1
|
Mariotti M, Giacon N, Lo Cascio E, Cacaci M, Picchietti S, Di Vito M, Sanguinetti M, Arcovito A, Bugli F. Functionalized PLGA-Based Nanoparticles with Anti-HSV-2 Human Monoclonal Antibody: A Proof of Concept for Early Diagnosis and Targeted Therapy. Pharmaceutics 2024; 16:1218. [PMID: 39339254 PMCID: PMC11434782 DOI: 10.3390/pharmaceutics16091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Functionalized nanoparticles (NPs) represent a cutting edge in innovative clinical approaches, allowing for the delivery of selected compounds with higher specificity in a wider time frame. They also hold promise for novel theranostic applications that integrate both diagnostic and therapeutic functions. Pathogens are continuously evolving to try to escape the strategies designed to treat them. Objectives: In this work, we describe the development of a biotechnological device, Nano-Immuno-Probes (NIPs), for early detection and infections treatment. Human Herpes Simplex Virus 2 was chosen as model pathogen. Methods: NIPs consist of PLGA-PEG-Sulfone polymeric NPs conjugated to recombinant Fab antibody fragments targeting the viral glycoprotein G2. NIPs synthesis involved multiple steps and was validated through several techniques. Results: DLS analysis indicated an expected size increase with a good polydispersity index. Z-average and z-potential values were measured for PLGA-PEG-Bis-Sulfone NPs (86.6 ± 10.9 nm; -0.7 ± 0.3 mV) and NIPs (151 ± 10.4 nm; -5.1 ± 1.9 mV). SPR assays confirmed NIPs' specificity for the glycoprotein G2, with an apparent KD of 1.03 ± 0.61 µM. NIPs exhibited no cytotoxic effects on VERO cells at 24 and 48 h. Conclusions: This in vitro study showed that NIPs effectively target HSV-2, suggesting the potential use of these nanodevices to deliver both contrast agents as well as therapeutic compounds.
Collapse
Affiliation(s)
- Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Margherita Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Yang Y, Ding T, Cong Y, Luo X, Liu C, Gong T, Zhao M, Zheng X, Li C, Zhang Y, Zhou J, Ni C, Zhang X, Ji Z, Wu T, Yang S, Zhou Q, Wu D, Gong X, Zheng Q, Li X. Interferon-induced transmembrane protein-1 competitively blocks Ephrin receptor A2-mediated Epstein-Barr virus entry into epithelial cells. Nat Microbiol 2024; 9:1256-1270. [PMID: 38649412 PMCID: PMC11087256 DOI: 10.1038/s41564-024-01659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024]
Abstract
Epstein-Barr virus (EBV) can infect both B cells and epithelial cells (ECs), causing diseases such as mononucleosis and cancer. It enters ECs via Ephrin receptor A2 (EphA2). The function of interferon-induced transmembrane protein-1 (IFITM1) in EBV infection of ECs remains elusive. Here we report that IFITM1 inhibits EphA2-mediated EBV entry into ECs. RNA-sequencing and clinical sample analysis show reduced IFITM1 in EBV-positive ECs and a negative correlation between IFITM1 level and EBV copy number. IFITM1 depletion increases EBV infection and vice versa. Exogenous soluble IFITM1 effectively prevents EBV infection in vitro and in vivo. Furthermore, three-dimensional structure prediction and site-directed mutagenesis demonstrate that IFITM1 interacts with EphA2 via its two specific residues, competitively blocking EphA2 binding to EBV glycoproteins. Finally, YTHDF3, an m6A reader, suppresses IFITM1 via degradation-related DEAD-box protein 5 (DDX5). Thus, this study underscores IFITM1's crucial role in blocking EphA2-mediated EBV entry into ECs, indicating its potential in preventing EBV infection.
Collapse
Affiliation(s)
- Yinggui Yang
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tengteng Ding
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Cong
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaomin Luo
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Changlin Liu
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Gong
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Min Zhao
- PANACRO(Hefei) Pharmaceutical Technology Co. Ltd., Hefei, China
| | - Xichun Zheng
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Chenglin Li
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yuanbin Zhang
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiayi Zhou
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuping Ni
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xueyu Zhang
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziliang Ji
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Tao Wu
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Shaodong Yang
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Qingchun Zhou
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Dinglan Wu
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xinqi Gong
- Mathematical Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing, China.
| | - Qingyou Zheng
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China.
