1
|
Simonson AW, Zeppa JJ, Bucsan AN, Chao MC, Pokkali S, Hopkins F, Chase MR, Vickers AJ, Sutton MS, Winchell CG, Myers AJ, Ameel CL, Kelly R, Krouse B, Hood LE, Li J, Lehman CC, Kamath M, Tomko J, Rodgers MA, Donlan R, Chishti H, Jacob Borish H, Klein E, Scanga CA, Fortune S, Lin PL, Maiello P, Roederer M, Darrah PA, Seder RA, Flynn JL. CD4 T cells and CD8α+ lymphocytes are necessary for intravenous BCG-induced protection against tuberculosis in macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594183. [PMID: 38798646 PMCID: PMC11118459 DOI: 10.1101/2024.05.14.594183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tuberculosis (TB) is a major cause of morbidity and mortality worldwide despite widespread intradermal (ID) BCG vaccination in newborns. We previously demonstrated that changing the route and dose of BCG vaccination from 5×105 CFU ID to 5×107 CFU intravenous (IV) resulted in prevention of infection and disease in a rigorous, highly susceptible non-human primate model of TB. Identifying the immune mechanisms of protection for IV BCG will facilitate development of more effective vaccines against TB. Here, we depleted select lymphocyte subsets in IV BCG vaccinated macaques prior to Mtb challenge to determine the cell types necessary for that protection. Depletion of CD4 T cells or all CD8α expressing lymphoycytes (both innate and adaptive) resulted in loss of protection in most macaques, concomitant with increased bacterial burdens (~4-5 log10 thoracic CFU) and dissemination of infection. In contrast, depletion of only adaptive CD8αβ+ T cells did not significantly reduce protection against disease. Our results demonstrate that CD4 T cells and innate CD8α+ lymphocytes are critical for IV BCG-induced protection, supporting investigation of how eliciting these cells and their functions can improve future TB vaccines.
Collapse
Affiliation(s)
- Andrew W. Simonson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Joseph J. Zeppa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Allison N. Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Michael C. Chao
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Supriya Pokkali
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Forrest Hopkins
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Michael R. Chase
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Andrew J. Vickers
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
| | - Matthew S. Sutton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Caylin G. Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Amy J. Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Ryan Kelly
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Ben Krouse
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Luke E. Hood
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Jiaxiang Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Chelsea C. Lehman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Megha Kamath
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Rachel Donlan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Harris Chishti
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Animal Laboratory Resources, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Sarah Fortune
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health; Boston, MA, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Department of Pediatrics, Children’s Hospital of the University of Pittsburgh of UPMC; Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Patricia A. Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH); Bethesda, MD, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine; Pittsburgh, PA, USA
| |
Collapse
|
2
|
Roy A, Kumari Agnivesh P, Sau S, Kumar S, Pal Kalia N. Tweaking host immune responses for novel therapeutic approaches against Mycobacterium tuberculosis. Drug Discov Today 2023; 28:103693. [PMID: 37390961 DOI: 10.1016/j.drudis.2023.103693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
In TB, combat between the human host and Mycobacterium tuberculosis involves intricate interactions with immune cells. M. tuberculosis has evolved a complex evasion system to circumvent immune cells, leading to persistence and limiting its clearance by the host. Host-directed therapies are emerging approaches to modulate host responses, including inflammatory responses, cytokine responses, and autophagy, by using small molecules to curb mycobacterial infections. Targeting host immune pathways reduces the chances of antibiotic resistance to M. tuberculosis because, unlike antibiotics, this approach acts directly on the cells of the host. In this review, we discuss the role of immune cells during M. tuberculosis proliferation, provide a updated understanding of immunopathogenesis, and explore the range of host-modulating options for the clearance of this pathogen.
