1
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Bono N, Saroglia G, Marcuzzo S, Giagnorio E, Lauria G, Rosini E, De Nardo L, Athanassiou A, Candiani G, Perotto G. Silk fibroin microgels as a platform for cell microencapsulation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:3. [PMID: 36586059 PMCID: PMC9805413 DOI: 10.1007/s10856-022-06706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Cell microencapsulation has been utilized for years as a means of cell shielding from the external environment while facilitating the transport of gases, general metabolites, and secretory bioactive molecules at once. In this light, hydrogels may support the structural integrity and functionality of encapsulated biologics whereas ensuring cell viability and function and releasing potential therapeutic factors once in situ. In this work, we describe a straightforward strategy to fabricate silk fibroin (SF) microgels (µgels) and encapsulate cells into them. SF µgels (size ≈ 200 µm) were obtained through ultrasonication-induced gelation of SF in a water-oil emulsion phase. A thorough physicochemical (SEM analysis, and FT-IR) and mechanical (microindentation tests) characterization of SF µgels were carried out to assess their nanostructure, porosity, and stiffness. SF µgels were used to encapsulate and culture L929 and primary myoblasts. Interestingly, SF µgels showed a selective release of relatively small proteins (e.g., VEGF, molecular weight, MW = 40 kDa) by the encapsulated primary myoblasts, while bigger (macro)molecules (MW = 160 kDa) were hampered to diffusing through the µgels. This article provided the groundwork to expand the use of SF hydrogels into a versatile platform for encapsulating relevant cells able to release paracrine factors potentially regulating tissue and/or organ functions, thus promoting their regeneration.
Collapse
Affiliation(s)
- Nina Bono
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy.
| | - Giulio Saroglia
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Stefania Marcuzzo
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Eleonora Giagnorio
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
| | - Giuseppe Lauria
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133, Milan, Italy
| | - Elena Rosini
- The Protein Factory 2.0, Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Luigi De Nardo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | | | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
3
|
Basiri S. Applications of Microbial Exopolysaccharides in the Food Industry. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Exopolysaccharides (EPSs) are high molecular weight polysaccharides secreted by microorganisms in the surrounding environment. In addition to the favorable benefits of these compounds for microorganisms, including microbial cell protection, they are used in various food, pharmaceutical, and cosmetic industries. Investigating the functional and health-promoting characteristics of microbial EPS, identifying the isolation method of these valuable compounds, and their applications in the food industry are the objectives of this study. EPS are used in food industries as thickeners, gelling agents, viscosifiers, and film formers. The antioxidative, anticancer, prebiotic, and cholesterol-lowering effects of some of these compounds make it possible to use them in functional food production.
Collapse
Affiliation(s)
- Sara Basiri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Kuthubutheen J, Brown D, Mikov M, Al-Salami H. Artificial Cell Encapsulation for Biomaterials and Tissue Bio-Nanoengineering: History, Achievements, Limitations, and Future Work for Potential Clinical Applications and Transplantation. J Funct Biomater 2021; 12:68. [PMID: 34940547 PMCID: PMC8704355 DOI: 10.3390/jfb12040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell loss and failure with subsequent deficiency of insulin production is the hallmark of type 1 diabetes (T1D) and late-stage type 2 diabetes (T2D). Despite the availability of parental insulin, serious complications of both types are profound and endemic. One approach to therapy and a potential cure is the immunoisolation of β cells via artificial cell microencapsulation (ACM), with ongoing promising results in human and animal studies that do not depend on immunosuppressive regimens. However, significant challenges remain in the formulation and delivery platforms and potential immunogenicity issues. Additionally, the level of impact on key metabolic and disease biomarkers and long-term benefits from human and animal studies stemming from the encapsulation and delivery of these cells is a subject of continuing debate. The purpose of this review is to summarise key advances in this field of islet transplantation using ACM and to explore future strategies, limitations, and hurdles as well as upcoming developments utilising bioengineering and current clinical trials.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | | | - Daniel Brown
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia;
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Zhang Y, Gallego I, Plou J, Pedraz JL, Liz-Marzán LM, Ciriza J, García I. SERS monitoring of local pH in encapsulated therapeutic cells. NANOSCALE 2021; 13:14354-14362. [PMID: 34477718 DOI: 10.1039/d1nr03969e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microencapsulation of therapeutic cells has widely advanced toward the development of treatments for various diseases, in particular seeking the protection of cell transplants from immune rejection. However, several challenges in cell therapy remain due to the lack of suitable methods to monitor in vivo microcapsule tracking, microcapsule stability and/or altered cell viability and proliferation upon transplantation. We propose in this work the incorporation of contrast agents in microcapsules, which can be easily visualized by SERS imaging. By placing SERS probes in the alginate extracellular layer, a high contrast can be obtained with negligible toxicity. Specifically, we used a pH-sensitive SERS tracking probe consisting of gold nanostars encoded with a pH-sensitive Raman-active molecule, and protected by a layer of biocompatible polymer coating, grafted on the nanoparticles via electrostatic interactions. This nanomaterial is highly sensitive within the biologically relevant pH range, 5.5-7.8. We demonstrate that this SERS-based pH sensor can provide information about cell death of microencapsulated cells, in a non-invasive manner. As a result, we expect that this approach should provide a general strategy to study biological interactions at the microcapsule level.
