1
|
López M, Gualillo O. Rheumatic diseases and metabolism: where centre and periphery meet. Nat Rev Rheumatol 2024; 20:783-794. [PMID: 39478099 DOI: 10.1038/s41584-024-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/26/2024]
Abstract
Over the past few decades, the connection between metabolism and various inflammatory and rheumatic diseases has been an area of active investigation. Nonetheless, the precise mechanisms underlying these relationships remain a topic of ongoing debate, owing in part to conflicting data. This discrepancy can be attributed to the predominant focus on peripheral mechanisms in research into the metabolic consequences of rheumatic diseases. However, a wealth of evidence supports the notion that the central nervous system, specifically the hypothalamus, has an important influence on metabolic homeostasis. Notably, links have been established between crucial hypothalamic mechanisms responsible for regulating energy balance (including food intake, thermogenesis, and glucose and lipid metabolism), such as AMP-activated protein kinase, and the pathophysiology of rheumatoid arthritis. This Review aims to comprehensively examine the current understanding of central metabolic control in rheumatic diseases and explore potential therapeutic options that target this pathophysiological mechanism.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain.
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS)-Instituto de Investigación Sanitaria de Santiago (IDIS), the Neuroendocrine Interactions in Rheumatology and Inflammatory Disease (NEIRID) Lab, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Zhang Y, Zhang Y, Liu K, Zhu N, Pang J, Qian X, Li H, Liu X. Inflammatory response in mouse lungs to haze episodes under different backgrounds of particulate matter exposure. Sci Rep 2023; 13:21616. [PMID: 38062061 PMCID: PMC10703782 DOI: 10.1038/s41598-023-49014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Particulate matter (PM) toxicity has mostly been investigated through in vitro exposure or tracheal infusion in animal models. However, given the complexity of ambient conditions, most animal studies do not mimic real-life PM exposure. In this work, we established a novel integrated exposure model to study the dynamic inflammatory response and defense strategies in ambient PM-exposed mice. Three groups of male C57BL/6 mice were kept in three chambers with pre-exposure to filtered air (FA), unfiltered air (UFA), or the air with a low PM concentration (PM2.5 ≤ 75 μg/m3) (LPM), respectively, for 37 days. Then all three groups of mice were exposed to haze challenge for 3 days, followed by exposure in filtered air for 7 days to allow recovery. Our results suggest that following a haze challenge, the defense strategies of mice of filtered air (FA) and low PM (LPM) groups comprised a form of "counterattack", whereas the response of the unfiltered air (UFA) group could be viewed as a "silence". While the latter strategy protected the lung tissues of mice from acute inflammatory damage, it also foreshadowed the development of chronic inflammatory diseases. These findings contribute to explaining previously documented PM-associated pathogenic mechanisms.
Collapse
Affiliation(s)
- Yuanhang Zhang
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Yuteng Zhang
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Kai Liu
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Ningning Zhu
- National and Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Huaiyin Institute of Technology, Huaian, China
| | - Jianfeng Pang
- National and Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Huaiyin Institute of Technology, Huaian, China
| | - Xin Qian
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Nanjing, China.
| | - Xuemei Liu
- National and Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Huaiyin Institute of Technology, Huaian, China.
| |
Collapse
|
3
|
Pesce M, Seguella L, Del Re A, Lu J, Palenca I, Corpetti C, Rurgo S, Sanseverino W, Sarnelli G, Esposito G. Next-Generation Probiotics for Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms23105466. [PMID: 35628274 PMCID: PMC9141965 DOI: 10.3390/ijms23105466] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Engineered probiotics represent a cutting-edge therapy in intestinal inflammatory disease (IBD). Genetically modified bacteria have provided a new strategy to release therapeutically operative molecules in the intestine and have grown into promising new therapies for IBD. Current IBD treatments, such as corticosteroids and immunosuppressants, are associated with relevant side effects and a significant proportion of patients are dependent on these therapies, thus exposing them to the risk of relevant long-term side effects. Discovering new and effective therapeutic strategies is a worldwide goal in this research field and engineered probiotics could potentially provide a viable solution. This review aims at describing the proceeding of bacterial engineering and how genetically modified probiotics may represent a promising new biotechnological approach in IBD treatment.
Collapse
Affiliation(s)
- Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | - Luisa Seguella
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
- Correspondence: ; Tel.: +39-06-4991-2948
| | - Alessandro Del Re
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
| | - Jie Lu
- Department of Anatomy and Cell Biology, China Medical University, Shenyang 110122, China;
| | - Irene Palenca
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
| | - Chiara Corpetti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
| | - Sara Rurgo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | | | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
- Nextbiomics S.r.l., 80100 Naples, Italy;
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.D.R.); (I.P.); (C.C.); (G.E.)