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, Department of Urology, and Clinical Innovation and Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Gianopulos KA, Makio AO, Pritchard SM, Cunha CW, Hull MA, Nicola AV. Herpes Simplex Virus 1 Glycoprotein B from a Hyperfusogenic Virus Mediates Enhanced Cell-Cell Fusion. Viruses 2024; 16:251. [PMID: 38400027 PMCID: PMC10892784 DOI: 10.3390/v16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. Herpes simplex virus 1 has a complex fusion mechanism that is incompletely understood. The HSV-1 strain ANG has notable fusion and entry activities that distinguish it from wild type. HSV-1 ANG virions fused with the Vero cell surface at 4 °C and also entered cells more efficiently at 15 °C, relative to wild type HSV-1 strain KOS virions, consistent with a hyperfusogenic phenotype. Understanding the molecular basis for the unique entry and fusion activities of HSV-1 strain ANG will help decipher the HSV fusion reaction and entry process. Sequencing of HSV-1 ANG genes revealed multiple changes in gB, gC, gD, gH, and gL proteins relative to wild type HSV-1 strains. The ANG UL45 gene sequence, which codes for a non-essential envelope protein, was identical to wild type KOS. HSV-1 ANG gB, gD, and gH/gL were necessary and sufficient to mediate cell-cell fusion in a virus-free reporter assay. ANG gB, when expressed with wild type KOS gD and gH/gL, increased membrane fusion, suggesting that ANG gB has hyperfusogenic cell-cell fusion activity. Replacing the KOS gD, gH, or gL with the corresponding ANG alleles did not enhance cell-cell fusion. The novel mutations in the ANG fusion and entry glycoproteins provide a platform for dissecting the cascade of interactions that culminate in HSV fusion and entry.
Collapse
Affiliation(s)
- Katrina A. Gianopulos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Protein Biotechnology Graduate Training Program, Washington State University, Pullman, WA 99164, USA
| | - Albina O. Makio
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
- Protein Biotechnology Graduate Training Program, Washington State University, Pullman, WA 99164, USA
| | - Suzanne M. Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
| | - Cristina W. Cunha
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA 99164, USA
| | - McKenna A. Hull
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
| | - Anthony V. Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
| |
Collapse
|
4
|
Gianopulos KA, Makio AO, Pritchard SM, Cunha CW, Hull MA, Nicola AV. Membrane fusion activity of herpes simplex virus 1 glycoproteins from a hyperfusogenic virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569993. [PMID: 38106075 PMCID: PMC10723375 DOI: 10.1101/2023.12.04.569993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. Herpes simplex virus 1 has a complex fusion mechanism that is incompletely understood. The HSV-1 strain ANG has notable fusion and entry activities that distinguish it from wild type. HSV-1 ANG virions fused with the Vero cell surface at 4°C and also entered cells more efficiently at 15°C relative to wild type virions, consistent with a hyperfusogenic phenotype. Understanding the molecular basis for the unique entry and fusion activities of HSV-1 strain ANG will help decipher the HSV fusion reaction and entry process. Sequencing of HSV-1 ANG genes revealed multiple changes in gB, gC, gD, gH, and gL proteins relative to wild type HSV-1 strains. The ANG UL45 gene sequence, which codes for a non-essential envelope protein, was identical to wild type. HSV-1 ANG gB, gD, and gH/gL were necessary and sufficient to mediate cell-cell fusion in a virus-free reporter assay. ANG gB, when expressed with wild type gD and gH/gL, increased membrane fusion, suggesting that ANG gB has hyperfusogenic cell-cell fusion activity. Replacing the wild type gD, gH, or gL with the corresponding ANG alleles did not enhance cell-cell fusion. Wild type gC is proposed to facilitate fusion and entry into epithelial cells by optimizing conformational changes in the fusion protein gB. ANG gC substitution or addition also had no effect on cell-cell fusion. The novel mutations in the ANG fusion and entry glycoproteins provide a platform for dissecting the cascade of interactions that culminate in HSV fusion and entry.