Collapse
Affiliation(s)
- Yizhi Zhang
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
A therapeutic vascular conduit to support in vivo cell-secreted therapy. NPJ Regen Med 2021; 6:40. [PMID: 34326344 PMCID: PMC8322381 DOI: 10.1038/s41536-021-00150-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/07/2021] [Indexed: 11/08/2022] Open
Abstract
A significant barrier to implementation of cell-based therapies is providing adequate vascularization to provide oxygen and nutrients. Here we describe an approach for cell transplantation termed the Therapeutic Vascular Conduit (TVC), which uses an acellular vessel as a scaffold for a hydrogel sheath containing cells designed to secrete a therapeutic protein. The TVC can be directly anastomosed as a vascular graft. Modeling supports the concept that the TVC allows oxygenated blood to flow in close proximity to the transplanted cells to prevent hypoxia. As a proof-of-principle study, we used erythropoietin (EPO) as a model therapeutic protein. If implanted as an arteriovenous vascular graft, such a construct could serve a dual role as an EPO delivery platform and hemodialysis access for patients with end-stage renal disease. When implanted into nude rats, TVCs containing EPO-secreting fibroblasts were able to increase serum EPO and hemoglobin levels for up to 4 weeks. However, constitutive EPO expression resulted in macrophage infiltration and luminal obstruction of the TVC, thus limiting longer-term efficacy. Follow-up in vitro studies support the hypothesis that EPO also functions to recruit macrophages. The TVC is a promising approach to cell-based therapeutic delivery that has the potential to overcome the oxygenation barrier to large-scale cellular implantation and could thus be used for a myriad of clinical disorders. However, a complete understanding of the biological effects of the selected therapeutic is absolutely essential.
Collapse
|
7
|
Hajifathaliha F, Mahboubi A, Bolourchian N, Mohit E, Nematollahi L. Multilayer Alginate Microcapsules For Live Cell Microencapsulation; Is There Any Preference For Selecting Cationic Polymers? IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:173-182. [PMID: 34567154 PMCID: PMC8457712 DOI: 10.22037/ijpr.2020.114096.14660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since 1980 after introducing the concept of live cell encapsulation by Lim et al., this technology has received enormous attention. Several studies have been conducted to improve this technique; different polymers, either natural or synthetic, have been used as microcapsules` making materials and different substances as coating layers. Literature review leads us to the conclusion that alginate (Alg) multilayer microcapsules and, in particular, alginate-poly l-lysine (PLL)-alginate (APA) are the most used structures for live cell encapsulation. Although, disadvantages of PLL (e.g., weak mechanical strength and low biocompatibility) made researchers work on other cationic polymers to find an alternative. This review aims to discuss more popularly suggested cationic polymers such as poly l-ornithine (PLO), chitosan, etc. As alternatives for PLL and, more importantly, we want to take a closer look to see which one of these systems are closer to clinical applications.
Collapse
Affiliation(s)
- Fariba Hajifathaliha
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Mahboubi
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Noushin Bolourchian
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Farina M, Alexander JF, Thekkedath U, Ferrari M, Grattoni A. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv Drug Deliv Rev 2019; 139:92-115. [PMID: 29719210 DOI: 10.1016/j.addr.2018.04.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Cell-based therapy is emerging as a promising strategy for treating a wide range of human diseases, such as diabetes, blood disorders, acute liver failure, spinal cord injury, and several types of cancer. Pancreatic islets, blood cells, hepatocytes, and stem cells are among the many cell types currently used for this strategy. The encapsulation of these "therapeutic" cells is under intense investigation to not only prevent immune rejection but also provide a controlled and supportive environment so they can function effectively. Some of the advanced encapsulation systems provide active agents to the cells and enable a complete retrieval of the graft in the case of an adverse body reaction. Here, we review various encapsulation strategies developed in academic and industrial settings, including the state-of-the-art technologies in advanced preclinical phases as well as those undergoing clinical trials, and assess their advantages and challenges. We also emphasize the importance of stimulus-responsive encapsulated cell systems that provide a "smart and live" therapeutic delivery to overcome barriers in cell transplantation as well as their use in patients.
