1
|
Vargas-Castillo A, Sun Y, Smythers AL, Grauvogel L, Dumesic PA, Emont MP, Tsai LT, Rosen ED, Zammit NW, Shaffer SM, Ordonez M, Chouchani ET, Gygi SP, Wang T, Sharma AK, Balaz M, Wolfrum C, Spiegelman BM. Development of a functional beige fat cell line uncovers independent subclasses of cells expressing UCP1 and the futile creatine cycle. Cell Metab 2024; 36:2146-2155.e5. [PMID: 39084217 DOI: 10.1016/j.cmet.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Although uncoupling protein 1 (UCP1) is established as a major contributor to adipose thermogenesis, recent data have illustrated an important role for alternative pathways, particularly the futile creatine cycle (FCC). How these pathways co-exist in cells and tissues has not been explored. Beige cell adipogenesis occurs in vivo but has been difficult to model in vitro; here, we describe the development of a murine beige cell line that executes a robust respiratory response, including uncoupled respiration and the FCC. The key FCC enzyme, tissue-nonspecific alkaline phosphatase (TNAP), is localized almost exclusively to mitochondria in these cells. Surprisingly, single-cell cloning from this cell line shows that cells with the highest levels of UCP1 express little TNAP, and cells with the highest expression of TNAP express little UCP1. Immunofluorescence analysis of subcutaneous fat from cold-exposed mice confirms that the highest levels of these critical thermogenic components are expressed in distinct fat cell populations.
Collapse
Affiliation(s)
- Ariana Vargas-Castillo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Amanda L Smythers
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Louisa Grauvogel
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathan W Zammit
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Sydney M Shaffer
- Department of Pathology and Laboratory Medicine and the Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tongtong Wang
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Anand K Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Miroslav Balaz
- Laboratory of Cellular and Molecular Metabolism, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Kasza I, Cuncannan C, Michaud J, Nelson D, Yen CLE, Jain R, Simcox J, MacDougald OA, Parks BW, Alexander CM. "Humanizing" mouse environments: Humidity, diurnal cycles and thermoneutrality. Biochimie 2023; 210:82-98. [PMID: 36372307 PMCID: PMC10172392 DOI: 10.1016/j.biochi.2022.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Thermoneutral housing has been shown to promote more accurate and robust development of several pathologies in mice. Raising animal housing temperatures a few degrees may create a relatively straightforward opportunity to improve translatability of mouse models. In this commentary, we discuss the changes of physiology induced in mice housed at thermoneutrality, and review techniques for measuring systemic thermogenesis, specifically those affecting storage and mobilization of lipids in adipose depots. Environmental cues are a component of the information integrated by the brain to calculate food consumption and calorie deposition. We show that relative humidity is one of those cues, inducing a rapid sensory response that is converted to a more chronic susceptibility to obesity. Given high inter-institutional variability in the regulation of relative humidity, study reproducibility may be improved by consideration of this factor. We evaluate a "humanized" environmental cycling protocol, where mice sleep in warm temperature housing, and are cool during the wake cycle. We show that this protocol suppresses adaptation to cool exposure, with consequence for adipose-associated lipid storage. To evaluate systemic cues in mice housed at thermoneutral temperatures, we characterized the circulating lipidome, and show that sera are highly depleted in some HDL-associated phospholipids, specifically phospholipids containing the essential fatty acid, 18:2 linoleic acid, and its derivative, arachidonic acid (20:4) and related ether-phospholipids. Given the role of these fatty acids in inflammatory responses, we propose they may underlie the differences in disease progression observed at thermoneutrality.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Colleen Cuncannan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Julian Michaud
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Dave Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Judi Simcox
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, United States
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States.
| |
Collapse
|
3
|
Nicholls DG, Brand MD. A critical assessment of the role of creatine in brown adipose tissue thermogenesis. Nat Metab 2023; 5:21-28. [PMID: 36624158 DOI: 10.1038/s42255-022-00718-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
Brown adipose tissue is specialized for non-shivering thermogenesis, combining lipolysis with an extremely active mitochondrial electron transport chain and a unique regulated uncoupling protein, UCP1, allowing unrestricted respiration. Current excitement focuses on the presence of brown adipose tissue in humans and the possibility that it may contribute to diet-induced thermogenesis, countering obesity and obesity-related disease as well as protecting cardio-metabolic health. In common with other tissues displaying a high, variable respiration, the tissue possesses a creatine pool and mitochondrial and cytosolic creatine kinase isoforms. Genetic and pharmacological manipulation of these components have pleiotropic effects that appear to influence diet- and cold-induced metabolism in vivo and modeled in vitro. These findings have been used to advance the concept of a UCP1-independent diet-induced thermogenic mechanism based on a dissipative hydrolysis of phosphocreatine in beige and brown adipose tissue. Here we review the in vivo and in vitro experimental basis for this hypothesis, and explore alternative explanations. We conclude that there is currently no convincing evidence for a significant futile creatine cycle in these tissues.
Collapse
|