Collapse
Affiliation(s)
- Arnab Roy
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Sunil Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500 037, India.
| |
Collapse
|
3
|
Jeong D, Woo YD, Chung DH. Invariant natural killer T cells in lung diseases. Exp Mol Med 2023; 55:1885-1894. [PMID: 37696892 PMCID: PMC10545712 DOI: 10.1038/s12276-023-01024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 09/13/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of T cells that are characterized by a restricted T-cell receptor (TCR) repertoire and a unique ability to recognize glycolipid antigens. These cells are found in all tissues, and evidence to date suggests that they play many immunological roles in both homeostasis and inflammatory conditions. The latter include lung inflammatory diseases such as asthma and infections: the roles of lung-resident iNKT cells in these diseases have been extensively researched. Here, we provide insights into the biology of iNKT cells in health and disease, with a particular focus on the role of pulmonary iNKT cells in airway inflammation and other lung diseases.
Collapse
Affiliation(s)
- Dongjin Jeong
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, Polyakova V, Yablonskiy P. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. Int J Mol Sci 2023; 24:13261. [PMID: 37686061 PMCID: PMC10487556 DOI: 10.3390/ijms241713261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Tuberculosis (TB) remains an important public health problem and one of the leading causes of death. Individuals with latent tuberculosis infection (LTBI) have an increased risk of developing active TB. The problem of the diagnosis of the various stages of TB and the identification of infected patients in the early stages has not yet been solved. The existing tests (the tuberculin skin test and the interferon-gamma release assay) are useful to distinguish between active and latent infections. But these tests cannot be used to predict the development of active TB in individuals with LTBI. The purpose of this review was to analyze the extant data of the interaction of M. tuberculosis with immune cells and identify molecular predictive markers and markers of the early stages of TB. An analysis of more than 90 sources from the literature allowed us to determine various subpopulations of immune cells involved in the pathogenesis of TB, namely, macrophages, dendritic cells, B lymphocytes, T helper cells, cytotoxic T lymphocytes, and NK cells. The key molecular markers of the immune response to M. tuberculosis are cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17, IL-22b, IFNɣ, TNFa, and TGFß), matrix metalloproteinases (MMP-1, MMP-3, and MMP-9), and their inhibitors (TIMP-1, TIMP-2, TIMP-3, and TIMP-4). It is supposed that these molecules could be used as biomarkers to characterize different stages of TB infection, to evaluate the effectiveness of its treatment, and as targets of pharmacotherapy.
Collapse
Affiliation(s)
- Anastasiia Diatlova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Anastasia Lavrova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Dmitrii Medvedev
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Alexandr Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 St. Petersburg, Russia
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Piotr Yablonskiy
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| |
Collapse
|
5
|
Witt KD. Role of MHC class I pathways in Mycobacterium tuberculosis antigen presentation. Front Cell Infect Microbiol 2023; 13:1107884. [PMID: 37009503 PMCID: PMC10050577 DOI: 10.3389/fcimb.2023.1107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
MHC class I antigen processing is an underappreciated area of nonviral host–pathogen interactions, bridging both immunology and cell biology, where the pathogen’s natural life cycle involves little presence in the cytoplasm. The effective response to MHC-I foreign antigen presentation is not only cell death but also phenotypic changes in other cells and stimulation of the memory cells ready for the next antigen reoccurrence. This review looks at the MHC-I antigen processing pathway and potential alternative sources of the antigens, focusing on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-evolved with humans and developed an array of decoy strategies to survive in a hostile environment by manipulating host immunity to its own advantage. As that happens via the selective antigen presentation process, reinforcement of the effective antigen recognition on MHC-I molecules may stimulate subsets of effector cells that act earlier and more locally. Vaccines against tuberculosis (TB) could potentially eliminate this disease, yet their development has been slow, and success is limited in the context of this global disease’s spread. This review’s conclusions set out potential directions for MHC-I-focused approaches for the next generation of vaccines.