Collapse
|
9
|
Saenz Del Burgo L, Ciriza J, Espona-Noguera A, Illa X, Cabruja E, Orive G, Hernández RM, Villa R, Pedraz JL, Alvarez M. 3D Printed porous polyamide macrocapsule combined with alginate microcapsules for safer cell-based therapies. Sci Rep 2018; 8:8512. [PMID: 29855599 PMCID: PMC5981392 DOI: 10.1038/s41598-018-26869-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Cell microencapsulation is an attractive strategy for cell-based therapies that allows the implantation of genetically engineered cells and the continuous delivery of de novo produced therapeutic products. However, the establishment of a way to retrieve the implanted encapsulated cells in case the treatment needs to be halted or when cells need to be renewed is still a big challenge. The combination of micro and macroencapsulation approaches could provide the requirements to achieve a proper immunoisolation, while maintaining the cells localized into the body. We present the development and characterization of a porous implantable macrocapsule device for the loading of microencapsulated cells. The device was fabricated in polyamide by selective laser sintering (SLS), with controlled porosity defined by the design and the sintering conditions. Two types of microencapsulated cells were tested in order to evaluate the suitability of this device; erythropoietin (EPO) producing C2C12 myoblasts and Vascular Endothelial Growth Factor (VEGF) producing BHK fibroblasts. Results showed that, even if the metabolic activity of these cells decreased over time, the levels of therapeutic protein that were produced and, importantly, released to the media were stable.
Collapse
Affiliation(s)
- Laura Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Albert Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Xavi Illa
- Instituto de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Enric Cabruja
- Instituto de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rosa María Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rosa Villa
- Instituto de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Mar Alvarez
- Instituto de Microelectronica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
10
|
Libro R, Bramanti P, Mazzon E. The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration. Exp Ther Med 2017; 14:3355-3368. [PMID: 29042919 PMCID: PMC5639409 DOI: 10.3892/etm.2017.4939] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/03/2017] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic lesion that can result in the loss of motor or sensory neurons. Stem cell (SC)-based therapies have been demonstrated to promote neuronal regeneration following SCI, by releasing a range of trophic factors that support endogenous repair or by differentiating into neurons, or glial cells in order to replace the damaged cells. However, numerous limitations remain for therapies based on SC transplantion alone, including a low rate of survival/engraftment. Nevertheless, scaffolds are 3-dimentional substrates that have revealed to support cell survival, proliferation and differentiation in vivo, by mimicking a more favorable endogenous microenvironment. A multidisciplinary approach, which combines engineered scaffolds with SCs has been proposed as a promising strategy for encouraging spinal cord regeneration. The present review has focused on the regenerative potential of mesenchymal SCs isolated from different sources and combined with various scaffold types, in preclinical and clinical SCI studies.
Collapse
Affiliation(s)
- Rosaliana Libro
- Department of Experimental Neurology, IRCCS Centro Neurolesi ‘Bonino-Pulejo’, I-98124 Messina, Italy
| | - Placido Bramanti
- Department of Experimental Neurology, IRCCS Centro Neurolesi ‘Bonino-Pulejo’, I-98124 Messina, Italy
| | - Emanuela Mazzon
- Department of Experimental Neurology, IRCCS Centro Neurolesi ‘Bonino-Pulejo’, I-98124 Messina, Italy
| |
Collapse
|
11
|
Manzoli V, Colter DC, Dhanaraj S, Fornoni A, Ricordi C, Pileggi A, Tomei AA. Engineering human renal epithelial cells for transplantation in regenerative medicine. Med Eng Phys 2017; 48:3-13. [DOI: 10.1016/j.medengphy.2017.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/03/2017] [Accepted: 03/26/2017] [Indexed: 12/16/2022]
|
12
|
Abstract
The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.
