1
|
Tanwar N, Mahto BK, Rookes JE, Cahill DM, Bansal KC, Lenka SK. Chloroplast transformation in new cultivars of tomato through particle bombardment. 3 Biotech 2024; 14:120. [PMID: 38545123 PMCID: PMC10963679 DOI: 10.1007/s13205-024-03954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 02/03/2024] [Indexed: 04/11/2024] Open
Abstract
A protocol has been established for genetic transformation of the chloroplasts in two new cultivars of tomato (Solanum lycopersicum L.) grown in India and Australia: Pusa Ruby and Yellow Currant. Tomato cv. Green Pineapple was also used as a control that has previously been used for establishing chloroplast transformation by other researchers. Selected tomato cultivars were finalized from ten other tested cultivars (Green Pineapple excluded) due to their high regeneration potential and better response to chloroplast transformation. This protocol was set up using a chloroplast transformation vector (pRB94) for tomatoes that is made up of a synthetic gene operon. The vector has a chimeric aadA selectable marker gene that is controlled by the rRNA operon promoter (Prrn). This makes the plant or chloroplasts resistant to spectinomycin and streptomycin. After plasmid-coated particle bombardment, leaf explants were cultured in 50 mg/L selection media. Positive explant selection from among all the dead-appearing (yellow to brown) explants was found to be the major hurdle in the study. Even though this study was able to find plastid transformants in heteroplasmic conditions, it also found important parameters and changes that could speed up the process of chloroplast transformation in tomatoes, resulting in homoplasmic plastid-transformed plants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03954-3.
Collapse
Affiliation(s)
- Neha Tanwar
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, 110003 India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - Binod K. Mahto
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, 110003 India
- University Department of Botany, Ranchi University, Ranchi, Jharkhand 834008 India
| | - James E. Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - David M. Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - Kailash C. Bansal
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, 110003 India
- National Academy of Agricultural Sciences, New Delhi, 110012 India
| | - Sangram K. Lenka
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, 110003 India
- Present Address: Department of Plant Biotechnology, Gujarat Biotechnology University, Gujarat International Finance Tec (GIFT)-City, North Gate, Gandhinagar, 382355 Gujarat India
| |
Collapse
|
2
|
Tanwar N, Arya SS, Rookes JE, Cahill DM, Lenka SK, Bansal KC. Prospects of chloroplast metabolic engineering for developing nutrient-dense food crops. Crit Rev Biotechnol 2023; 43:1001-1018. [PMID: 35815847 DOI: 10.1080/07388551.2022.2092717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
Abstract
Addressing nutritional deficiencies in food crops through biofortification is a sustainable approach to tackling malnutrition. Biofortification is continuously being attempted through conventional breeding as well as through various plant biotechnological interventions, ranging from molecular breeding to genetic engineering and genome editing for enriching crops with various health-promoting metabolites. Genetic engineering is used for the rational incorporation of desired nutritional traits in food crops and predominantly operates through nuclear and chloroplast genome engineering. In the recent past, chloroplast engineering has been deployed as a strategic tool to develop model plants with enhanced nutritional traits due to the various advantages it offers over nuclear genome engineering. However, this approach needs to be extended for the nutritional enhancement of major food crops. Further, this platform could be combined with strategies, such as synthetic biology, chloroplast editing, nanoparticle-mediated rapid chloroplast transformation, and horizontal gene transfer through grafting for targeting endogenous metabolic pathways for overproducing native nutraceuticals, production of biopharmaceuticals, and biosynthesis of designer nutritional compounds. This review focuses on exploring various features of chloroplast genome engineering for nutritional enhancement of food crops by enhancing the levels of existing metabolites, restoring the metabolites lost during crop domestication, and introducing novel metabolites and phytonutrients needed for a healthy daily diet.
Collapse
Affiliation(s)
- Neha Tanwar
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - Sagar S Arya
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - James E Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, Australia
| | - Sangram K Lenka
- TERI-Deakin Nano-Biotechnology Centre, The Energy Resources Institute (TERI), New Delhi, India
- Gujarat Biotechnology University, Gujarat, India
| | | |
Collapse
|
3
|
Lara C, Xicohténcatl-Lara L, Ornelas JF. Differential reproductive responses to contrasting host species and localities in Psittacanthus calyculatus (Loranthaceae) mistletoes. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:603-611. [PMID: 33819386 DOI: 10.1111/plb.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Host trees are immediate environments for multi-host mistletoes, so parasitizing different hosts implies exposure to varying environmental conditions between mistletoe generations. Therefore, to maximize reproductive fitness in heterogeneous environments (host species) mistletoes should adjust its reproductive responses in relation to circumstances. Here, we ask how reproductive traits of Psittacanthus calyculatus mistletoes vary on two host tree species (Crataegus mexicana, Prunus serotina) at three different localities. We followed individual mistletoes on each host species and at three localities through the flowering season to quantify traits related to reproductive effort and success, e.g. total number of buds, flowers and fruits produced. In buds about to open, we measured two anthers and quantified the number of pollen grains and their viability. Individual flowers were marked to obtain flower longevity data and were followed until fruit formation. At which time we measured and weighed the fruits and the seeds. Mistletoes from one locality produced more buds, flowers and fruits, and the flowers lasted longer, had larger anthers and produced more pollen as compared to the other two localities. However, mistletoes on Prunus serotina produced fewer floral buds, but their fruits were heaviest, longest and widest and ripened fastest across localities. The probability of fruit formation, percentage of fruits formed, and pollen viability were similar among the mistletoes, regardless of host species or locality. We propose that the observed differences in reproductive effort and success associated with host species or locality are plastic or adaptive in this mistletoe in response to varying conditions.