Collapse
Affiliation(s)
- Karolina D. Witt
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Karolina D. Witt,
| |
Collapse
|
6
|
Invariant Natural Killer T Cells as Key Players in Host Resistance against Paracoccidioides brasiliensis. J Immunol Res 2021; 2021:6673722. [PMID: 33954206 PMCID: PMC8064773 DOI: 10.1155/2021/6673722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are key players in the immunity to several pathogens; however, their involvement in the resistance to Paracoccidioides brasiliensis infection remains unknown. Using splenocytes from CD1d (CD1d−/−) and iNKT-deficient (Jα18−/−) mice, we found that iNKT cells are the innate source of IFN-γ after P. brasiliensis infection and are required to potentiate macrophage oxidative burst and control fungal growth. To determine whether iNKT cells contribute in vivo to host resistance against P. brasiliensis infection, we infected intratracheally wild-type and Jα18−/− C57BL/6 mouse strains with the virulent Pb18 isolate. iNKT cell deficiency impaired the airway acute inflammatory response, resulting in decreased airway neutrophilia and reduced IFN-γ, KC, and nitric oxide (NO) production. The deficient innate immune response of Jα18−/− mice to Pb18 infection resulted in increased fungal burden in the lungs and spleen. Besides, the activation of iNKT cells in vivo by administration of the exogenous iNKT ligand α-galactosylceramide (α-GalCer) improved host resistance to P. brasiliensis infection. Although the mechanisms responsible for this phenomenon remain to be clarified, α-GalCer treatment boosted the local inflammatory response and reduced pulmonary fungal burden. In conclusion, our study is the first evidence that iNKT cells are important for the protective immunity to P. brasiliensis infection and their activation by an exogenous ligand is sufficient to improve the host resistance to this fungal infection.
Collapse
|
7
|
de Martino M, Lodi L, Galli L, Chiappini E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr 2019; 7:350. [PMID: 31508399 PMCID: PMC6718705 DOI: 10.3389/fped.2019.00350] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
The encounter between Mycobacterium tuberculosis (Mtb) and the host leads to a complex and multifaceted immune response possibly resulting in latent infection, tubercular disease or to the complete clearance of the pathogen. Macrophages and CD4+ T lymphocytes, together with granuloma formation, are traditionally considered the pillars of immune defense against Mtb and their role stands out clearly. However, there is no component of the immune system that does not take part in the response to this pathogen. On the other side, Mtb displays a complex artillery of immune-escaping mechanisms capable of responding in an equally varied manner. In addition, the role of each cellular line has become discussed and uncertain further than ever before. Each defense mechanism is based on a subtle balance that, if altered, can lean to one side to favor Mtb proliferation, resulting in disease progression and on the other to the host tissue damage by the immune system itself. Through a brief and complete overview of the role of each cell type involved in the Mtb response, we aimed to highlight the main literature reviews and the most relevant studies in order to facilitate the approach to such a complex and changeable topic. In conclusion, this narrative mini-review summarizes the various immunologic mechanisms which modulate the individual ability to fight Mtb infection taking in account the major host and pathogen determinants in the susceptibility to tuberculosis.
Collapse
Affiliation(s)
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Elena Chiappini
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Meermeier EW, Lewinsohn DM. Early clearance versus control: what is the meaning of a negative tuberculin skin test or interferon-gamma release assay following exposure to Mycobacterium tuberculosis? F1000Res 2018; 7. [PMID: 29904578 PMCID: PMC5974584 DOI: 10.12688/f1000research.13224.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 01/01/2023] Open
Abstract
The elimination of tuberculosis (TB) cannot reasonably be achieved by treatment of individual cases and will require an improved vaccine or immunotherapy. A challenge in developing an improved TB vaccine has been the lack of understanding what is needed to generate sterilizing immunity against
Mycobacterium tuberculosis (Mtb) infection. Several epidemiological observations support the hypothesis that humans can eradicate Mtb following exposure. This has been termed early clearance and is defined as elimination of Mtb infection prior to the development of an adaptive immune response, as measured by a tuberculin skin test or interferon-gamma release assay. Here, we examine research into the likelihood of and possible mechanisms responsible for early clearance in household contacts of patients with active TB. We explore both innate and adaptive immune responses in the lung. Enhanced understanding of these mechanisms could be harnessed for the development of a preventative vaccine or immunotherapy.