- Nextbiomics S.r.l., 80100 Naples, Italy;
| |
Collapse
|
4
|
Shao W, Chen R, Lin G, Ran K, Zhang Y, Yang J, Pan H, Shangguan J, Zhao Y, Xu H. In situ mucoadhesive hydrogel capturing tripeptide KPV: the anti-inflammatory, antibacterial and repairing effect on chemotherapy-induced oral mucositis. Biomater Sci 2021; 10:227-242. [PMID: 34846053 DOI: 10.1039/d1bm01466h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The self-healing of chemotherapy-induced oral mucositis is difficult in practice because of both local bacterial infection and severe inflammation. Herein, in situ mucoadhesive hydrogels (PPP_E) were successfully prepared by using temperature-sensitive PLGA-PEG-PLGA (PPP) as a matrix and epigallocatechin-3-gallate (EGCG) with inherent antibacterial activity as an adhesion enhancer. A series of PPP_E precursor solutions with various EGCG concentrations (1%, 2% and 5%) were prepared by fixing the PPP concentration at 25%. EGCG slightly decreased the sol-gel transition temperature and shortened the sol-gel transition time of the PPP hydrogel. Moreover, the incorporation of EGCG could significantly increase the tissue adhesion properties of the PPP hydrogel at 37 °C. PPP_2%E displayed a suitable gelation temperature (36.2 °C), gelation time (100 s) and storage modulus (48 Pa). Tripeptide KPV as a model drug was easily dissolved in cold PPP_2%E precursor solution to prepare KPV@PPP_2%E hydrogel. The anti-inflammatory activity and promotion of cell migration potential by KPV in PPP-2% E hydrogel were well maintained. Moreover, KPV@PPP_2%E exhibited strong antibacterial efficacy against S. aureus. PPP_2%E precursor solution rapidly transformed to a hydrogel and adhered to the wound surface for 7 hours when administrated to the gingival mucosa of rats. Treatment with KPV@PPP_2%E hydrogel greatly improved the food intake and body weight recovery of rats with chemotherapy-induced oral mucositis. Moreover, the tissue morphology of the ulcerated gingiva after application of KPV@PPP_E hydrogel was also well repaired by promoting CK10 and PCNA expression. In addition, the inflammatory cytokines including IL-1β and TNF-α were significantly inhibited by KPV@PPP_2%E hydrogel while IL-10 was up-regulated. KPV@PPP_2%E hydrogel also had an anti-bacterial effect on MRSA-infected gingival ulcer wounds, which resulted in the obvious inhibition of infiltration by inflammatory cells into submucosal tissues. Conclusively, KPV@PPP_E may be a promising practical application for cancer patients with chemotherapy-induced oral mucositis.
Collapse
Affiliation(s)
- Weifeng Shao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Rui Chen
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Gaolong Lin
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Kunjie Ran
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Yingying Zhang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Jiaojiao Yang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Hanxiao Pan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Jianxun Shangguan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Yingzheng Zhao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Helin Xu
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
5
|
Sun J, Xue P, Liu J, Huang L, Lin G, Ran K, Yang J, Lu C, Zhao YZ, Xu HL. Self-Cross-Linked Hydrogel of Cysteamine-Grafted γ-Polyglutamic Acid Stabilized Tripeptide KPV for Alleviating TNBS-Induced Ulcerative Colitis in Rats. ACS Biomater Sci Eng 2021; 7:4859-4869. [PMID: 34547895 DOI: 10.1021/acsbiomaterials.1c00792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
KPV (Lys-Pro-Val), which is a tripeptide derived from α-MSH (α-melanocyte-stimulating hormone), has an anti-inflammatory effect on colitis. However, KPV solution is very unstable when rectally administered, compromising its therapeutic efficacy. Herein, cysteamine-grafted γ-polyglutamic acid (SH-PGA) was synthesized by conjugating cysteamine with the carboxyl groups of γ-PGA. The synthesized SH-PGA has the thiol grafting amount of 4.5 ± 0.3 mmol/g. Without the use of the cross-linker, the SH-PGA hydrogel with 4% of the polymer was formed by self-cross-linking of thiol groups. Moreover, the formation of the SH-PGA hydrogel was not affected by KPV. The KPV/SH-PGA hydrogel presented higher elastic modulus (G') than the corresponding viscous modulus (G″) at 0.01-10 Hz, exhibiting good mechanical stability. The KPV/SH-PGA hydrogel presented a shear-thinning behavior, which was helpful for rectal administration. Only 30% of KPV was released from the KPV/SH-PGA hydrogel within 20 min, followed by a sustained-release behavior. Importantly, the stability of KPV in the SH-PGA hydrogel was obviously enhanced, which was presented by detecting its anti-inflammatory activity and promoting cell migration potential after 2 h of exposure to 37 °C. The enhanced therapeutic effect of the KPV/SH-PGA hydrogel on colitis was confirmed on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis rats. The colitis symptoms including body weight loss and the disease activity index score were obviously attenuated by rectally administering the KPV/SH-PGA hydrogel. Besides, the KPV/SH-PGA hydrogel treatment prevented the colon shortening of TNBS-infused rats and decreased the colonic myeloperoxidase level. The morphology of the colon including the epithelial barrier, crypt, and intact goblet cells was recovered after KPV/SH-PGA hydrogel treatment. Besides, the KPV/SH-PGA hydrogel decreased the expression of proinflammatory cytokines such as tumor necrosis factor α and interleukin 6. Collectively, the KPV/SH-PGA hydrogel may provide a promising strategy for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Pengpeng Xue
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jiayi Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Lantian Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Gaolong Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Kunjie Ran
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jiaojiao Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Cuitao Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| |
Collapse
|
6
|
Phenotypic Switching of B16F10 Melanoma Cells as a Stress Adaptation Response to Fe3O4/Salicylic Acid Nanoparticle Therapy. Pharmaceuticals (Basel) 2021; 14:ph14101007. [PMID: 34681232 PMCID: PMC8537856 DOI: 10.3390/ph14101007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a melanocyte-derived skin cancer that has a high heterogeneity due to its phenotypic plasticity, a trait that may explain its ability to survive in the case of physical or molecular aggression and to develop resistance to therapy. Therefore, the therapy modulation of phenotypic switching in combination with other treatment modalities could become a common approach in any future therapeutic strategy. In this paper, we used the syngeneic model of B16F10 melanoma implanted in C57BL/6 mice to evaluate the phenotypic changes in melanoma induced by therapy with iron oxide nanoparticles functionalized with salicylic acid (SaIONs). The results of this study showed that the oral administration of the SaIONs aqueous dispersion was followed by phenotypic switching to highly pigmented cells in B16F10 melanoma through a cytotoxicity-induced cell selection mechanism. The hyperpigmentation of melanoma cells by the intra- or extracellular accumulation of melanic pigment deposits was another consequence of the SaIONs therapy. Additional studies are needed to assess the reversibility of SaIONs-induced phenotypic switching and the impact of tumor hyperpigmentation on B16F10 melanoma’s progression and metastasis abilities.