Collapse
Affiliation(s)
- Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
13
|
Mooranian A, Negrulj R, Al-Salami H. The incorporation of water-soluble gel matrix into bile acid-based microcapsules for the delivery of viable β-cells of the pancreas, in diabetes treatment: biocompatibility and functionality studies. Drug Deliv Transl Res 2016; 6:17-23. [PMID: 26671765 DOI: 10.1007/s13346-015-0268-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent studies, we microencapsulated pancreatic β-cells using sodium alginate (SA) and poly-L-ornithine (PLO) and the bile acid, ursodeoxycholic acid (UDCA), and tested the morphology and cell viability post-microencapsulation. Cell viability was low probably due to limited strength of the microcapsules. This study aimed to assess a β-cell delivery system which consists of UDCA-based microcapsules incorporated with water-soluble gel matrix. The polyelectrolytes, water-soluble gel (WSG), polystyrenic sulphate (PSS), PLO and polyallylamine (PAA) at ratios 4:1:1:2.5 with or without 4% UDCA, were incorporated into our microcapsules, and cell viability, metabolic profile, cell functionality, insulin production, levels of inflammation, microcapsule morphology, cellular distribution, UDCA partitioning, biocompatibility, thermal and chemical stabilities and the microencapsulation efficiency were examined. The incorporation of UDCA with PSS, PAA and WSG enhanced cell viability per microcapsule (p < 0.05), cellular metabolic profile (p < 0.01) and insulin production (p < 0.01); reduced the inflammatory release TNF-α (p < 0.01), INF-gamma (p < 0.01) and interleukin-6 (IL-6) (p < 0.01); and ceased the production of IL-1β. UDCA, PSS, PAA and WSG addition did not change the microencapsulation efficiency and resulted in biocompatible microcapsules. Our designed microcapsules showed good morphology and desirable insulin production, cell functionality and reduced inflammatory profile suggesting potential applications in diabetes.
Collapse
Affiliation(s)
- Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, WA, Australia
| | - Rebecca Negrulj
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, WA, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, WA, Australia.
| |
Collapse
|
14
|
Chan HF, Zhang Y, Leong KW. Efficient One-Step Production of Microencapsulated Hepatocyte Spheroids with Enhanced Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2720-30. [PMID: 27038291 PMCID: PMC4982767 DOI: 10.1002/smll.201502932] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/09/2016] [Indexed: 04/14/2023]
Abstract
Hepatocyte spheroids microencapsulated in hydrogels can contribute to liver research in various capacities. The conventional approach of microencapsulating spheroids produces a variable number of spheroids per microgel and requires an extra step of spheroid loading into the gel. Here, a microfluidics technology bypassing the step of spheroid loading and controlling the spheroid characteristics is reported. Double-emulsion droplets are used to generate microencapsulated homotypic or heterotypic hepatocyte spheroids (all as single spheroids <200 μm in diameter) with enhanced functions in 4 h. The composition of the microgel is tunable as demonstrated by improved hepatocyte functions during 24 d culture (albumin secretion, urea secretion, and cytochrome P450 activity) when alginate-collagen composite hydrogel is used instead of alginate. Hepatocyte spheroids in alginate-collagen also perform better than hepatocytes cultured in collagen-sandwich configuration. Moreover, hepatocyte functions are significantly enhanced when hepatocytes and endothelial progenitor cells (used as a novel supporting cell source) are co-cultured to form composite spheroids at an optimal ratio of 5:1, which could be further boosted when encapsulated in alginate-collagen. This microencapsulated-spheroid formation technology with high yield, versatility, and uniformity is envisioned to be an enabling technology for liver tissue engineering as well as biomanufacturing.
Collapse
|
15
|
Ciriza J, Saenz del Burgo L, Virumbrales-Muñoz M, Ochoa I, Fernandez L, Orive G, Hernandez R, Pedraz J. Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Huang SL, Wang J, He XJ, Li ZF, Pu JN, Shi W. Secretion of BDNF and GDNF from free and encapsulated choroid plexus epithelial cells. Neurosci Lett 2014; 566:42-5. [PMID: 24561094 DOI: 10.1016/j.neulet.2014.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Choroid plexus epithelial cells secrete numerous biologically active neurotrophic factors, which may be beneficial to the transplantation site. Encapsulated cells are often used in tissue transplantation. The present study was conducted to investigate the effect of encapsulation on the secretory function of choroid plexus epithelial cells. Neonatal rat choroid plexus epithelial cells were primarily cultured. After 9 days of culture, the cells were distributed into two groups, and one group of cells was encapsulated in vitro. The initial culture conditions such as cell numbers and medium volumes were the same. Supernatants in the free and encapsulated choroid plexus epithelial cells were collected at the time points of day 1 through day 7. Quantitative determination of the BDNF and GDNF levels was performed by enzyme-linked immunosorbent assay to assess the secretory function of the cells in the two forms. Statistical analyses were performed using a Student t test. P<0.05 was set to indicate statistical significance. A very similar secretion pattern was observed in both groups. In the first 4 days of encapsulation, the release of BDNF and GDNF in the encapsulated cells was significantly lower than that in the free cells, while the difference diminished after day 5. This in vitro study demonstrates that the secretion of BDNF and GDNF in encapsulated choroid plexus epithelial cells is different from that in non-encapsulated cells in the early stage of encapsulation treatment, whereas it is similar in the later stage.