Collapse
Affiliation(s)
- Erin W Meermeier
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, USA
| | - David M Lewinsohn
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, USA.,Department of Medicine, VA Portland Health Care System, Portland, OR, USA
| |
Collapse
|
9
|
Distinct MHC class I-like interacting invariant T cell lineage at the forefront of mycobacterial immunity uncovered in Xenopus. Proc Natl Acad Sci U S A 2018; 115:E4023-E4031. [PMID: 29610296 DOI: 10.1073/pnas.1722129115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The amphibian Xenopus laevis is to date the only species outside of mammals where a MHC class I-like (MHC-like) restricted innate-like (i) T cell subset (iVα6 T cells) reminiscent of CD1d-restricted iNKT cells has been identified and functionally characterized. This provides an attractive in vivo model to study the biological analogies and differences between mammalian iT cells and the evolutionarily antecedent Xenopus iT cell defense system. Here, we report the identification of a unique iT cell subset (Vα45-Jα1.14) requiring a distinct MHC-like molecule (mhc1b4.L or XNC4) for its development and function. We used two complementary reverse genetic approaches: RNA interference by transgenesis to impair expression of either XNC4 or the Vα45-Jα1.14 rearrangement, and CRISPR/Cas9-mediated disruption of the Jα1.14 gene segment. Both XNC4 deficiency that ablates iVα45T cell development and the direct disruption of the iVα45-Jα1.14 T cell receptor dramatically impairs tadpole resistance to Mycobacterium marinum (Mm) infection. The higher mortality of Mm-infected tadpoles deficient for iVα45T cells correlates with dysregulated expression responses of several immune genes. In contrast, iVα45-Jα1.14-deficient tadpoles remain fully competent against infection by the ranavirus FV3, which indicates a specialization of this unique iT cell subset toward mycobacterial rather than viral pathogens that involve iVα6 T cells. These data suggest that amphibians, which are evolutionarily separated from mammals by more than 350 My, have independently diversified a prominent and convergent immune surveillance system based on MHC-like interacting innate-like T cells.
Collapse
|
10
|
Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 2017; 14:963-975. [PMID: 28890547 PMCID: PMC5719146 DOI: 10.1038/cmi.2017.88] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022] Open
Abstract
The major innate immune cell types involved in tuberculosis (TB) infection are macrophages, dendritic cells (DCs), neutrophils and natural killer (NK) cells. These immune cells recognize the TB-causing pathogen Mycobacterium tuberculosis (Mtb) through various pattern recognition receptors (PRRs), including but not limited to Toll-like receptors (TLRs), Nod-like receptors (NLRs) and C-type lectin receptors (CLRs). Upon infection by Mtb, the host orchestrates multiple signaling cascades via the PRRs to launch a variety of innate immune defense functions such as phagocytosis, autophagy, apoptosis and inflammasome activation. In contrast, Mtb utilizes numerous exquisite strategies to evade or circumvent host innate immunity. Here we discuss recent research on major host innate immune cells, PRR signaling, and the cellular functions involved in Mtb infection, with a specific focus on the host's innate immune defense and Mtb immune evasion. A better understanding of the molecular mechanisms underlying host-pathogen interactions could provide a rational basis for the development of effective anti-TB therapeutics.