Collapse
|
7
|
Direct acting anti-hepatitis C combinations as potential COVID-19 protease inhibitors. Virusdisease 2021; 32:279-285. [PMID: 33948452 PMCID: PMC8083918 DOI: 10.1007/s13337-021-00691-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic could be the most threatening outbreak in the twenty-first century. According to the latest records of world health organization, more than 130 millions have been infected by COVID-19, with more than 2.9 million reported deaths. Yet, there is no magic cure for treatment of COVID-19. The concept of drug repurposing has been introduced as a fast, life-saving approach for drug discovery. Drug repurposing infers investigating already approved drugs for new indications, using the available information about pathophysiology of diseases and pharmacodynamics of drugs. In a recent work, more than 3000 FDA approved drugs were tested using virtual screening as potential antiviral agents for COVID-19. In this work, the top ranked five hits from the previous docking results together with drugs of similar chemical feature and/or mechanistic destinations were further tested using AutoDock Vina. The results showed that anti-HCV combinations could be potential therapeutic regimens for COVID-19 infections.
Collapse
|
8
|
Cuzzubbo S, Carpentier AF. Applications of Melanin and Melanin-Like Nanoparticles in Cancer Therapy: A Review of Recent Advances. Cancers (Basel) 2021; 13:1463. [PMID: 33806772 PMCID: PMC8004930 DOI: 10.3390/cancers13061463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Thanks to the growing knowledge about cancers and their interactions with the immune system, a huge number of therapeutic cancer vaccines have been developed in the past two decades. Despite encouraging results in pre-clinical models, cancer vaccines have not yet achieved significant clinical efficacy. Several factors may contribute to such poor results, including the difficulty of triggering a strong immune response and the immunosuppressive tumor microenvironment. Many strategies are currently being explored. Different types of adjuvants have been incorporated into vaccine formulations to improve their efficacy, as cancer antigens are usually poorly immunogenic. Nanoparticle systems are promising tools as they act as carriers for antigens and can be surface-modified so that they specifically target antigen-presenting cells in lymph nodes. Bioinspired nanomaterials are ideal candidates thanks to their biocompatibility. Recently, melanin-based nanoparticles were reported to efficiently localize into draining lymphoid tissues and trigger immune responses against loaded antigens. In addition, by virtue of their photochemical properties, melanin-based nanoparticles can also play an immunomodulatory role to promote anti-cancer responses in the context of photothermal therapy. In this review, we discuss the above-mentioned properties of melanin, and summarize the promising results of the melanin-based cancer vaccines recently reported in preclinical models.
Collapse
Affiliation(s)
- Stefania Cuzzubbo
- Université de Paris, PARCC, INSERM U970, 75015 Paris, France;
- Laboratoire de Recherches Biochirurgicales (Fondation Carpentier), Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Antoine F. Carpentier
- Université de Paris, Paris Diderot, 75010 Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Service de Neurologie, 1, Avenue Claude Vellefaux, 75010 Paris, France
| |
Collapse
|
9
|
Peñate-Medina T, Damoah C, Benezra M, Will O, Kairemo K, Humbert J, Sebens S, Peñate-Medina O. Alpha-MSH Targeted Liposomal Nanoparticle for Imaging in Inflammatory Bowel Disease (IBD). Curr Pharm Des 2020; 26:3840-3846. [DOI: 10.2174/1381612826666200727002716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Background:
The purpose of our study was to find a novel targeted imaging and drug delivery vehicle
for inflammatory bowel disease (IBD). IBD is a common and troublesome disease that still lacks effective therapy
and imaging options. As an attempt to improve the disease treatment, we tested αMSH for the targeting of
nanoliposomes to IBD sites. αMSH, an endogenous tridecapeptide, binds to the melanocortin-1 receptor (MC1-R)
and has anti-inflammatory and immunomodulating effects. MC1-R is found on macrophages, neutrophils and the
renal tubule system. We formulated and tested a liposomal nanoparticle involving αMSH in order to achieve a
specific targeting to the inflamed intestines.
Methods:
NDP-αMSH peptide conjugated to Alexa Fluor™ 680 was linked to the liposomal membrane via NSuccinyl
PE and additionally loaded into the lumen of the liposomes. Liposomes without the αMSH-conjugate
and free NDP-αMSH were used as a control. The liposomes were also loaded with ICG to track them. The
liposomes were tested in DSS treated mice, which had received DSS via drinking water order to develop a model
IBD. Inflammation severity was assessed by the Disease Activity Index (DAI) score and ex vivo histological
CD68 staining of samples taken from different parts of the intestine. The liposome targeting was analyzed by
analyzing the ICG and ALEXA 680 fluorescence in the intestine compared to the biodistribution.
