1
|
Trivellin C, Torello Pianale L, Olsson L. Robustness quantification of a mutant library screen revealed key genetic markers in yeast. Microb Cell Fact 2024; 23:218. [PMID: 39098937 PMCID: PMC11298085 DOI: 10.1186/s12934-024-02490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Microbial robustness is crucial for developing cell factories that maintain consistent performance in a challenging environment such as large-scale bioreactors. Although tools exist to assess and understand robustness at a phenotypic level, the underlying metabolic and genetic mechanisms are not well defined, which limits our ability to engineer more strains with robust functions. RESULTS This study encompassed four steps. (I) Fitness and robustness were analyzed from a published dataset of yeast mutants grown in multiple environments. (II) Genes and metabolic processes affecting robustness or fitness were identified, and 14 of these genes were deleted in Saccharomyces cerevisiae CEN.PK113-7D. (III) The mutants bearing gene deletions were cultivated in three perturbation spaces mimicking typical industrial processes. (IV) Fitness and robustness were determined for each mutant in each perturbation space. We report that robustness varied according to the perturbation space. We identified genes associated with increased robustness such as MET28, linked to sulfur metabolism; as well as genes associated with decreased robustness, including TIR3 and WWM1, both involved in stress response and apoptosis. CONCLUSION The present study demonstrates how phenomics datasets can be analyzed to reveal the relationship between phenotypic response and associated genes. Specifically, robustness analysis makes it possible to study the influence of single genes and metabolic processes on stable microbial performance in different perturbation spaces. Ultimately, this information can be used to enhance robustness in targeted strains.
Collapse
Affiliation(s)
- Cecilia Trivellin
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Luca Torello Pianale
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
2
|
Trivellin C, Rugbjerg P, Olsson L. Performance and robustness analysis reveals phenotypic trade-offs in yeast. Life Sci Alliance 2024; 7:e202302215. [PMID: 37903627 PMCID: PMC10618107 DOI: 10.26508/lsa.202302215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
To design strains that can function efficiently in complex industrial settings, it is crucial to consider their robustness, that is, the stability of their performance when faced with perturbations. In the present study, we cultivated 24 Saccharomyces cerevisiae strains under conditions that simulated perturbations encountered during lignocellulosic bioethanol production, and assessed the performance and robustness of multiple phenotypes simultaneously. The observed negative correlations confirmed a trade-off between performance and robustness of ethanol yield, biomass yield, and cell dry weight. Conversely, the specific growth rate performance positively correlated with the robustness, presumably because of evolutionary selection for robust, fast-growing cells. The Ethanol Red strain exhibited both high performance and robustness, making it a good candidate for bioproduction in the tested perturbation space. Our results experimentally map the robustness-performance trade-offs, previously demonstrated mainly by single-phenotype and computational studies.
Collapse
Affiliation(s)
- Cecilia Trivellin
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Peter Rugbjerg
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- Enduro Genetics ApS, Copenhagen, Denmark
| | - Lisbeth Olsson
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Lee U, Mortola EN, Kim EJ, Long M. Evolution and maintenance of phenotypic plasticity. Biosystems 2022; 222:104791. [DOI: 10.1016/j.biosystems.2022.104791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
|
4
|
Schneider HM. Characterization, costs, cues and future perspectives of phenotypic plasticity. ANNALS OF BOTANY 2022; 130:131-148. [PMID: 35771883 PMCID: PMC9445595 DOI: 10.1093/aob/mcac087] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/28/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Plastic responses of plants to the environment are ubiquitous. Phenotypic plasticity occurs in many forms and at many biological scales, and its adaptive value depends on the specific environment and interactions with other plant traits and organisms. Even though plasticity is the norm rather than the exception, its complex nature has been a challenge in characterizing the expression of plasticity, its adaptive value for fitness and the environmental cues that regulate its expression. SCOPE This review discusses the characterization and costs of plasticity and approaches, considerations, and promising research directions in studying plasticity. Phenotypic plasticity is genetically controlled and heritable; however, little is known about how organisms perceive, interpret and respond to environmental cues, and the genes and pathways associated with plasticity. Not every genotype is plastic for every trait, and plasticity is not infinite, suggesting trade-offs, costs and limits to expression of plasticity. The timing, specificity and duration of plasticity are critical to their adaptive value for plant fitness. CONCLUSIONS There are many research opportunities to advance our understanding of plant phenotypic plasticity. New methodology and technological breakthroughs enable the study of phenotypic responses across biological scales and in multiple environments. Understanding the mechanisms of plasticity and how the expression of specific phenotypes influences fitness in many environmental ranges would benefit many areas of plant science ranging from basic research to applied breeding for crop improvement.