Collapse
|
5
|
Krasnov VP, Andronova VL, Belyavsky AV, Borisevich SS, Galegov GA, Kandarakov OF, Gruzdev DA, Vozdvizhenskaya OA, Levit GL. Large Subunit of the Human Herpes Simplex Virus Terminase as a Promising Target in Design of Anti-Herpesvirus Agents. Molecules 2023; 28:7375. [PMID: 37959793 PMCID: PMC10649544 DOI: 10.3390/molecules28217375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is an extremely widespread pathogen characterized by recurrent infections. HSV-1 most commonly causes painful blisters or sores around the mouth or on the genitals, but it can also cause keratitis or, rarely, encephalitis. First-line and second-line antiviral drugs used to treat HSV infections, acyclovir and related compounds, as well as foscarnet and cidofovir, selectively inhibit herpesvirus DNA polymerase (DNA-pol). It has been previously found that (S)-4-[6-(purin-6-yl)aminohexanoyl]-7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine (compound 1) exhibits selective anti-herpesvirus activity against HSV-1 in cell culture, including acyclovir-resistant mutants, so we consider it as a lead compound. In this work, the selection of HSV-1 clones resistant to the lead compound was carried out. High-throughput sequencing of resistant clones and reference HSV-1/L2 parent strain was performed to identify the genetic determinants of the virus's resistance to the lead compound. We identified a candidate mutation presumably associated with resistance to the virus, namely the T321I mutation in the UL15 gene encoding the large terminase subunit. Molecular modeling was used to evaluate the affinity and dynamics of the lead compound binding to the putative terminase binding site. The results obtained suggest that the lead compound, by binding to pUL15, affects the terminase complex. pUL15, which is directly involved in the processing and packaging of viral DNA, is one of the crucial components of the HSV terminase complex. The loss of its functional activity leads to disruption of the formation of mature virions, so it represents a promising drug target. The discovery of anti-herpesvirus agents that affect biotargets other than DNA polymerase will expand our possibilities of targeting HSV infections, including those resistant to baseline drugs.
Collapse
Affiliation(s)
- Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Valeriya L. Andronova
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.L.A.); (G.A.G.)
| | - Alexander V. Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.V.B.); (O.F.K.)
| | | | - George A. Galegov
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia; (V.L.A.); (G.A.G.)
| | - Oleg F. Kandarakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (A.V.B.); (O.F.K.)
| | - Dmitry A. Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Olga A. Vozdvizhenskaya
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia; (D.A.G.); (O.A.V.); (G.L.L.)
| |
Collapse
|
6
|
Kremling V, Loll B, Pach S, Dahmani I, Weise C, Wolber G, Chiantia S, Wahl MC, Osterrieder N, Azab W. Crystal structures of glycoprotein D of equine alphaherpesviruses reveal potential binding sites to the entry receptor MHC-I. Front Microbiol 2023; 14:1197120. [PMID: 37250020 PMCID: PMC10213783 DOI: 10.3389/fmicb.2023.1197120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Cell entry of most alphaherpesviruses is mediated by the binding of glycoprotein D (gD) to different cell surface receptors. Equine herpesvirus type 1 (EHV-1) and EHV-4 gDs interact with equine major histocompatibility complex I (MHC-I) to initiate entry into equine cells. We have characterized the gD-MHC-I interaction by solving the crystal structures of EHV-1 and EHV-4 gDs (gD1, gD4), performing protein-protein docking simulations, surface plasmon resonance (SPR) analysis, and biological assays. The structures of gD1 and gD4 revealed the existence of a common V-set immunoglobulin-like (IgV-like) core comparable to those of other gD homologs. Molecular modeling yielded plausible binding hypotheses and identified key residues (F213 and D261) that are important for virus binding. Altering the key residues resulted in impaired virus growth in cells, which highlights the important role of these residues in the gD-MHC-I interaction. Taken together, our results add to our understanding of the initial herpesvirus-cell interactions and will contribute to the targeted design of antiviral drugs and vaccine development.