Results:
NPD-αMSH was successfully labeled with Alexa and retained its biological activity. Liposomes were
identified in expected regions in the inflamed bowel regions and in the kidneys, where MC1-R is abundant. In
vivo liposome targeting correlated with the macrophage concentration at the site of the inflammation supporting
the active targeting of the liposomes through αMSH. The liposomal αMSH was well tolerated by animals.
Conclusions:
This study opens up the possibility to further develop an αMSH targeted theranostic delivery to
different clinically relevant applications in IBD inflammation but also opens possibilities for use in other inflammations
like lung inflammation in Covid 19.
Collapse
Affiliation(s)
- Tuula Peñate-Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Christabel Damoah
- Institut fur Experimentelle Tumorforschung (IET), Arnold-Heller-Str. 3, Building U30 24105 Kiel, Germany
| | - Miriam Benezra
- Department of Biology, Touro College, New-York, NY 10006, and Department of Natural Science, Baruch College, New- York, NY 10010, United States
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Kalevi Kairemo
- Department of Nuclear Medicine - The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jana Humbert
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Susanne Sebens
- Institut fur Experimentelle Tumorforschung (IET), Arnold-Heller-Str. 3, Building U30 24105 Kiel, Germany
| | - Oula Peñate-Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| |
Collapse
|
10
|
Barra M, Danino T, Garrido D. Engineered Probiotics for Detection and Treatment of Inflammatory Intestinal Diseases. Front Bioeng Biotechnol 2020; 8:265. [PMID: 32296696 PMCID: PMC7137092 DOI: 10.3389/fbioe.2020.00265] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory intestinal diseases such as Crohn's disease and ulcerative colitis have seen an increase in their prevalence in developing countries throughout the current decade. These are caused by a combination of genetic and environmental factors, altered immune response, intestinal epithelium disruption and dysbiosis in the gut microbiome. Current therapies are mainly focused on treating symptoms and are often expensive and ineffective in the long term. Recently, there has been an increase in our understanding of the relevance of the gut microbiome and its impact on human health. Advances in the use of probiotics and synthetic biology have led to the development of intestinal biosensors, bacteria engineered to detect inflammation biomarkers, that work as diagnostic tools. Additionally, live biotherapeutics have been engineered as delivery vehicles to produce treatment in situ avoiding common complications and side effects of current therapies. These genetic constructs often express a therapeutic substance constitutively, but others could be regulated externally by specific substrates, making the production of their treatment more efficient. Additionally, certain probiotics detecting specific biomarkers in situ and responding by generating a therapeutic substance are beginning to be developed. While most studies are still in the laboratory stage, a few modified probiotics have been tested in humans. These advances indicate that live biotherapeutics could have great potential as new treatments for inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Maria Barra
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Cai M, Marelli UK, Mertz B, Beck JG, Opperer F, Rechenmacher F, Kessler H, Hruby VJ. Structural Insights into Selective Ligand-Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists. Biochemistry 2017; 56:4201-4209. [PMID: 28715181 DOI: 10.1021/acs.biochem.7b00407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His6-d-Nal(2')7-NMe-Arg8-Trp9-Lys]-NH2 (15) and Ac-Nle-c[Asp-His6-d-Nal(2')7-NMe-Arg8-NMe-Trp9-NMe-Lys]-NH2 (17). It is known that the pharmacophore (His6-DNal7-Arg8-Trp9) of the SHU-9119 peptides occupies a β II-turn-like region with the turn centered about DNal7-Arg8. The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg8 and Trp9 side chains are involved in a majority of the interactions with the receptor. While Arg8 forms polar contacts with D154 and D158 of hMC3R, Trp9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp9-hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.
Collapse
Affiliation(s)
- Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Udaya Kiran Marelli
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Johannes G Beck
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Florian Opperer
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
12
|
Pawar K, Kolli CS, Rangari VK, Babu RJ. Transdermal Iontophoretic Delivery of Lysine-Proline-Valine (KPV) Peptide Across Microporated Human Skin. J Pharm Sci 2017; 106:1814-1820. [PMID: 28343991 DOI: 10.1016/j.xphs.2017.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 01/01/2023]
Abstract
Lysine-proline-valine (KPV) is a C-terminal peptide fragment of α-melanocyte stimulating hormone with potent anti-inflammatory properties. Present study investigates various transdermal enhancement strategies such as iontophoresis (ITP), microneedles (MN), and their combination (ITP + MN) on KPV delivery across dermatomed human skin. KPV attains a positive charge at pH less than 7.0, thus anodal ITP was used. The influence of current strength, KPV concentration, and duration of current application on the KPV delivery was investigated. At defined ITP parameters, the influence of MN on KPV delivery (ITP + MN) across skin was also determined. KPV permeation was less than detectable levels (limit of detection, 0.01 μg/mL) by simple passive diffusion. However, KPV permeation was increased to 4.4 μg/cm2/h by MN treatment. Furthermore, ITP and ITP + MN increased the permeation rate by 8 and 35 fold, respectively, as compared to MN alone. The skin retention levels of KPV by MN, ITP, and ITP + MN were increased by 5, 10, and 10 fold, respectively, as compared to passive diffusion. Confocal studies indicate that fluorescein isothiocyanate-labeled KPV migrated through the stratum corneum, along the microchannels and into the lower epidermal tissue because the fluorescence was observed beyond the depth of 100 μm.