Collapse
Affiliation(s)
- Sheng-Li Huang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of pediatrics, Xi'an Children's Hospital, Xi'an, China
| | - Xi-Jing He
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Zong-Fang Li
- Central Laboratory for scientific Research, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jing-Nan Pu
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Wei Shi
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
17
|
Mazzitelli S, Capretto L, Quinci F, Piva R, Nastruzzi C. Preparation of cell-encapsulation devices in confined microenvironment. Adv Drug Deliv Rev 2013; 65:1533-55. [PMID: 23933618 DOI: 10.1016/j.addr.2013.07.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/18/2013] [Accepted: 07/31/2013] [Indexed: 02/07/2023]
Abstract
The entrapment of cells into hydrogel microdevice in form of microparticles or microfibers is one of the most appealing and useful tools for cell-based therapy and tissue engineering. Cell encapsulation procedures allow the immunoisolation of cells from the surrounding environment, after their transplantation and the maintenance of the normal cellular physiology. Factors affecting the efficacy of microdevices, which include size, size distribution, morphology, and porosity are all highly dependent on the method of preparation. In this respect, microfluidic based methods offer a promising strategy to fabricate highly uniform and morphologically controlled microdevices with tunable chemical and mechanical properties. In the current review, various cell microencapsulation procedures, based on a microfluidics, are critically analyzed with a special focus on the effect of the procedure on the morphology, viability and functions of the embedded cells. Moreover, a brief introduction about the optimal characteristics of microdevice intended for cell encapsulation, together with the currently used materials for the production is reported. A further challenging application of microfluidics for the development of "living microchip" is also presented. Finally, the limitations, challenging and future work on the microfluidic approach are also discussed.
Collapse
Affiliation(s)
- Stefania Mazzitelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Via F. Mortara 17/19, Ferrara 44121, Italy.
| | | | | | | | | |
Collapse
|
18
|
Khanna O, Huang JJ, Moya ML, Wu CW, Cheng MH, Opara EC, Brey EM. FGF-1 delivery from multilayer alginate microbeads stimulates a rapid and persistent increase in vascular density. Microvasc Res 2013; 90:23-9. [PMID: 23978335 DOI: 10.1016/j.mvr.2013.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
In recent years, great advances have been made in the use of islet transplantation as a treatment for type I diabetes. Indeed, it is possible that stimulation of local neovascularization upon transplantation could improve functional graft outcomes. In the present study, we investigate the use of multilayered alginate microbeads to provide a sustained delivery of FGF-1, and whether this results in increased neovascularization in vivo. Multilayered alginate microbeads, loaded with either 150ng or 600ng of FGF-1 in the outer layer, were surgically implanted into rats using an omentum pouch model and compared to empty microbead implants. Rats were sacrificed at 4days, 1week, and 6weeks. Staining for CD31 showed that both conditions of FGF-1 loaded microbeads resulted in a significantly higher vessel density at all time points studied. Moreover, at 6weeks, alginate microbeads containing 600ng FGF-1 provided a greater vascular density compared to both the control group and the microbeads loaded with 150ng FGF-1. Omenta analyzed via staining for smooth muscle alpha actin showed no variation in mural cell density at either 4days or 1week. At 6weeks, however, omenta exposed to microbeads loaded with 600ng FGF-1 showed an increase in mural cell staining compared to controls. These results suggest that the sustained delivery of FGF-1 from multilayered alginate microbeads results in a rapid and persistent vascular response. An increase in the local blood supply could reduce the number of islets required for transplantation in order to achieve clinical efficacy.
Collapse
Affiliation(s)
- Omaditya Khanna
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BHA. Microbial alginate production, modification and its applications. Microb Biotechnol 2013; 6:637-50. [PMID: 24034361 PMCID: PMC3815931 DOI: 10.1111/1751-7915.12076] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/25/2013] [Accepted: 07/06/2013] [Indexed: 11/29/2022] Open
Abstract
Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required.