Collapse
Affiliation(s)
- Viviane Kremling
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| | - Bernhard Loll
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Szymon Pach
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Berlin, Germany
| | - Ismail Dahmani
- Universität Potsdam, Institut für Biochemie und Biologie, Potsdam, Brandenburg, Germany
| | - Christoph Weise
- BioSupraMol Core Facility, Bio-Mass Spectrometry, Freie Universität Berlin, Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Berlin, Germany
| | - Salvatore Chiantia
- Universität Potsdam, Institut für Biochemie und Biologie, Potsdam, Brandenburg, Germany
| | - Markus C. Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Zhong L, Zhang W, Krummenacher C, Chen Y, Zheng Q, Zhao Q, Zeng MS, Xia N, Zeng YX, Xu M, Zhang X. Targeting herpesvirus entry complex and fusogen glycoproteins with prophylactic and therapeutic agents. Trends Microbiol 2023:S0966-842X(23)00077-X. [DOI: 10.1016/j.tim.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
|
8
|
Functional diversity: update of the posttranslational modification of Epstein-Barr virus coding proteins. Cell Mol Life Sci 2022; 79:590. [PMID: 36376593 DOI: 10.1007/s00018-022-04561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Epstein-Barr virus (EBV), a human oncogenic herpesvirus with a typical life cycle consisting of latent phase and lytic phase, is associated with many human diseases. EBV can express a variety of proteins that enable the virus to affect host cell processes and evade host immunity. Additionally, these proteins provide a basis for the maintenance of viral infection, contribute to the formation of tumors, and influence the occurrence and development of related diseases. Posttranslational modifications (PTMs) are chemical modifications of proteins after translation and are very important to guarantee the proper biological functions of these proteins. Studies in the past have intensely investigated PTMs of EBV-encoded proteins. EBV regulates the progression of the latent phase and lytic phase by affecting the PTMs of its encoded proteins, which are critical for the development of EBV-associated human diseases. In this review, we summarize the PTMs of EBV-encoded proteins that have been discovered and studied thus far with focus on their effects on the viral life cycle.
Collapse
|
9
|
Gandy LA, Canning AJ, Lou H, Xia K, He P, Su G, Cairns T, Liu J, Zhang F, Linhardt RJ, Cohen G, Wang C. Molecular determinants of the interaction between HSV-1 glycoprotein D and heparan sulfate. Front Mol Biosci 2022; 9:1043713. [PMID: 36419932 PMCID: PMC9678342 DOI: 10.3389/fmolb.2022.1043713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Literature has well-established the importance of 3-O-sulfation of neuronal cell surface glycan heparan sulfate (HS) to its interaction with herpes simplex virus type 1 glycoprotein D (gD). Previous investigations of gD to its viral receptors HVEM and nectin-1 also highlighted the conformational dynamics of gD's N- and C-termini, necessary for viral membrane fusion. However, little is known on the structural interactions of gD with HS. Here, we present our findings on this interface from both the glycan and the protein perspective. We used C-terminal and N-terminal gD variants to probe the role of their respective regions in gD/HS binding. The N-terminal truncation mutants (with Δ1-22) demonstrate equivalent or stronger binding to heparin than their intact glycoproteins, indicating that the first 22 amino acids are disposable for heparin binding. Characterization of the conformational differences between C-terminal truncated mutants by sedimentation velocity analytical ultracentrifugation distinguished between the "open" and "closed" conformations of the glycoprotein D, highlighting the region's modulation of receptor binding. From the glycan perspective, we investigated gD interacting with heparin, heparan sulfate, and other de-sulfated and chemically defined oligosaccharides using surface plasmon resonance and glycan microarray. The results show a strong preference of gD for 6-O-sulfate, with 2-O-sulfation becoming more important in the presence of 6-O-S. Additionally, 3-O-sulfation shifted the chain length preference of gD from longer chain to mid-chain length, reaffirming the sulfation site's importance to the gD/HS interface. Our results shed new light on the molecular details of one of seven known protein-glycan interactions with 3-O-sulfated heparan sulfate.