Collapse
Affiliation(s)
- Kasturi Pawar
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama 36849
| | - Chandra S Kolli
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Health Sciences University, Clovis, California 93612
| | - Vijaya K Rangari
- Department of Materials Science and Engineering, Tuskegee University, Tuskegee, Alabama 36088
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama 36849.
| |
Collapse
|
13
|
Tripeptide K(D)PT Is Well Tolerated in Mild-to-moderate Ulcerative Colitis: Results from a Randomized Multicenter Study. Inflamm Bowel Dis 2017; 23:261-271. [PMID: 28092306 DOI: 10.1097/mib.0000000000001000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND K(D)PT showed marked anti-inflammatory properties in preclinical studies and exhibited very low toxicity in phase I and preclinical trials. In this study, efficacy and safety of oral K(D)PT were evaluated in patients with mild-to-moderate active ulcerative colitis. METHODS A multicenter, randomized, double-blind, phase IIa trial was performed comparing add-on oral K(D)PT twice a day (20, 50, or 100 mg) with placebo in patients with mild-to-moderate active ulcerative colitis on baseline medication. The primary objective was to determine the difference in time to sustained improvement in colitis activity index (CAI) of ≥50% at week 8 between pooled K(D)PT group and placebo. Secondary endpoints included remission rates and CAI response at different time points. RESULTS Compared with placebo, K(D)PT (pooled group) resulted in significantly higher proportions of patients in remission at 2 and 4 weeks, (2 wk: P = 0.0349; 4 wk: P = 0.0278) and a significantly higher proportion of patients with CAI response at week 8 (P = 0.0434). K(D)PT (pooled group) met the primary endpoint after additional analyses. Because of high placebo response rates, subgroup analyses tried to identify patients with unquestionably active and more severe, but still moderate, disease (CAI score ≥9 or taking more than one concomitant medication). These subgroups showed earlier and statistically significant CAI responses to K(D)PT versus placebo. All doses of K(D)PT were well tolerated. CONCLUSIONS Despite a very high placebo rate after week 4, study data in this preliminary trial strongly suggest that add-on K(D)PT is efficacious in patients with mild-to-moderate ulcerative colitis. Moreover, K(D)PT showed an excellent safety profile.
Collapse
|
14
|
Singh J, Joshi S, Mumtaz S, Maurya N, Ghosh I, Khanna S, Natarajan VT, Mukhopadhyay K. Enhanced Cationic Charge is a Key Factor in Promoting Staphylocidal Activity of α-Melanocyte Stimulating Hormone via Selective Lipid Affinity. Sci Rep 2016; 6:31492. [PMID: 27526963 PMCID: PMC4985751 DOI: 10.1038/srep31492] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
The steady rise in antimicrobial resistance poses a severe threat to global public health by hindering treatment of an escalating spectrum of infections. We have previously established the potent activity of α-MSH, a 13 residue antimicrobial peptide, against the opportunistic pathogen Staphylococcus aureus. Here, we sought to determine whether an increase in cationic charge in α-MSH could contribute towards improving its staphylocidal potential by increasing its interaction with anionic bacterial membranes. For this we designed novel α-MSH analogues by replacing polar uncharged residues with lysine and alanine. Similar to α-MSH, the designed peptides preserved turn/random coil conformation in artificial bacterial mimic 1,2-dimyristoyl-sn-glycero-3-phosphocholine:1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (7:3, w/w) vesicles and showed preferential insertion in the hydrophobic core of anionic membranes. Increased cationic charge resulted in considerable augmentation of antibacterial potency against MSSA and MRSA. With ~18-fold better binding than α-MSH to bacterial mimic vesicles, the most charged peptide KKK-MSH showed enhanced membrane permeabilization and depolarization activity against intact S. aureus. Scanning electron microscopy confirmed a membrane disruptive mode of action for KKK-MSH. Overall, increasing the cationic charge improved the staphylocidal activity of α-MSH without compromising its cell selectivity. The present study would help in designing more effective α-MSH-based peptides to combat clinically relevant staphylococcal infections.
Collapse
Affiliation(s)
- Jyotsna Singh
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Seema Joshi
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sana Mumtaz
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Nancy Maurya
- Biochemistry and Environmental Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Shivangi Khanna
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110020, India
| | - Vivek T Natarajan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110020, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
15
|
Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 2016; 15:551-67. [PMID: 27020098 DOI: 10.1038/nrd.2016.39] [Citation(s) in RCA: 585] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulated inflammation is a central pathological process in diverse disease states. Traditionally, therapeutic approaches have sought to modulate the pro- or anti-inflammatory limbs of inflammation, with mixed success. However, insight into the pathways by which inflammation is resolved has highlighted novel opportunities to pharmacologically manipulate these processes - a strategy that might represent a complementary (and perhaps even superior) therapeutic approach. This Review discusses the state of the art in the biology of resolution of inflammation, highlighting the opportunities and challenges for translational research in this field.