Collapse
|
5
|
Brutovský B. Scales of Cancer Evolution: Selfish Genome or Cooperating Cells? Cancers (Basel) 2022; 14:cancers14133253. [PMID: 35805025 PMCID: PMC9264996 DOI: 10.3390/cancers14133253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Cancer continuously evolves its ability to survive in time-varying microenvironment, which results, regarding the therapeutic context, in its therapeutic resistance. As it is accepted that the development of resistance is the direct consequence of intratumour heterogeneity, its evolutionary etiology is intensively studied. Models of carinogenesis are often assessed accordingly to how well they fit into the evolutionary scenario. In the paper, the relevant observations and concepts in cancer research, such as intratumour heterogeneity, cell plasticity, and Markov cell state dynamics, are reviewed and integrated into an evolutionary model. The possibility that the interaction between cancer cells can be interpreted as cooperation is proposed. Abstract The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective fitness of the principal selection unit on that timescale. Interpretation of some features of cancer progression, such as increased heterogeneity of isogenic cancer cells, is difficult from the most straightforward evolutionary view with the cancer cell as the principal selection unit. In the paper, the relation between the two levels of intratumour heterogeneity, genetic, due to genetic instability, and non-genetic, due to phenotypic plasticity, is reviewed and the evolutionary role of the latter is outlined. In analogy to the evolutionary optimization in a changing environment, the cell state dynamics in cancer clones are interpreted as the risk diversifying strategy bet hedging, optimizing the balance between the exploitation and exploration of the cell state space.
Collapse
Affiliation(s)
- Branislav Brutovský
- Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| |
Collapse
|
6
|
Robustness: linking strain design to viable bioprocesses. Trends Biotechnol 2022; 40:918-931. [PMID: 35120750 DOI: 10.1016/j.tibtech.2022.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/18/2022]
Abstract
Microbial cell factories are becoming increasingly popular for the sustainable production of various chemicals. Metabolic engineering has led to the design of advanced cell factories; however, their long-term yield, titer, and productivity falter when scaled up and subjected to industrial conditions. This limitation arises from a lack of robustness - the ability to maintain a constant phenotype despite the perturbations of such processes. This review describes predictable and stochastic industrial perturbations as well as state-of-the-art technologies to counter process variability. Moreover, we distinguish robustness from tolerance and discuss the potential of single-cell studies for improving system robustness. Finally, we highlight ways of achieving consistent and comparable quantification of robustness that can guide the selection of strains for industrial bioprocesses.
Collapse
|
7
|
Sato A. Chaperones, Canalization, and Evolution of Animal Forms. Int J Mol Sci 2018; 19:E3029. [PMID: 30287767 PMCID: PMC6213012 DOI: 10.3390/ijms19103029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Over half a century ago, British developmental biologist Conrad Hal Waddington proposed the idea of canalization, that is, homeostasis in development. Since the breakthrough that was made by Rutherford and Lindquist (1998), who proposed a role of Hsp90 in developmental buffering, chaperones have gained much attention in the study of canalization. However, recent studies have revealed that a number of other molecules are also potentially involved in canalization. Here, I introduce the emerging role of DnaJ chaperones in canalization. I also discuss how the expression levels of such buffering molecules can be altered, thereby altering organismal development. Since developmental robustness is maternally inherited in various organisms, I propose that dynamic bet hedging, an increase in within-clutch variation in offspring phenotypes that is caused by unpredictable environmental challenges to the mothers, plays a key role in altering the expression levels of buffering molecules. Investigating dynamic bet hedging at the molecular level and how it impacts upon morphological phenotypes will help our understanding of the molecular mechanisms of canalization and evolutionary processes.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan.