Collapse
Affiliation(s)
- Iain D Hay
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
20
|
Werner M, Biss K, Jérôme V, Hilbrig F, Freitag R, Zambrano K, Hübner H, Buchholz R, Mahou R, Wandrey C. Use of the mitochondria toxicity assay for quantifying the viable cell density of microencapsulated jurkat cells. Biotechnol Prog 2013; 29:986-93. [PMID: 23636962 DOI: 10.1002/btpr.1734] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/28/2013] [Indexed: 01/19/2023]
Abstract
The mitochondria toxicity assay (MTT assay) is an established method for monitoring cell viability based on mitochondrial activity. Here the MTT assay is proposed for the in situ quantification of the living cell density of microencapsulated Jurkat cells. Three systems were used to encapsulate the cells, namely a membrane consisting of an interpenetrating polyelectrolyte network of sodium cellulose sulphate/poly(diallyldimethylammonium chloride) (NaCS/PDADMAC), a calcium alginate hydrogel covered with poly(L-lysine) (Ca-alg-PLL), and a novel calcium alginate-poly(ethylene glycol) hybrid material (Ca-alg-PEG). MTT results were correlated to data obtained by the trypan blue exclusion assay after release of the cells from the NaCS/PDADMAC and Ca-alg-PLL capsules, while a resazurin-based assay was used for comparison in case of the Ca-alg-PEG material. Analysis by MTT assay allows quick and reliable determination of viable cell densities of encapsulated cells independent of the capsule material. The assay is highly reproducible with inter-assay relative standard deviations below 10%.
Collapse
Affiliation(s)
- M Werner
- Chair for Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Simón-yarza T, Garbayo E, Tamayo E, Prósper F, Blanco-prieto* MJ. Drug Delivery in Tissue Engineering: General Concepts. NANOSTRUCTURED BIOMATERIALS FOR OVERCOMING BIOLOGICAL BARRIERS 2012. [DOI: 10.1039/9781849735292-00501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
McEwan K, Padavan DT, Deng C, Vulesevic B, Kuraitis D, Korbutt GS, Suuronen EJ. Tunable collagen hydrogels are modified by the therapeutic agents they are designed to deliver. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1467-83. [PMID: 21771391 DOI: 10.1163/092050611x584397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Injectable hydrogels are increasingly being developed for biomedical applications due to their ability to be delivered in a minimally invasive manner. One potential use for such materials is in cell delivery for cardiac regeneration. While the materials' properties are often characterized, how these properties (and in particular gelation) are affected by the addition of the therapeutic agent(s) they are designed to deliver is often overlooked. The aim of this study was to examine the interactive effects between collagen-based hydrogels and different additives (cells and microspheres). The results demonstrated that the incorporation of either cells or microspheres to a collagen hydrogel decreased its gelation time and increased its viscosity. Increased concentrations of the EDC/NHS cross-linker resulted in greater loss of cell viability. However, it was found that this cell loss could be minimized by delivering cells with the cross-linker scavenger glycine. A better understanding of how materials and cells (and other additives) respond to each other will help towards the goal of improving scaffolds being developed for regenerative therapy.
Collapse
Affiliation(s)
- Kimberly McEwan
- a Division of Cardiac Surgery, University of Ottawa Heart Institute , 40 Ruskin Street , Ottawa , ON , Canada , K1Y4W7
| | | | | | | | | | | | | |
Collapse
|
23
|
Pakulska MM, Ballios BG, Shoichet MS. Injectable hydrogels for central nervous system therapy. Biomed Mater 2012; 7:024101. [PMID: 22456684 DOI: 10.1088/1748-6041/7/2/024101] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diseases and injuries of the central nervous system (CNS) including those in the brain, spinal cord and retina are devastating because the CNS has limited intrinsic regenerative capacity and currently available therapies are unable to provide significant functional recovery. Several promising therapies have been identified with the goal of restoring at least some of this lost function and include neuroprotective agents to stop or slow cellular degeneration, neurotrophic factors to stimulate cellular growth, neutralizing molecules to overcome the inhibitory environment at the site of injury, and stem cell transplant strategies to replace lost tissue. The delivery of these therapies to the CNS is a challenge because the blood-brain barrier limits the diffusion of molecules into the brain by traditional oral or intravenous routes. Injectable hydrogels have the capacity to overcome the challenges associated with drug delivery to the CNS, by providing a minimally invasive, localized, void-filling platform for therapeutic use. Small molecule or protein drugs can be distributed throughout the hydrogel which then acts as a depot for their sustained release at the injury site. For cell delivery, the hydrogel can reduce cell aggregation and provide an adhesive matrix for improved cell survival and integration. Additionally, by choosing a biodegradable or bioresorbable hydrogel material, the system will eventually be eliminated from the body. This review discusses both natural and synthetic injectable hydrogel materials that have been used for drug or cell delivery to the CNS including hyaluronan, methylcellulose, chitosan, poly(N-isopropylacrylamide) and Matrigel.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | | | | |
Collapse
|
24
|