Collapse
Affiliation(s)
- Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haiying Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
11
|
Parida SK, Poiret T, Zhenjiang L, Meng Q, Heyckendorf J, Lange C, Ambati AS, Rao MV, Valentini D, Ferrara G, Rangelova E, Dodoo E, Zumla A, Maeurer M. T-Cell Therapy: Options for Infectious Diseases. Clin Infect Dis 2016; 61Suppl 3:S217-24. [PMID: 26409284 PMCID: PMC4583575 DOI: 10.1093/cid/civ615] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The emergence of drug-resistant tuberculosis is challenging tuberculosis control worldwide. In the absence of an effective vaccine to prevent primary infection with Mycobacterium tuberculosis and tuberculosis disease, host-directed therapies may offer therapeutic options, particularly for patients with multidrug-resistant and extensively drug-resistant tuberculosis where prognosis is often limited. CD8+ and CD4+ T cells mediate antigen-specific adaptive cellular immune responses. Their use in precision immunotherapy in clinical conditions, especially in treating cancer as well as for prevention of life-threatening viral infections in allogeneic transplant recipients, demonstrated safety and clinical efficacy. We review key achievements in T-cell therapy, including the use of recombinant immune recognition molecules (eg, T-cell receptors and CD19 chimeric antigen receptors), and discuss its potential in the clinical management of patients with drug-resistant and refractory tuberculosis failing conventional therapy.
Collapse
Affiliation(s)
- Shreemanta K Parida
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet
| | - Thomas Poiret
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Solna, Sweden
| | - Liu Zhenjiang
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet
| | - Qingda Meng
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet
| | - Jan Heyckendorf
- Division of Clinical Infectious Diseases, German Center for Infection Research, Research Center Borstel
| | - Christoph Lange
- Division of Clinical Infectious Diseases, German Center for Infection Research, Research Center Borstel International Health/Infectious Diseases, University of Lübeck, Germany Department of Medicine, Karolinska Institutet
| | - Aditya S Ambati
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Solna, Sweden Department of Medicine, Karolinska Institutet
| | - Martin V Rao
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet
| | - Davide Valentini
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Solna, Sweden
| | | | - Elena Rangelova
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology
| | - Ernest Dodoo
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London National Institute for Health Research Biomedical Research Centre, University College London Hospitals, United Kingdom
| | - Markus Maeurer
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
12
|
Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clin Transl Immunology 2016; 5:e69. [PMID: 27195112 PMCID: PMC4855264 DOI: 10.1038/cti.2016.14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/23/2022] Open
Abstract
Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed.
Collapse
|
13
|
Yang B, Zhai F, Jiang J, Wang X, Cao Z, Cheng X. Elevated expression of T-bet in mycobacterial antigen-specific CD4(+) T cells from patients with tuberculosis. Cell Immunol 2015; 298:1-8. [PMID: 26302932 DOI: 10.1016/j.cellimm.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 07/19/2015] [Accepted: 08/11/2015] [Indexed: 11/25/2022]
Abstract
T-bet is a T-box transcriptional factor that controls the differentiation and effector functions of CD4 T cells. In this study, we studied the role of T-bet in regulating CD4(+) T cell immunity against tuberculosis (TB). T-bet expression in Mycobacterium tuberculosis antigen-specific CD4(+) T cells was significantly higher in patients with active TB than in individuals with latent TB infection (p<0.0001). Comparison of T-bet expression in TCM and TEM subsets showed that CD4(+)T-bet(+)M. tuberculosis antigen-specific CD4(+) T cells had significantly lower frequency of TCM (p=0.003) and higher frequency of TEM (p=0.003) than CD4(+)T-bet(-) cells. The expression of PD-1 in antigen-specific CD4(+) T cells was significantly higher in patients with TB than in individuals with latent TB infection (p=0.006). CD4(+)CD154(+)T-bet(+) T cells had significantly higher expression of PD-1 than CD4(+)CD154(+)T-bet(-) T cells (p=0.0028). It is concluded that T-bet expression might be associated with differentiation into effector memory cells and PD-1 expression in mycobacterial antigen-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Bingfen Yang
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Fei Zhai
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Jing Jiang
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Xinjing Wang
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Zhihong Cao
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China
| | - Xiaoxing Cheng
- Key Laboratory of Tuberculosis Prevention and Treatment and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis, 309th Hospital, 17 Hei Shan Hu Road, Haidian, Beijing 100091, China.