- Marine Biological Association of the UK, The Laboratory, Plymouth PL1 2PB, UK.
| |
Collapse
|
8
|
Conley D, Johnson R, Domingue B, Dawes C, Boardman J, Siegal M. A sibling method for identifying vQTLs. PLoS One 2018; 13:e0194541. [PMID: 29617452 PMCID: PMC5884517 DOI: 10.1371/journal.pone.0194541] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
The propensity of a trait to vary within a population may have evolutionary, ecological, or clinical significance. In the present study we deploy sibling models to offer a novel and unbiased way to ascertain loci associated with the extent to which phenotypes vary (variance-controlling quantitative trait loci, or vQTLs). Previous methods for vQTL-mapping either exclude genetically related individuals or treat genetic relatedness among individuals as a complicating factor addressed by adjusting estimates for non-independence in phenotypes. The present method uses genetic relatedness as a tool to obtain unbiased estimates of variance effects rather than as a nuisance. The family-based approach, which utilizes random variation between siblings in minor allele counts at a locus, also allows controls for parental genotype, mean effects, and non-linear (dominance) effects that may spuriously appear to generate variation. Simulations show that the approach performs equally well as two existing methods (squared Z-score and DGLM) in controlling type I error rates when there is no unobserved confounding, and performs significantly better than these methods in the presence of small degrees of confounding. Using height and BMI as empirical applications, we investigate SNPs that alter within-family variation in height and BMI, as well as pathways that appear to be enriched. One significant SNP for BMI variability, in the MAST4 gene, replicated. Pathway analysis revealed one gene set, encoding members of several signaling pathways related to gap junction function, which appears significantly enriched for associations with within-family height variation in both datasets (while not enriched in analysis of mean levels). We recommend approximating laboratory random assignment of genotype using family data and more careful attention to the possible conflation of mean and variance effects.
Collapse
Affiliation(s)
- Dalton Conley
- Department of Sociology, Princeton University, Princeton, NJ, United States of America
| | - Rebecca Johnson
- Department of Sociology, Princeton University, Princeton, NJ, United States of America
| | - Ben Domingue
- Graduate School of Education, Stanford University, Stanford, CA, United States of America
| | - Christopher Dawes
- Wilff Family Department of Politics, New York University, New York City, NY, United States of America
| | - Jason Boardman
- Institute for Behavioral Sciences, University of Colorado, Boulder, Boulder, CO, United States of America
| | - Mark Siegal
- Center for Genomics and Systems Biology, New York University, New York University, New York City, NY, United States of America
| |
Collapse
|
9
|
Geiler-Samerotte KA, Zhu YO, Goulet BE, Hall DW, Siegal ML. Selection Transforms the Landscape of Genetic Variation Interacting with Hsp90. PLoS Biol 2016; 14:e2000465. [PMID: 27768682 PMCID: PMC5074785 DOI: 10.1371/journal.pbio.2000465] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
The protein-folding chaperone Hsp90 has been proposed to buffer the phenotypic effects of mutations. The potential for Hsp90 and other putative buffers to increase robustness to mutation has had major impact on disease models, quantitative genetics, and evolutionary theory. But Hsp90 sometimes contradicts expectations for a buffer by potentiating rapid phenotypic changes that would otherwise not occur. Here, we quantify Hsp90’s ability to buffer or potentiate (i.e., diminish or enhance) the effects of genetic variation on single-cell morphological features in budding yeast. We corroborate reports that Hsp90 tends to buffer the effects of standing genetic variation in natural populations. However, we demonstrate that Hsp90 tends to have the opposite effect on genetic variation that has experienced reduced selection pressure. Specifically, Hsp90 tends to enhance, rather than diminish, the effects of spontaneous mutations and recombinations. This result implies that Hsp90 does not make phenotypes more robust to the effects of genetic perturbation. Instead, natural selection preferentially allows buffered alleles to persist and thereby creates the false impression that Hsp90 confers greater robustness. Most biologists appreciate that natural selection filters new mutations (e.g., by eliminating deleterious ones), such that genetic variation in nature is biased. The idea that selection also skews the types of genetic interactions that exist in nature is less appreciated. For example, studies spanning diverse species have shown that the protein Hsp90, which helps other proteins to fold properly, tends to diminish the observable effects of genetic variation. This observation has led to the assumption that Hsp90 also buffers the effects of new mutations. This untested assumption has served as a rationale for cancer-treatment strategies and shaped our understanding of variation in complex traits. We measured the effects of new mutations on the shapes and sizes of individual yeast cells and found that Hsp90 does not tend to buffer these effects. Instead, Hsp90 interacts with new mutations in diverse ways, sometimes buffering, but more often enhancing mutational effects on cell shape and size. We conclude that selection preferentially allows buffered mutations to persist in natural populations. This result alters common perceptions about why cryptic (i.e., buffered) genetic variation exists and casts doubt on cancer-treatment strategies aiming to target presumed buffers of mutational effects.