Collapse
Affiliation(s)
- James N Fullerton
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, UK
| |
Collapse
|
16
|
Wei P, Yang Y, Liu Z, Huang J, Gong Y, Sun H. Oral Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to fight experimental colitis. Drug Deliv 2015; 23:2058-64. [PMID: 26673899 DOI: 10.3109/10717544.2015.1122672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The oral delivery of peptides is a highly attractive treatment approach. However, the harsh environment of the gastrointestinal tract limits its application. Here, we utilize Bifidobacterium as a delivery system to orally deliver a potent anti-inflammatory but short duration peptide alpha-melanocyte-stimulating hormone (α-MSH) against experimental colitis. The aim of our study was to facilitate the efficient oral delivery of α-MSH. We designed a vector of pBDMSH and used it to construct a Bifidobacterium longum expressing α-MSH. We then determined the bioactivity of recombinant Bifidobacterium in lipopolysaccharide-induced inflammatory models of HT-29 cells. Finally, we used Bifidobacterium expressing α-MSH against dextran sulfate sodium (DSS)-induced ulcerative colitis mice. Results based on the myeloperoxidase activity, the levels of inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-10 and the histological injury of colon tissue reveal recombinant Bifidobacterium was efficient in attenuating DSS-induced ulcerative colitis, suggesting an alternative way to use Bifidobacterium as a delivery system to deliver α-MSH for DSS-induced ulcerative colitis therapy.
Collapse
Affiliation(s)
- Pijin Wei
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Yan Yang
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Zhaobing Liu
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Junli Huang
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Yahui Gong
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Hanxiao Sun
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| |
Collapse
|
17
|
Wei P, Yang Y, Ding Q, Li X, Sun H, Liu Z, Huang J, Gong Y. Oral delivery of Bifidobacterium longum expressing α-melanocyte-stimulating hormone to combat ulcerative colitis. J Med Microbiol 2015; 65:160-168. [PMID: 26567174 DOI: 10.1099/jmm.0.000197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
α-Melanocyte-stimulating hormone (α-MSH) is a tridecapeptide derived from pro-opiomelanocortin that exhibits potent anti-inflammatory properties by regulating the production of inflammatory mediators. This peptide has been well established in several inflammatory models, including inflammatory bowel disease (IBD). However, its extremely short duration in vivo limits its clinical application. To address this limitation, Bifidobacterium was used here as a carrier to deliver α-MSH. We utilized α-MSH-engineered Bifidobacterium against IBD, which is closely linked to immune and intestinal microbiota dysfunction. First, we constructed a Bifidobacterium longum secreting α-MSH (B. longum-α-MSH). We then tested the recombinant α-MSH expression and determined its bioactivity in HT-29 cells. To assess its effectiveness, B. longum-α-MSH was used against an ulcerative colitis (UC) model in rats induced by dextran sulfate sodium. The data showed that α-MSH expression in B. longum-α-MSH was effective, and its biological activity was similar to the synthesized one. This UC model experiment indicated that B. longum-α-MSH successfully colonized the intestinal gut, expressed bioactive α-MSH and had a significant anti-inflammatory effect. The results demonstrate the feasibility of preventing IBD by using B. longum-α-MSH.
Collapse
Affiliation(s)
- Pijin Wei
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yan Yang
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Qing Ding
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Xiuying Li
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Hanxiao Sun
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zhaobing Liu
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Junli Huang
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yahui Gong
- Institute of Genomic Medicine Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
18
|
Antón Palma B, Leff Gelman P, Medecigo Ríos M, Calva Nieves JC, Acevedo Ortuño R, Matus Ortega ME, Hernández Calderón JA, Hernández Miramontes R, Flores Zamora A, Salazar Juárez A. Generation of a novel monoclonal antibody that recognizes the alpha (α)-amidated isoform of a valine residue. BMC Neurosci 2015; 16:65. [PMID: 26463686 PMCID: PMC4603347 DOI: 10.1186/s12868-015-0206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background Alpha (α)-amidation of peptides is a mechanism required for the conversion of prohormones into functional peptide sequences that display biological activities, receptor recognition and signal transduction on target cells. Alpha (α)-amidation occurs in almost all species and amino acids identified in nature. C-terminal valine amide neuropeptides constitute the smallest group of functional peptide compounds identified in neurosecretory structures in vertebrate and invertebrate species. Methods The α-amidated isoform of valine residue (Val-CONH2) was conjugated to KLH-protein carrier and used to immunize mice. Hyperimmune animals displaying high titers of valine amide antisera were used to generate stable hybridoma-secreting mAbs. Three productive hybridoma (P15A4, P17C11, and P18C5) were tested against peptides antigens containing both the C-terminal α-amidated (–CONH2) and free α-carboxylic acid (−COO−) isovariant of the valine residue. Results P18C5 mAb displayed the highest specificity and selectivity against C-terminal valine amidated peptide antigens in different immunoassays. P18C5 mAb-immunoreactivity exhibited a wide distribution along the neuroaxis of the rat brain, particularly in brain areas that did not cross-match with the neuronal distribution of known valine amide neuropeptides (α-MSH, adrenorphin, secretin, UCN1-2). These brain regions varied in the relative amount of putative novel valine amide peptide immunoreactive material (nmol/μg protein) estimated through a fmol-sensitive solid-phase radioimmunoassay (RIA) raised for P18C5 mAb. Conclusions Our results demonstrate the versatility of a single mAb able to differentiate between two structural subdomains of a single amino acid. This mAb offers a wide spectrum of potential applications in research and medicine, whose uses may extend from a biological reagent (used to detect valine amidated peptide substances in fluids and tissues) to a detoxifying reagent (used to neutralize exogenous toxic amide peptide compounds) or as a specific immunoreagent in immunotherapy settings (used to reduce tumor growth and tumorigenesis) among many others.