| |
Collapse
|
14
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
15
|
Protective effect of a lipid-based preparation from Mycobacterium smegmatis in a murine model of progressive pulmonary tuberculosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:273129. [PMID: 25548767 PMCID: PMC4274834 DOI: 10.1155/2014/273129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/17/2022]
Abstract
A more effective vaccine against tuberculosis (TB) is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb), the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms), could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL) or nonadjuvanted (LMs) showed significant reductions in bacterial load (P < 0.01) compared to the negative control group (animals immunized with phosphate buffered saline (PBS)). Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG). Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P < 0.01) and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.
Collapse
|
16
|
Venkataswamy MM, Ng TW, Kharkwal SS, Carreño LJ, Johnson AJ, Kunnath-Velayudhan S, Liu Z, Bittman R, Jervis PJ, Cox LR, Besra GS, Wen X, Yuan W, Tsuji M, Li X, Ho DD, Chan J, Lee S, Frothingham R, Haynes BF, Panas MW, Gillard GO, Sixsmith JD, Korioth-Schmitz B, Schmitz JE, Larsen MH, Jacobs WR, Porcelli SA. Improving Mycobacterium bovis bacillus Calmette-Guèrin as a vaccine delivery vector for viral antigens by incorporation of glycolipid activators of NKT cells. PLoS One 2014; 9:e108383. [PMID: 25255287 PMCID: PMC4177913 DOI: 10.1371/journal.pone.0108383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/20/2014] [Indexed: 01/13/2023] Open
Abstract
Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors.
Collapse
Affiliation(s)
- Manjunatha M. Venkataswamy
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- National Institute of Mental Health and Neuroscience, Bangalore, Karnataka, India
| | - Tony W. Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shalu S. Kharkwal
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Leandro J. Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Millennium Institute on Immunology and Immunotherapy, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alison J. Johnson
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shajo Kunnath-Velayudhan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Zheng Liu
- Department of Chemistry and Biochemistry, Queens College of City University of New York, Flushing, New York, United States of America
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of City University of New York, Flushing, New York, United States of America
| | - Peter J. Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Liam R. Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xiangshu Wen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Xiangming Li
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sunhee Lee
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard Frothingham
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael W. Panas
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Geoffrey O. Gillard
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jaimie D. Sixsmith
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Birgit Korioth-Schmitz
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joern E. Schmitz
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michelle H. Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Mycobacterium tuberculosis (Mtb) lipids are indelibly imprinted in just about every key aspect of tuberculosis (TB) basic and translational research. Although the interest in these compounds originally stemmed from their abundance, structural diversity, and antigenicity, continued research in this field has been driven by their important contribution to TB pathogenesis and their interest from the perspective of drug, vaccine, diagnostic, and biomarker development. This article summarizes what is known of the roles of lipids in the physiology and pathogenicity of Mtb and the exciting developments that have occurred in recent years in identifying new lead compounds targeting their biogenesis.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado 80523-1682
| |
Collapse
|
18
|
Schneider BE, Behrends J, Hagens K, Harmel N, Shayman JA, Schaible UE. Lysosomal phospholipase A2: A novel player in host immunity toMycobacterium tuberculosis. Eur J Immunol 2014; 44:2394-404. [DOI: 10.1002/eji.201344383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/14/2014] [Accepted: 05/08/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Bianca E. Schneider