Santos E, Orive G, Calvo A, Catena R, Fernández-Robredo P, Layana AG, Hernández R, Pedraz J. Optimization of 100μm alginate-poly-l-lysine-alginate capsules for intravitreous administration. J Control Release 2012; 158:443-50. [DOI: 10.1016/j.jconrel.2011.09.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 09/15/2011] [Accepted: 09/18/2011] [Indexed: 12/11/2022]
|
25
|
Wirth T. A short perspective on gene therapy: Clinical experience on gene therapy of gliomablastoma multiforme. World J Exp Med 2011; 1:10-6. [PMID: 24520527 PMCID: PMC3905579 DOI: 10.5493/wjem.v1.i1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 02/06/2023] Open
Abstract
More than two decades have passed since the first gene therapy clinical trial was conducted. During this time, we have gained much knowledge regarding gene therapy in general, but also learned to understand the fear that persists in society. We have experienced drawbacks and successes. More than 1700 clinical trials have been conducted where gene therapy is used as a means for therapy. In the very first trial, patients with advanced melanoma were treated with tumor infiltrating lymphocytes genetically modified ex-vivo to express tumor necrosis factor. Around the same time the first gene therapy trial was conducted, the ethical aspects of performing gene therapy on humans was intensively discussed. What are the risks involved with gene therapy? Can we control the technology? What is ethically acceptable and what are the indications gene therapy can be used for? Initially, gene therapy was thought to be implemented mainly for the treatment of monogenetic diseases, such as adenosine deaminase deficiency. However, other therapeutic areas have become of interest and currently cancer is the most studied therapeutic area for gene therapy based medicines. In this review I will be giving a short introduction into gene therapy and will direct the discussion to where we should go from here. Furthermore, I will focus on the use of the Herpes simplex virus-thymidine kinase for gene therapy of malignant gliomas and highlight the efficacy of gene therapy for the treatment of malignant gliomas, but other strategies will also be mentioned.
Collapse
Affiliation(s)
- Thomas Wirth
- Thomas Wirth, AI Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Neulaniementie 2, FIN-70211 Kuopio, Finland
| |
Collapse
|
26
|
Zhang W, He X. Microencapsulating and Banking Living Cells for Cell-Based Medicine. JOURNAL OF HEALTHCARE ENGINEERING 2011; 2:427-446. [PMID: 22180835 DOI: 10.1260/2040-2295.2.4.427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A major challenge to the eventual success of the emerging cell-based medicine such as tissue engineering, regenerative medicine, and cell transplantation is the limited availability of the desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the undesired immune response (i.e., to achieve immunoisolation) so that non-autologous cells can be used to treat human diseases, and by cell/tissue preservation to bank living cells for wide distribution to end users so that they are readily available when needed in the future. This review summarizes the status quo of research in both cell microencapsulation and banking the microencapsulated cells. It is concluded with a brief outlook of future research directions in this important field.
Collapse
Affiliation(s)
- Wujie Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| | | |
Collapse
|
27
|
Lu TK. Engineering scalable biological systems. Bioeng Bugs 2011; 1:378-84. [PMID: 21468204 DOI: 10.4161/bbug.1.6.13086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 02/07/2023] Open
Abstract
Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions.
Collapse
Affiliation(s)
- Timothy K Lu
- Synthetic Biology Group,Research Lab of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
28
|
Oliveira MB, Mano JF. Polymer-based microparticles in tissue engineering and regenerative medicine. Biotechnol Prog 2011; 27:897-912. [PMID: 21584949 DOI: 10.1002/btpr.618] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/21/2011] [Indexed: 12/11/2022]
Abstract
Different types of biomaterials, processed into different shapes, have been proposed as temporary support for cells in tissue engineering (TE) strategies. The manufacturing methods used in the production of particles in drug delivery strategies have been adapted for the development of microparticles in the fields of TE and regenerative medicine (RM). Microparticles have been applied as building blocks and matrices for the delivery of soluble factors, aiming for the construction of TE scaffolds, either by fusion giving rise to porous scaffolds or as injectable systems for in situ scaffold formation, avoiding complicated surgery procedures. More recently, organ printing strategies have been developed by the fusion of hydrogel particles with encapsulated cells, aiming the production of organs in in vitro conditions. Mesoscale self-assembly of hydrogel microblocks and the use of leachable particles in three-dimensional (3D) layer-by-layer (LbL) techniques have been suggested as well in recent works. Along with innovative applications, new perspectives are open for the use of these versatile structures, and different directions can still be followed to use all the potential that such systems can bring. This review focuses on polymeric microparticle processing techniques and overviews several examples and general concepts related to the use of these systems in TE and RE applications. The use of materials in the development of microparticles from research to clinical applications is also discussed.
