1
|
Zhu J, Tao P, Chopra AK, Rao VB. Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. Annu Rev Virol 2024; 11:395-420. [PMID: 38768614 PMCID: PMC11690488 DOI: 10.1146/annurev-virology-111821-111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The COVID-19 pandemic has transformed vaccinology. Rapid deployment of mRNA vaccines has saved countless lives. However, these platforms have inherent limitations including lack of durability of immune responses and mucosal immunity, high cost, and thermal instability. These and uncertainties about the nature of future pandemics underscore the need for exploring next-generation vaccine platforms. Here, we present a novel protein-based, bacteriophage T4 platform for rapid design of efficacious vaccines against bacterial and viral pathogens. Full-length antigens can be displayed at high density on a 120 × 86 nm phage capsid through nonessential capsid binding proteins Soc and Hoc. Such nanoparticles, without any adjuvant, induce robust humoral, cellular, and mucosal responses when administered intranasally and confer sterilizing immunity. Combined with structural stability and ease of manufacture, T4 phage provides an excellent needle-free, mucosal pandemic vaccine platform and allows equitable vaccine access to low- and middle-income communities across the globe.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, and Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| |
Collapse
|
2
|
Meile S, Du J, Staubli S, Grossmann S, Koliwer-Brandl H, Piffaretti P, Leitner L, Matter CI, Baggenstos J, Hunold L, Milek S, Guebeli C, Kozomara-Hocke M, Neumeier V, Botteon A, Klumpp J, Marschall J, McCallin S, Zbinden R, Kessler TM, Loessner MJ, Dunne M, Kilcher S. Engineered reporter phages for detection of Escherichia coli, Enterococcus, and Klebsiella in urine. Nat Commun 2023; 14:4336. [PMID: 37474554 PMCID: PMC10359277 DOI: 10.1038/s41467-023-39863-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/03/2023] [Indexed: 07/22/2023] Open
Abstract
The rapid detection and species-level differentiation of bacterial pathogens facilitates antibiotic stewardship and improves disease management. Here, we develop a rapid bacteriophage-based diagnostic assay to detect the most prevalent pathogens causing urinary tract infections: Escherichia coli, Enterococcus spp., and Klebsiella spp. For each uropathogen, two virulent phages were genetically engineered to express a nanoluciferase reporter gene upon host infection. Using 206 patient urine samples, reporter phage-induced bioluminescence was quantified to identify bacteriuria and the assay was benchmarked against conventional urinalysis. Overall, E. coli, Enterococcus spp., and Klebsiella spp. were each detected with high sensitivity (68%, 78%, 87%), specificity (99%, 99%, 99%), and accuracy (90%, 94%, 98%) at a resolution of ≥103 CFU/ml within 5 h. We further demonstrate how bioluminescence in urine can be used to predict phage antibacterial activity, demonstrating the future potential of reporter phages as companion diagnostics that guide patient-phage matching prior to therapeutic phage application.
Collapse
Affiliation(s)
- Susanne Meile
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Jiemin Du
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Samuel Staubli
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | | | | | | | - Lorenz Leitner
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | | | - Laura Hunold
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Sonja Milek
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | | | - Vera Neumeier
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Angela Botteon
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Jochen Klumpp
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland
| | - Jonas Marschall
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, US
| | - Shawna McCallin
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Reinhard Zbinden
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | - Matthew Dunne
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland.
| | - Samuel Kilcher
- Institute of Food Nutrition and Health, ETH, Zurich, Switzerland.
| |
Collapse
|
3
|
Zhu J, Batra H, Ananthaswamy N, Mahalingam M, Tao P, Wu X, Guo W, Fokine A, Rao VB. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nat Commun 2023; 14:2928. [PMID: 37253769 PMCID: PMC10229621 DOI: 10.1038/s41467-023-38364-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Designing artificial viral vectors (AVVs) programmed with biomolecules that can enter human cells and carry out molecular repairs will have broad applications. Here, we describe an assembly-line approach to build AVVs by engineering the well-characterized structural components of bacteriophage T4. Starting with a 120 × 86 nm capsid shell that can accommodate 171-Kbp DNA and thousands of protein copies, various combinations of biomolecules, including DNAs, proteins, RNAs, and ribonucleoproteins, are externally and internally incorporated. The nanoparticles are then coated with cationic lipid to enable efficient entry into human cells. As proof of concept, we assemble a series of AVVs designed to deliver full-length dystrophin gene or perform various molecular operations to remodel human genome, including genome editing, gene recombination, gene replacement, gene expression, and gene silencing. These large capacity, customizable, multiplex, and all-in-one phage-based AVVs represent an additional category of nanomaterial that could potentially transform gene therapies and personalized medicine.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Himanshu Batra
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Neeti Ananthaswamy
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Marthandan Mahalingam
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Pan Tao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Wenzheng Guo
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
4
|
Rao VB, Fokine A, Fang Q, Shao Q. Bacteriophage T4 Head: Structure, Assembly, and Genome Packaging. Viruses 2023; 15:527. [PMID: 36851741 PMCID: PMC9958956 DOI: 10.3390/v15020527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Bacteriophage (phage) T4 has served as an extraordinary model to elucidate biological structures and mechanisms. Recent discoveries on the T4 head (capsid) structure, portal vertex, and genome packaging add a significant body of new literature to phage biology. Head structures in unexpanded and expanded conformations show dramatic domain movements, structural remodeling, and a ~70% increase in inner volume while creating high-affinity binding sites for the outer decoration proteins Soc and Hoc. Small changes in intercapsomer interactions modulate angles between capsomer planes, leading to profound alterations in head length. The in situ cryo-EM structure of the symmetry-mismatched portal vertex shows the remarkable structural morphing of local regions of the portal protein, allowing similar interactions with the capsid protein in different structural environments. Conformational changes in these interactions trigger the structural remodeling of capsid protein subunits surrounding the portal vertex, which propagate as a wave of expansion throughout the capsid. A second symmetry mismatch is created when a pentameric packaging motor assembles at the outer "clip" domains of the dodecameric portal vertex. The single-molecule dynamics of the packaging machine suggests a continuous burst mechanism in which the motor subunits adjusted to the shape of the DNA fire ATP hydrolysis, generating speeds as high as 2000 bp/s.