Collapse
Affiliation(s)
- C Lara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - L Xicohténcatl-Lara
- Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - J F Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Veracruz, Mexico
| |
Collapse
|
4
|
Non-photosynthetic plastids as hosts for metabolic engineering. Essays Biochem 2018; 62:41-50. [DOI: 10.1042/ebc20170047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 01/11/2023]
Abstract
Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering.
Collapse
|
5
|
Abstract
Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants.
Collapse
Affiliation(s)
- Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Mellidou I, Buts K, Hatoum D, Ho QT, Johnston JW, Watkins CB, Schaffer RJ, Gapper NE, Giovannoni JJ, Rudell DR, Hertog MLATM, Nicolai BM. Transcriptomic events associated with internal browning of apple during postharvest storage. BMC PLANT BIOLOGY 2014; 14:328. [PMID: 25430515 PMCID: PMC4272543 DOI: 10.1186/s12870-014-0328-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/07/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Postharvest ripening of apple (Malus x domestica) can be slowed down by low temperatures, and a combination of low O2 and high CO2 levels. While this maintains the quality of most fruit, occasionally storage disorders such as flesh browning can occur. This study aimed to explore changes in the apple transcriptome associated with a flesh browning disorder related to controlled atmosphere storage using RNA-sequencing techniques. Samples from a browning-susceptible cultivar ('Braeburn') were stored for four months under controlled atmosphere. Based on a visual browning index, the inner and outer cortex of the stored apples was classified as healthy or affected tissue. RESULTS Over 600 million short single-end reads were mapped onto the Malus consensus coding sequence set, and differences in the expression profiles between healthy and affected tissues were assessed to identify candidate genes associated with internal browning in a tissue-specific manner. Genes involved in lipid metabolism, secondary metabolism, and cell wall modifications were highly modified in the affected inner cortex, while energy-related and stress-related genes were mostly altered in the outer cortex. The expression levels of several of them were confirmed using qRT-PCR. Additionally, a set of novel browning-specific differentially expressed genes, including pyruvate dehydrogenase and 1-aminocyclopropane-1-carboxylate oxidase, was validated in apples stored for various periods at different controlled atmosphere conditions, giving rise to potential biomarkers associated with high risk of browning development. CONCLUSIONS The gene expression data presented in this study will help elucidate the molecular mechanism of browning development in apples at controlled atmosphere storage. A conceptual model, including energy-related (linked to the tricarboxylic acid cycle and the electron transport chain) and lipid-related genes (related to membrane alterations, and fatty acid oxidation), for browning development in apple is proposed, which may be relevant for future studies towards improving the postharvest life of apple.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- />Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, Leuven, 3001 Belgium
| | - Kim Buts
- />Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, Leuven, 3001 Belgium
| | - Darwish Hatoum
- />Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, Leuven, 3001 Belgium
| | - Quang Tri Ho
- />Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, Leuven, 3001 Belgium
| | - Jason W Johnston
- />The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142 New Zealand
| | | | - Robert J Schaffer
- />The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142 New Zealand
- />The University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Nigel E Gapper
- />Department of Horticulture, Cornell University, Ithaca, NY 14853 USA
- />Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853 USA
| | - Jim J Giovannoni
- />Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853 USA
- />Plant, Soil, and Nutrition Laboratory, US Department of Agriculture/Agriculture Research Service, Ithaca, NY 14853 USA
| | - David R Rudell
- />Fruit Tree Research Laboratory, US Department of Agriculture/Agriculture Research Service, Wenatchee, WA 9880 USA
| | - Maarten LATM Hertog
- />Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, Leuven, 3001 Belgium
| | - Bart M Nicolai
- />Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, bus 2428, Leuven, 3001 Belgium
- />Flanders Centre of Postharvest Technology, Willem de Croylaan 42, Leuven, 3001 Belgium
| |
Collapse
|