability of Wnt Induce Heterogeneous Growth and Differentiation of Human Intestinal Organoids. iScience 2020; 23:101372. [PMID: 32745985 PMCID: PMC7398973 DOI: 10.1016/j.isci.2020.101372] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/22/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
In a conventional culture of three-dimensional human intestinal organoids, extracellular matrix hydrogel has been used to provide a physical space for the growth and morphogenesis of organoids in the presence of exogenous morphogens such as Wnt3a. We found that organoids embedded in a dome-shaped hydrogel show significant size heterogeneity in different locations inside the hydrogel. Computational simulations revealed that the instability and diffusion limitation of Wnt3a constitutively generate a concentration gradient inside the hydrogel. The location-dependent heterogeneity of organoids in a hydrogel dome substantially perturbed the transcriptome profile associated with epithelial functions, cytodifferentiation including mucin 2 expression, and morphological characteristics. This heterogeneous phenotype was significantly mitigated when the Wnt3a was frequently replenished in the culture medium. Our finding suggests that the morphological, transcriptional, translational, and functional heterogeneity in conventional organoid cultures may lead to a false interpretation of the experimental results in organoid-based studies.
Collapse
Affiliation(s)
- Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Alexander Wu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Soyoun Min
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Yong Cheol Shin
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - R Y Declan Fleming
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - S Gail Eckhardt
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA; Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA; Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
18
|
Li AP. In Vitro Human Cell–Based Experimental Models for the Evaluation of Enteric Metabolism and Drug Interaction Potential of Drugs and Natural Products. Drug Metab Dispos 2020; 48:980-992. [DOI: 10.1124/dmd.120.000053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
|