Collapse
Affiliation(s)
- Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qianqian Shao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Zhu J, Jain S, Sha J, Batra H, Ananthaswamy N, Kilgore PB, Hendrix EK, Hosakote YM, Wu X, Olano JP, Kayode A, Galindo CL, Banga S, Drelich A, Tat V, Tseng CTK, Chopra AK, Rao VB. A Bacteriophage-Based, Highly Efficacious, Needle- and Adjuvant-Free, Mucosal COVID-19 Vaccine. mBio 2022; 13:e0182222. [PMID: 35900097 PMCID: PMC9426593 DOI: 10.1128/mbio.01822-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
The U.S. Food and Drug Administration-authorized mRNA- and adenovirus-based SARS-CoV-2 vaccines are intramuscularly injected in two doses and effective in preventing COVID-19, but they do not induce efficient mucosal immunity or prevent viral transmission. Here, we report the first noninfectious, bacteriophage T4-based, multicomponent, needle- and adjuvant-free, mucosal vaccine harboring engineered Spike trimers on capsid exterior and nucleocapsid protein in the interior. Intranasal administration of two doses of this T4 SARS-CoV-2 vaccine 21 days apart induced robust mucosal immunity, in addition to strong systemic humoral and cellular immune responses. The intranasal vaccine induced broad virus neutralization antibody titers against multiple variants, Th1-biased cytokine responses, strong CD4+ and CD8+ T cell immunity, and high secretory IgA titers in sera and bronchoalveolar lavage specimens from vaccinated mice. All of these responses were much stronger in intranasally vaccinated mice than those induced by the injected vaccine. Furthermore, the nasal vaccine provided complete protection and sterilizing immunity against the mouse-adapted SARS-CoV-2 MA10 strain, the ancestral WA-1/2020 strain, and the most lethal Delta variant in both BALB/c and human angiotensin converting enzyme (hACE2) knock-in transgenic mouse models. In addition, the vaccine elicited virus-neutralizing antibodies against SARS-CoV-2 variants in bronchoalveolar lavage specimens, did not affect the gut microbiota, exhibited minimal lung lesions in vaccinated and challenged mice, and is completely stable at ambient temperature. This modular, needle-free, phage T4 mucosal vaccine delivery platform is therefore an excellent candidate for designing efficacious mucosal vaccines against other respiratory infections and for emergency preparedness against emerging epidemic and pandemic pathogens. IMPORTANCE According to the World Health Organization, COVID-19 may have caused ~15-million deaths across the globe and is still ravaging the world. Another wave of ~100 million infections is predicted in the United States due to the emergence of highly transmissible immune-escaped Omicron variants. The authorized vaccines would not prevent these transmissions since they do not trigger mucosal immunity. We circumvented this limitation by developing a needle-free, bacteriophage T4-based, mucosal vaccine. This intranasally administered vaccine generates superior mucosal immunity in mice, in addition to inducing robust humoral and cell-mediated immune responses, and provides complete protection and sterilizing immunity against SARS-CoV-2 variants. The vaccine is stable, adjuvant-free, and cost-effectively manufactured and distributed, making it a strategically important next-generation COVID vaccine for ending this pandemic.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Swati Jain
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Himanshu Batra
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Neeti Ananthaswamy
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Paul B. Kilgore
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Emily K. Hendrix
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yashoda M. Hosakote
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Juan P. Olano
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Adeyemi Kayode
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Cristi L. Galindo
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Simran Banga
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vivian Tat
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| |
Collapse
|
6
|
Rao VB, Zhu J. Bacteriophage T4 as a nanovehicle for delivery of genes and therapeutics into human cells. Curr Opin Virol 2022; 55:101255. [PMID: 35952598 DOI: 10.1016/j.coviro.2022.101255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022]
Abstract
The ability to deliver therapeutic genes and biomolecules into a human cell and restore a defective function has been the holy grail of medicine. Adeno-associated viruses and lentiviruses have been extensively used as delivery vehicles, but their capacity is limited to one (or two) gene(s). Bacteriophages are emerging as novel vehicles for gene therapy. The large 120 × 86-nm T4 capsid allows engineering of both its surface and its interior to incorporate combinations of DNAs, RNAs, proteins, and their complexes. In vitro assembly using purified components allows customization for various applications and for individualized therapies. Its large capacity, cell-targeting capability, safety, and inexpensive manufacturing could open unprecedented new possibilities for gene, cancer, and stem cell therapies. However, efficient entry into primary human cells and intracellular trafficking are significant barriers that must be overcome by gene engineering and evolution in order to translate phage-delivery technology from bench to bedside.
Collapse
Affiliation(s)
- Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|