Collapse
Affiliation(s)
- Benito Antón Palma
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Philippe Leff Gelman
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico. .,Department of Neuroscience, National Institute of Perinatology, Montes Urales # 800, 11000, México D.F., Mexico.
| | - Mayra Medecigo Ríos
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Juan Carlos Calva Nieves
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Rodolfo Acevedo Ortuño
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Maura Epifanía Matus Ortega
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Jorge Alberto Hernández Calderón
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Ricardo Hernández Miramontes
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Anabel Flores Zamora
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Alberto Salazar Juárez
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| |
Collapse
|
19
|
Cai M, Marelli UK, Bao J, Beck JG, Opperer F, Rechenmacher F, McLeod KR, Zingsheim MR, Doedens L, Kessler H, Hruby VJ. Systematic Backbone Conformational Constraints on a Cyclic Melanotropin Ligand Leads to Highly Selective Ligands for Multiple Melanocortin Receptors. J Med Chem 2015. [PMID: 26218460 DOI: 10.1021/acs.jmedchem.5b00102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human melanocortin receptors (hMCRs) have been challenging targets to develop ligands that are explicitly selective for each of their subtypes. To modulate the conformational preferences of the melanocortin ligands and improve the biofunctional agonist/antagonist activities and selectivities, we have applied a backbone N-methylation approach on Ac-Nle-c[Asp-His-D-Nal(2')-Arg-Trp-Lys]-NH2 (Ac-Nle(4)-c[Asp(5),D-Nal(2')(7),Lys(10)]-NH2), a nonselective cyclic peptide antagonist at hMC3R and hMC4R and an agonist at hMC1R and hMC5R. Systematic N-methylated derivatives of Ac-Nle(4)-c[Asp(5),D-Nal(2')(7),Lys(10)]-NH2, with all possible backbone N-methylation combinations, have been synthesized and examined for their binding and functional activities toward melanocortin receptor subtypes 1, 3, 4, and 5 (hMCRs). Several N-methylated analogues are selective and potent agonists or antagonists for hMC1R or hMC5R or have selective antagonist activity for hMC3R. The selective hMC1R ligands show strong binding for human melanoma cells. We have also discovered the first universal antagonist (compound 19) for all subtypes of hMCRs.
Collapse
Affiliation(s)
- Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Udaya Kiran Marelli
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Jennifer Bao
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Johannes G Beck
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Florian Opperer
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Kaitlyn R McLeod
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Morgan R Zingsheim
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| | - Lucas Doedens
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , 85747 Garching, Germany.,Department of Chemistry, Faculty of Science, King Abdulaziz University , 21589 Jeddah, Saudi Arabia
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
20
|
Pawar KR, Mulabagal V, Smith F, Kolli CS, Rangari VK, Babu RJ. Stability-indicating HPLC assay for lysine-proline-valine (KPV) in aqueous solutions and skin homogenates. Biomed Chromatogr 2014; 29:716-21. [PMID: 25298219 DOI: 10.1002/bmc.3347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 08/15/2014] [Accepted: 08/25/2014] [Indexed: 11/06/2022]
Abstract
A simple, sensitive and stability-indicating high-performance liquid chromatographic (HPLC) assay method was developed and validated for a bioactive peptide, lysine-proline-valine (KPV) in aqueous solutions and skin homogenates. Chromatographic separation was achieved on a reversed phase Phenomenex C18 column (4.6 × 250 mm, packed with 5 µm silica particles) with a gradient mobile phase consisting of 0.1% trifluoroacetic acid (TFA) in water (A) and 0.1% TFA in acetonitrile (B). The proposed HPLC method was validated with respect to accuracy, precision, linearity, repeatability, limit of detection (LOD) and limit of quantitation (LOQ). The calibration curve was linear with a correlation coefficient (r) of 0.9999. Relative standard deviation values of accuracy and precision experiments were <2. The LOD and LOQ of KPV were 0.01 and 0.25 µg/mL, respectively. Under stress conditions (acid, alkali and hydrogen peroxide) KPV yielded lys-pro-diketopiperazine as major degradation product, which was identified by flow injection MS analysis. The developed HPLC method was found to be efficient in separating the active peptide from its degradation products generated under various stress conditions. Also, the validated method was able to separate KPV from other peaks arising from endogenous components of the skin homogenate.
Collapse
Affiliation(s)
- Kasturi R Pawar
- Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | | | | | | | | | | |
Collapse
|
21
|
Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide. BIOMED RESEARCH INTERNATIONAL 2014; 2014:874610. [PMID: 25140322 PMCID: PMC4130143 DOI: 10.1155/2014/874610] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/22/2014] [Accepted: 07/01/2014] [Indexed: 12/18/2022]
Abstract
The alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide belonging to the melanocortin family. It is well known for its anti-inflammatory and antipyretic effects and shares several characteristics with antimicrobial peptides (AMPs). There have been some recent reports about the direct antimicrobial activity of α-MSH against various microbes belonging to both fungal and bacterial pathogens. Similar to α-MSH's anti-inflammatory properties, its C-terminal residues also exhibit antimicrobial activity parallel to that of the entire peptide. This review is focused on the current findings regarding the direct antimicrobial potential and immunomodulatory mechanism of α-MSH and its C-terminal fragments, with particular emphasis on the prospects of α-MSH based peptides as a strong anti-infective agent.