Collapse
Affiliation(s)
- Kerry A Geiler-Samerotte
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America.,Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yuan O Zhu
- Department of Biology, Stanford University, Stanford, California, United States of America.,Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Benjamin E Goulet
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - David W Hall
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Mark L Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
10
|
|
11
|
Ehrenreich IM, Pfennig DW. Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. ANNALS OF BOTANY 2016; 117:769-79. [PMID: 26359425 PMCID: PMC4845796 DOI: 10.1093/aob/mcv130] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/07/2015] [Accepted: 06/29/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Most, if not all, organisms possess the ability to alter their phenotype in direct response to changes in their environment, a phenomenon known as phenotypic plasticity. Selection can break this environmental sensitivity, however, and cause a formerly environmentally induced trait to evolve to become fixed through a process called genetic assimilation. Essentially, genetic assimilation can be viewed as the evolution of environmental robustness in what was formerly an environmentally sensitive trait. Because genetic assimilation has long been suggested to play a key role in the origins of phenotypic novelty and possibly even new species, identifying and characterizing the proximate mechanisms that underlie genetic assimilation may advance our basic understanding of how novel traits and species evolve. SCOPE This review begins by discussing how the evolution of phenotypic plasticity, followed by genetic assimilation, might promote the origins of new traits and possibly fuel speciation and adaptive radiation. The evidence implicating genetic assimilation in evolutionary innovation and diversification is then briefly considered. Next, the potential causes of phenotypic plasticity generally and genetic assimilation specifically are examined at the genetic, molecular and physiological levels and approaches that can improve our understanding of these mechanisms are described. The review concludes by outlining major challenges for future work. CONCLUSIONS Identifying and characterizing the proximate mechanisms involved in phenotypic plasticity and genetic assimilation promises to help advance our basic understanding of evolutionary innovation and diversification.
Collapse
Affiliation(s)
- Ian M Ehrenreich
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA and
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
|
13
|
Ho VWS, Wong MK, An X, Guan D, Shao J, Ng HCK, Ren X, He K, Liao J, Ang Y, Chen L, Huang X, Yan B, Xia Y, Chan LLH, Chow KL, Yan H, Zhao Z. Systems-level quantification of division timing reveals a common genetic architecture controlling asynchrony and fate asymmetry. Mol Syst Biol 2015; 11:814. [PMID: 26063786 PMCID: PMC4501849 DOI: 10.15252/msb.20145857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Coordination of cell division timing is crucial for proper cell fate specification and tissue growth. However, the differential regulation of cell division timing across or within cell types during metazoan development remains poorly understood. To elucidate the systems-level genetic architecture coordinating division timing, we performed a high-content screening for genes whose depletion produced a significant reduction in the asynchrony of division between sister cells (ADS) compared to that of wild-type during Caenorhabditis elegans embryogenesis. We quantified division timing using 3D time-lapse imaging followed by computer-aided lineage analysis. A total of 822 genes were selected for perturbation based on their conservation and known roles in development. Surprisingly, we find that cell fate determinants are not only essential for establishing fate asymmetry, but also are imperative for setting the ADS regardless of cellular context, indicating a common genetic architecture used by both cellular processes. The fate determinants demonstrate either coupled or separate regulation between the two processes. The temporal coordination appears to facilitate cell migration during fate specification or tissue growth. Our quantitative dataset with cellular resolution provides a resource for future analyses of the genetic control of spatial and temporal coordination during metazoan development.