Collapse
Affiliation(s)
- Mariana B Oliveira
- 3Bs Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, Caldas das Taipas, Guimarães 4806-909, Portugal
| | | |
Collapse
|
29
|
Liras A. Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. J Transl Med 2010; 8:131. [PMID: 21143967 PMCID: PMC3014893 DOI: 10.1186/1479-5876-8-131] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/10/2010] [Indexed: 12/24/2022] Open
Abstract
There is much to be investigated about the specific characteristics of stem cells and about the efficacy and safety of the new drugs based on this type of cells, both embryonic as adult stem cells, for several therapeutic indications (cardiovascular and ischemic diseases, diabetes, hematopoietic diseases, liver diseases). Along with recent progress in transference of nuclei from human somatic cells, as well as iPSC technology, has allowed availability of lineages of all three germ layers genetically identical to those of the donor patient, which permits safe transplantation of organ-tissue-specific adult stem cells with no immune rejection. The main objective is the need for expansion of stem cell characteristics to maximize stem cell efficacy (i.e. the proper selection of a stem cell) and the efficacy (maximum effect) and safety of stem cell derived drugs. Other considerations to take into account in cell therapy will be the suitability of infrastructure and technical staff, biomaterials, production costs, biobanks, biosecurity, and the biotechnological industry. The general objectives in the area of stem cell research in the next few years, are related to identification of therapeutic targets and potential therapeutic tests, studies of cell differentiation and physiological mechanisms, culture conditions of pluripotent stem cells and efficacy and safety tests for stem cell-based drugs or procedures to be performed in both animal and human models in the corresponding clinical trials. A regulatory framework will be required to ensure patient accessibility to products and governmental assistance for their regulation and control. Bioethical aspects will be required related to the scientific and therapeutic relevance and cost of cryopreservation over time, but specially with respect to embryos which may ultimately be used for scientific uses of research as source of embryonic stem cells, in which case the bioethical conflict may be further aggravated.
Collapse
Affiliation(s)
- Antonio Liras
- Department of Physiology, School of Biological Sciences, Complutense University of Madrid, Spain.
| |
Collapse
|
30
|
|
31
|
Yang Q, Liu F, Pan XP, Lv G, Zhang A, Yu CB, Li L. Fluidized-bed bioartificial liver assist devices (BLADs) based on microencapsulated primary porcine hepatocytes have risk of porcine endogenous retroviruses transmission. Hepatol Int 2010; 4:757-61. [PMID: 21286347 PMCID: PMC2994615 DOI: 10.1007/s12072-010-9210-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 08/04/2010] [Indexed: 01/30/2023]
Abstract
PURPOSE Bioartificial liver assist devices (BLADs) are expected to bridge liver failure patients to liver transplantation, but porcine endogenous retroviruses (PERVs) still pose a potential risk in pig-to-human xenotransplantation and thereby limit the use of bioartificial liver therapy. In our lab, fluidized-bed BLADs based on microencapsulated primary porcine hepatocytes have been successfully used to treat liver failure pigs. We detected the risk of PERVs transmission of microencapsulated primary porcine hepatocytes-the key component of fluidized-bed BLADs, to evaluate the biosafety of this device for further clinical applications. METHODS Microencapsulated primary porcine hepatocytes (cell diameter = 300 μm) were cultured in Dulbecco's modified Eagles medium (DMEM). Microencapsulated cell culture supernatants were collected at 6, 12, 24 and 72 h. HEK-293 were cocultured with these supernatants, and the cocultured cells were harvested every 7 days. RT-PCR was used to detect PERVs transmission. RT-qPCR was used to get the number of virus copies. PK-15 was used as the positive control whereas HepG2 was used as the negative control. RESULTS PERV was detected in all supernatants, and the viral load of the supernatants increased with time. Moreover, cocultured 293 cells were positive for PERV-specific sequences. CONCLUSION The kind of fluidized-bed BLADs based on microencapsulated primary porcine hepatocytes have risk of PERVs transmission. Further extensive pre-clinical study focused on biosafety is warranted.
Collapse
Affiliation(s)
- Qian Yang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003 China
| | - Fei Liu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003 China
| | - Xiao Ping Pan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003 China
| | - GuoLiang Lv
- The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003 China
| | - AnYe Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003 China
| | - Chen Bo Yu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003 China
| | - LanJuan Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, 310003 China
| |
Collapse
|