Collapse
|
22
|
Regulation of melanopsins and Per1 by α -MSH and melatonin in photosensitive Xenopus laevis melanophores. BIOMED RESEARCH INTERNATIONAL 2014; 2014:654710. [PMID: 24959583 PMCID: PMC4052817 DOI: 10.1155/2014/654710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 12/21/2022]
Abstract
α-MSH and light exert a dispersing effect on pigment granules of Xenopus laevis melanophores; however, the intracellular signaling pathways are different. Melatonin, a hormone that functions as an internal signal of darkness for the organism, has opposite effects, aggregating the melanin granules. Because light functions as an important synchronizing signal for circadian rhythms, we further investigated the effects of both hormones on genes related to the circadian system, namely, Per1 (one of the clock genes) and the melanopsins, Opn4x and Opn4m (photopigments). Per1 showed temporal oscillations, regardless of the presence of melatonin or α-MSH, which slightly inhibited its expression. Melatonin effects on melanopsins depend on the time of application: if applied in the photophase it dramatically decreased Opn4x and Opn4m expressions, and abolished their temporal oscillations, opposite to α-MSH, which increased the melanopsins' expressions. Our results demonstrate that unlike what has been reported for other peripheral clocks and cultured cells, medium changes or hormones do not play a major role in synchronizing the Xenopus melanophore population. This difference is probably due to the fact that X. laevis melanophores possess functional photopigments (melanopsins) that enable these cells to primarily respond to light, which triggers melanin dispersion and modulates gene expression.
Collapse
|
23
|
Jeong JK, Diano S. Prolyl carboxypeptidase and its inhibitors in metabolism. Trends Endocrinol Metab 2013; 24:61-7. [PMID: 23245768 PMCID: PMC3893043 DOI: 10.1016/j.tem.2012.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/30/2012] [Accepted: 11/04/2012] [Indexed: 01/09/2023]
Abstract
Proopiomelanocortin (POMC)-expressing neurons in the hypothalamus integrate a variety of central and peripheral metabolic inputs, and regulate energy homeostasis by controlling energy expenditure and food intake. To accomplish this, a precise balance of production and degradation of α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide and product of the POMC gene, in the hypothalamus, is crucial. Prolyl carboxypeptidase (PRCP) is a key enzyme that degrades α-MSH to an inactive form unable to inhibit food intake. Because it represents a new therapeutic target for the treatment of metabolic disorders, such as obesity and diabetes, efforts have been made to generate potent, brain-penetrant PRCP inhibitors. Here, we discuss the role of PRCP on energy metabolism and the development of PRCP inhibitors.
Collapse
Affiliation(s)
- Jin Kwon Jeong
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
24
|
Henagan TM, Forney L, Dietrich MA, Harrell BR, Stewart LK. Melanocortin receptor expression is associated with reduced CRP in response to resistance training. J Appl Physiol (1985) 2012; 113:393-400. [PMID: 22678961 PMCID: PMC4422369 DOI: 10.1152/japplphysiol.00107.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/03/2012] [Indexed: 12/18/2022] Open
Abstract
The existing paradigm of exercise-induced decreases in chronic inflammation focuses on the expression of inflammatory receptors on systemic monocytes in response to exercise training, with the role of anti-inflammatory receptors largely ignored. Our recent preliminary studies indicate that the anti-inflammatory melanocortin receptors (MCRs) may play a role in modulating exercise-induced decreases in chronic inflammation. Here, we present a study designed to determine the effect of intense, resistance exercise training on systemic monocyte MCR expression. Because low-grade chronic inflammation is associated with elevated cardiometabolic risk in healthy populations and exercise decreases chronic inflammation, we investigated the associations between systemic monocyte cell surface expression of MCRs and inflammatory markers as a possible mechanism for the beneficial anti-inflammatory effects of resistance training. To this end, the present study includes 40 adults (aged 19-27 yr) and implements a 12-wk periodized, intensive resistance training intervention. Melanocortin 1 and 3 receptor expression on systemic monocytes and inflammatory markers, including C-reactive protein (CRP), interleukin (IL)-6, IL-1β, and IL-10, were measured before and after the intervention. Resistance training significantly altered MCR systemic monocyte cell surface expression, had no chronic effects on IL-6, IL-1β, or IL-10 expression, but significantly decreased CRP levels from a moderate to a low cardiovascular disease risk category. More specifically, decreased melanocortin 3 receptor expression significantly correlated with decreased CRP, independent of changes in adiposity. These data suggest that the observed responses in MCR expression and decreases in cardiovascular disease risk in response to resistance training represent an important anti-inflammatory mechanism in regulating exercise-induced decreases in chronic inflammation that occur independent of chronic changes in systemic cytokines.
Collapse
Affiliation(s)
- Tara M Henagan
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | | | | | | |
Collapse
|
25
|
Hen G, Yosefi S, Shinder D, Or A, Mygdal S, Condiotti R, Galun E, Bor A, Sela-Donenfeld D, Friedman-Einat M. Gene transfer to chicks using lentiviral vectors administered via the embryonic chorioallantoic membrane. PLoS One 2012; 7:e36531. [PMID: 22606269 PMCID: PMC3350527 DOI: 10.1371/journal.pone.0036531] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 04/03/2012] [Indexed: 12/22/2022] Open
Abstract
The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV), into the chorioallantoic membrane (CAM) of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP) or recombinant alpha-melanocyte-stimulating hormone (α-MSH) genes, driven by the cytomegalovirus (CMV) promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1)-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA), and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides.
Collapse
Affiliation(s)
- Gideon Hen
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sara Yosefi
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Dmitry Shinder
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Adi Or
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Sivan Mygdal
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Reba Condiotti
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amir Bor
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail: (DSD); (MFE)
| | | |
Collapse
|