Collapse
Affiliation(s)
- Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaomeng An
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Daogang Guan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jiaofang Shao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Hon Chun Kaoru Ng
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kan He
- Department of Biology, Hong Kong Baptist University, Hong Kong, China Center for Stem Cell and Translational Medicine, School of Life Sciences Anhui University, Hefei, China
| | - Jinyue Liao
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yingjin Ang
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Long Chen
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaotai Huang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Bin Yan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Leanne Lai Hang Chan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - King Lau Chow
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hong Yan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
14
|
O’Malley MA, Soyer OS, Siegal ML. A Philosophical Perspective on Evolutionary Systems Biology. BIOLOGICAL THEORY 2015; 10:6-17. [PMID: 26085823 PMCID: PMC4465572 DOI: 10.1007/s13752-015-0202-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB's progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology.
Collapse
Affiliation(s)
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Mark L. Siegal
- Department of Biology, Center for Genomics and Systems, Biology, New York University, New York, NY, USA
| |
Collapse
|
15
|
Abstract
No organism lives in a constant environment. Based on classical studies in molecular biology, many have viewed microbes as following strict rules for shifting their metabolic activities when prevailing conditions change. For example, students learn that the bacterium Escherichia coli makes proteins for digesting lactose only when lactose is available and glucose, a better sugar, is not. However, recent studies, including three PLOS Biology papers examining sugar utilization in the budding yeast Saccharomyces cerevisiae, show that considerable heterogeneity in response to complex environments exists within and between populations. These results join similar recent results in other organisms that suggest that microbial populations anticipate predictable environmental changes and hedge their bets against unpredictable ones. The classical view therefore represents but one special case in a range of evolutionary adaptations to environmental changes that all organisms face. This Primer explores three recent PLOS Biology papers that increase our understanding of how microbes respond optimally to the changing availability of nutrients in their environment. Read the Research Articles.
Collapse
Affiliation(s)
- Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Bauer CR, Li S, Siegal ML. Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness. Mol Syst Biol 2015; 11:773. [PMID: 25609648 PMCID: PMC4332149 DOI: 10.15252/msb.20145264] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The concept of robustness in biology has gained much attention recently, but a mechanistic understanding of how genetic networks regulate phenotypic variation has remained elusive. One approach to understand the genetic architecture of variability has been to analyze dispensable gene deletions in model organisms; however, the most important genes cannot be deleted. Here, we have utilized two systems in yeast whereby essential genes have been altered to reduce expression. Using high-throughput microscopy and image analysis, we have characterized a large number of morphological phenotypes, and their associated variation, for the majority of essential genes in yeast. Our results indicate that phenotypic robustness is more highly dependent upon the expression of essential genes than on the presence of dispensable genes. Morphological robustness appears to be a general property of a genotype that is closely related to pleiotropy. While the fitness profile across a range of expression levels is idiosyncratic to each gene, the global pattern indicates that there is a window in which phenotypic variation can be released before fitness effects are observable.
Collapse
Affiliation(s)
- Christopher R Bauer
- Department of Biology, NYU Center for Genomics and Systems Biology, New York, NY, USA
| | - Shuang Li
- Department of Biology, NYU Center for Genomics and Systems Biology, New York, NY, USA
| | - Mark L Siegal
- Department of Biology, NYU Center for Genomics and Systems Biology, New York, NY, USA
| |
Collapse
|
17
|
Siegal ML, Leu JY. On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2014; 45:496-517. [PMID: 26034410 PMCID: PMC4448758 DOI: 10.1146/annurev-ecolsys-120213-091705] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biologists have long observed that physiological and developmental processes are insensitive, or robust, to many genetic and environmental perturbations. A complete understanding of the evolutionary causes and consequences of this robustness is lacking. Recent progress has been made in uncovering the regulatory mechanisms that underlie environmental robustness in particular. Less is known about robustness to the effects of mutations, and indeed the evolution of mutational robustness remains a controversial topic. The controversy has spread to related topics, in particular the evolutionary relevance of cryptic genetic variation. This review aims to synthesize current understanding of robustness mechanisms and to cut through the controversy by shedding light on what is and is not known about mutational robustness. Some studies have confused mutational robustness with non-additive interactions between mutations (epistasis). We conclude that a profitable way forward is to focus investigations (and rhetoric) less on mutational robustness and more on epistasis.