- Department of Molecular Infection Biology, Cellular Microbiology; Research Center Borstel; Borstel Germany
- Department of Immunology and Infection; Faculty of Infectious and Tropical Diseases; London School of Hygiene & Tropical Medicine; London UK
| | - Jochen Behrends
- Department of Molecular Infection Biology, Cellular Microbiology; Research Center Borstel; Borstel Germany
| | - Kristine Hagens
- Department of Molecular Infection Biology, Cellular Microbiology; Research Center Borstel; Borstel Germany
| | - Nadine Harmel
- Department of Molecular Infection Biology, Cellular Microbiology; Research Center Borstel; Borstel Germany
| | - James A. Shayman
- Department of Internal Medicine, Nephrology Division; University of Michigan; Ann Arbor MI USA
| | - Ulrich E. Schaible
- Department of Molecular Infection Biology, Cellular Microbiology; Research Center Borstel; Borstel Germany
- Department of Immunology and Infection; Faculty of Infectious and Tropical Diseases; London School of Hygiene & Tropical Medicine; London UK
- German Centre for Infection Research; TTU-TB; Borstel Germany
| |
Collapse
|
19
|
Dorhoi A, Kaufmann SH. Tumor necrosis factor alpha in mycobacterial infection. Semin Immunol 2014; 26:203-9. [DOI: 10.1016/j.smim.2014.04.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022]
|
20
|
Ryndak MB, Singh KK, Peng Z, Zolla-Pazner S, Li H, Meng L, Laal S. Transcriptional profiling of Mycobacterium tuberculosis replicating ex vivo in blood from HIV- and HIV+ subjects. PLoS One 2014; 9:e94939. [PMID: 24755630 PMCID: PMC3995690 DOI: 10.1371/journal.pone.0094939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/21/2014] [Indexed: 01/02/2023] Open
Abstract
Hematogenous dissemination of Mycobacterium tuberculosis (M. tb) occurs during both primary and reactivated tuberculosis (TB). Although hematogenous dissemination occurs in non-HIV TB patients, in ∼80% of these patients, TB manifests exclusively as pulmonary disease. In contrast, extrapulmonary, disseminated, and/or miliary TB is seen in 60–70% of HIV-infected TB patients, suggesting that hematogenous dissemination is likely more common in HIV+ patients. To understand M. tb adaptation to the blood environment during bacteremia, we have studied the transcriptome of M. tb replicating in human whole blood. To investigate if M. tb discriminates between the hematogenous environments of immunocompetent and immunodeficient individuals, we compared the M. tb transcriptional profiles during replication in blood from HIV- and HIV+ donors. Our results demonstrate that M. tb survives and replicates in blood from both HIV- and HIV+ donors and enhances its virulence/pathogenic potential in the hematogenous environment. The M. tb blood-specific transcriptome reflects suppression of dormancy, induction of cell-wall remodeling, alteration in mode of iron acquisition, potential evasion of immune surveillance, and enhanced expression of important virulence factors that drive active M. tb infection and dissemination. These changes are accentuated during bacterial replication in blood from HIV+ patients. Furthermore, the expression of ESAT-6, which participates in dissemination of M. tb from the lungs, is upregulated in M. tb growing in blood, especially during growth in blood from HIV+ patients. Preliminary experiments also demonstrate that ESAT-6 promotes HIV replication in U1 cells. These studies provide evidence, for the first time, that during bacteremia, M. tb can adapt to the blood environment by modifying its transcriptome in a manner indicative of an enhanced-virulence phenotype that favors active infection. Additionally, transcriptional modifications in HIV+ blood may further accentuate M. tb virulence and drive both M. tb and HIV infection.
Collapse
Affiliation(s)
- Michelle B. Ryndak
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
| | - Krishna K. Singh
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
| | - Zhengyu Peng
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Susan Zolla-Pazner
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
- Veterans Affairs New York Harbor Healthcare System, New York, New York, United States of America
| | - Hualin Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lu Meng
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Suman Laal
- Department of Pathology, New York University Langone Medical Center, New York, New York, United States of America
- Veterans Affairs New York Harbor Healthcare System, New York, New York, United States of America
- * E-mail:
| |
Collapse
|