Collapse
Affiliation(s)
- Mark L Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003;
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529;
| |
Collapse
|
18
|
Jarosz DF, Lancaster AK, Brown JCS, Lindquist S. An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists. Cell 2014; 158:1072-1082. [PMID: 25171408 PMCID: PMC4424049 DOI: 10.1016/j.cell.2014.07.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/29/2014] [Accepted: 07/10/2014] [Indexed: 11/25/2022]
Abstract
[GAR(+)] is a protein-based element of inheritance that allows yeast (Saccharomyces cerevisiae) to circumvent a hallmark of their biology: extreme metabolic specialization for glucose fermentation. When glucose is present, yeast will not use other carbon sources. [GAR(+)] allows cells to circumvent this "glucose repression." [GAR(+)] is induced in yeast by a factor secreted by bacteria inhabiting their environment. We report that de novo rates of [GAR(+)] appearance correlate with the yeast's ecological niche. Evolutionarily distant fungi possess similar epigenetic elements that are also induced by bacteria. As expected for a mechanism whose adaptive value originates from the selective pressures of life in biological communities, the ability of bacteria to induce [GAR(+)] and the ability of yeast to respond to bacterial signals have been extinguished repeatedly during the extended monoculture of domestication. Thus, [GAR(+)] is a broadly conserved adaptive strategy that links environmental and social cues to heritable changes in metabolism.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Departments of Chemical and Systems Biology and of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex K Lancaster
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica C S Brown
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
19
|
Nikel PI, Silva-Rocha R, Benedetti I, de Lorenzo V. The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ Microbiol 2014; 16:628-42. [DOI: 10.1111/1462-2920.12360] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/23/2013] [Accepted: 12/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Pablo Iván Nikel
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| | - Ilaria Benedetti
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnología (CNB-CSIC); Madrid 28049 Spain
| |
Collapse
|
20
|
Blind RD. Disentangling biological signaling networks by dynamic coupling of signaling lipids to modifying enzymes. Adv Biol Regul 2014; 54:25-38. [PMID: 24176936 PMCID: PMC3946453 DOI: 10.1016/j.jbior.2013.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/08/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
An unresolved problem in biological signal transduction is how particular branches of highly interconnected signaling networks can be decoupled, allowing activation of specific circuits within complex signaling architectures. Although signaling dynamics and spatiotemporal mechanisms serve critical roles, it remains unclear if these are the only ways cells achieve specificity within networks. The transcription factor Steroidogenic Factor-1 (SF-1) is an excellent model to address this question, as it forms dynamic complexes with several chemically distinct lipid species (phosphatidylinositols, phosphatidylcholines and sphingolipids). This property is important since lipids bound to SF-1 are modified by lipid signaling enzymes (IPMK & PTEN), regulating SF-1 biological activity in gene expression. Thus, a particular SF-1/lipid complex can interface with a lipid signaling enzyme only if SF-1 has been loaded with a chemically compatible lipid substrate. This mechanism permits dynamic downstream responsiveness to constant upstream input, disentangling specific pathways from the full network. The potential of this paradigm to apply generally to nuclear lipid signaling is discussed, with particular attention given to the nuclear receptor superfamily of transcription factors and their phospholipid ligands.
Collapse
Affiliation(s)
- Raymond D Blind
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
21
|
Siegal ML. Crouching variation revealed. Mol Ecol 2013; 22:1187-9. [PMID: 23437837 DOI: 10.1111/mec.12195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 11/29/2012] [Accepted: 12/04/2012] [Indexed: 11/28/2022]
Abstract
The term 'phenotypic capacitance' was introduced nearly 15 years ago to describe the strain-specific effects of impairing Hsp90, a molecular chaperone, in the fly Drosophila melanogaster (Rutherford & Lindquist 1998). In one genetic background, Hsp90 depletion caused deformed eyes, whereas in other genetic backgrounds, the wings or abdomens or other aspects of morphology were affected. Hsp90 was therefore viewed as acting like a capacitor, allowing genetic differences to build up and to be released at a later time. In the years since, it has been debated whether capacitance is a laboratory curiosity or a major force in evolution. In this issue of Molecular Ecology, Takahashi (2013) presents evidence, from high-resolution morphometric analysis of fly wings, that a large number of other capacitors exist in D. melanogaster, and that the variation they reveal can be quite subtle. His results advance our understanding of capacitance and contribute to a new view of its role in evolutionary adaptation.
Collapse
Affiliation(s)
- Mark L Siegal
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
22
|
Geiler-Samerotte KA, Bauer CR, Li S, Ziv N, Gresham D, Siegal ML. The details in the distributions: why and how to study phenotypic variability. Curr Opin Biotechnol 2013; 24:752-9. [PMID: 23566377 PMCID: PMC3732567 DOI: 10.1016/j.copbio.2013.03.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
Abstract
Phenotypic variability is present even when genetic and environmental differences between cells are reduced to the greatest possible extent. For example, genetically identical bacteria display differing levels of resistance to antibiotics, clonal yeast populations demonstrate morphological and growth-rate heterogeneity, and mouse blastomeres from the same embryo have stochastic differences in gene expression. However, the distributions of phenotypes present among isogenic organisms are often overlooked; instead, many studies focus on population aggregates such as the mean. The details of these distributions are relevant to major questions in diverse fields, including the evolution of antimicrobial-drug and chemotherapy resistance. We review emerging experimental and statistical techniques that allow rigorous analysis of phenotypic variability and thereby may lead to advances across the biological sciences.
Collapse
Affiliation(s)
- K A Geiler-Samerotte
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, USA
| | | | | | | | | | | |
Collapse
|
23
|
Breker M, Gymrek M, Schuldiner M. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. ACTA ACUST UNITED AC 2013; 200:839-50. [PMID: 23509072 PMCID: PMC3601363 DOI: 10.1083/jcb.201301120] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unprecedented proteome plasticity in response to stress in yeast is revealed using a novel screening platform that allows tracking of protein localization and abundance at single-cell resolution. Uncovering the mechanisms underlying robust responses of cells to stress is crucial for our understanding of cellular physiology. Indeed, vast amounts of data have been collected on transcriptional responses in Saccharomyces cerevisiae. However, only a handful of pioneering studies describe the dynamics of proteins in response to external stimuli, despite the fact that regulation of protein levels and localization is an essential part of such responses. Here we characterized unprecedented proteome plasticity by systematically tracking the localization and abundance of 5,330 yeast proteins at single-cell resolution under three different stress conditions (DTT, H2O2, and nitrogen starvation) using the GFP-tagged yeast library. We uncovered a unique “fingerprint” of changes for each stress and elucidated a new response arsenal for adapting to radical environments. These include bet-hedging strategies, organelle rearrangement, and redistribution of protein localizations. All data are available for download through our online database, LOQATE (localization and quantitation atlas of yeast proteome).
Collapse
Affiliation(s)
- Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
24
|
Abstract
Evolutionary systems biology (ESB) is a rapidly growing integrative approach that has the core aim of generating mechanistic and evolutionary understanding of genotype-phenotype relationships at multiple levels. ESB's more specific objectives include extending knowledge gained from model organisms to non-model organisms, predicting the effects of mutations, and defining the core network structures and dynamics that have evolved to cause particular intracellular and intercellular responses. By combining mathematical, molecular, and cellular approaches to evolution, ESB adds new insights and methods to the modern evolutionary synthesis, and offers ways in which to enhance its explanatory and predictive capacities. This combination of prediction and explanation marks ESB out as a research manifesto that goes further than its two contributing fields. Here, we summarize ESB via an analysis of characteristic research examples and exploratory questions, while also making a case for why these integrative efforts are worth pursuing.
Collapse
Affiliation(s)
- Orkun S Soyer
- Warwick Centre for Synthetic Biology, School of Life Sciences, University of Warwick, Coventry, UK.
| | | |
Collapse
|
25
|
Baquero F. Epigenetics, epistasis and epidemics. Evol Med Public Health 2013; 2013:86-8. [PMID: 24481189 PMCID: PMC3868410 DOI: 10.1093/emph/eot009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/05/2013] [Indexed: 11/26/2022] Open
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| |
Collapse
|