Collapse
Affiliation(s)
- Lauren A. Gandy
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Chemistry and Chemical Biology Department, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ashley J. Canning
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Huan Lou
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Peng He
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Guowei Su
- Glycan Therapeutics, Raleigh, NC, United States
| | - Tina Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jian Liu
- Glycan Therapeutics, Raleigh, NC, United States
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Chemistry and Chemical Biology Department, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Gary Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Troy, NY, United States
- Chemistry and Chemical Biology Department, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
10
|
Lee BH, Tebaldi G, Pritchard SM, Nicola AV. Host Cell Neddylation Facilitates Alphaherpesvirus Entry in a Virus-Specific and Cell-Dependent Manner. Microbiol Spectr 2022; 10:e0311422. [PMID: 36173301 PMCID: PMC9603186 DOI: 10.1128/spectrum.03114-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 01/04/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) commandeers the host cell proteasome at several steps of its replication cycle, including entry. Here we demonstrate that HSV-2, pseudorabies virus (PRV), and bovine herpesvirus 1 (BoHV-1) entry are blocked by bortezomib, a proteasome inhibitor that is an FDA-approved cancer drug. Proteasome-dependent entry of HSV-1 is thought to be ubiquitin-independent. To interrogate further the proteasomal mechanism of entry, we determined the involvement of the ubiquitin-like molecule NEDD8 and the neddylation cascade in alphaherpesvirus entry and infection. MLN4924 is a small-molecule inhibitor of neddylation that binds directly to the NEDD8-activating enzyme. Cell treatment with MLN4924 inhibited plaque formation and infectivity by HSV-1, PRV, and BoHV-1 at noncytotoxic concentrations. Thus, the neddylation pathway is broadly important for alphaherpesvirus infection. However, the neddylation inhibitor had little effect on entry of the veterinary viruses but had a significant inhibitory effect on entry of HSV-1 and HSV-2 into seven different cell types. Washout experiments indicated that MLN4924's effect on viral entry was reversible. A time-of-addition assay suggested that the drug was acting on an early step in the entry process. Small interfering RNA (siRNA) knockdown of NEDD8 significantly inhibited HSV entry. In probing the neddylation-dependent step in entry, we found that MLN4924 dramatically blocked endocytic uptake of HSV from the plasma membrane by >90%. In contrast, the rate of HSV entry into cells that support direct fusion of HSV with the cell surface was unaffected by MLN4924. Interestingly, proteasome activity was less important for the endocytic internalization of HSV from the cell surface. The results suggest that the NEDD8 cascade is critical for the internalization step of HSV entry. IMPORTANCE Alphaherpesviruses are ubiquitous pathogens of humans and veterinary species that cause lifelong latent infections and significant morbidity and mortality. Host cell neddylation is important for cell homeostasis and for the infection of many viruses, including HSV-1, HSV-2, PRV, and BoHV-1. Inhibition of neddylation by a pharmacologic inhibitor or siRNA blocked HSV infection at the entry step. Specifically, the NEDD8 pathway was critically important for HSV-1 internalization from the cell surface by an endocytosis mechanism. The results expand our limited understanding of cellular processes that mediate HSV internalization. To our knowledge, this is the first demonstration of a function for the neddylation cascade in virus entry.
Collapse
Affiliation(s)
- Becky H. Lee
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Giulia Tebaldi
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Suzanne M. Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V. Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
11
|
Gianopulos KA, Komala Sari T, Weed DJ, Pritchard SM, Nicola AV. Conformational Changes in Herpes Simplex Virus Glycoprotein C. J Virol 2022; 96:e0016322. [PMID: 35913218 PMCID: PMC9400475 DOI: 10.1128/jvi.00163-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/05/2022] [Indexed: 02/03/2023] Open
Abstract
Low endosomal pH facilitates herpesvirus entry in a cell-specific manner. Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. HSV-1 enters cells by low-pH and neutral-pH pathways. Low-pH-induced conformational changes in the HSV envelope glycoprotein B (gB) may mediate membrane fusion during viral entry. HSV-1 gC, a 511-amino acid, type I integral membrane glycoprotein, mediates HSV-1 attachment to host cell surface glycosaminoglycans, but this interaction is not essential for viral entry. We previously demonstrated that gC regulates low-pH viral entry independent of its known role in cell attachment. Low-pH-triggered conformational changes in gB occur at a lower pH when gC is absent, suggesting that gC positively regulates gB conformational changes. Here, we demonstrate that mildly acidic pH triggers conformational changes in gC itself. Low-pH treatment of virions induced antigenic changes in distinct gC epitopes, and those changes were reversible. One of these gC epitopes is recognized by a monoclonal antibody that binds to a linear sequence that includes residues within gC amino acids 33 to 123. This antibody inhibited low-pH entry of HSV, suggesting that its gC N-terminal epitope is particularly important. We propose that gC plays a critical role in HSV entry through a low-pH endocytosis pathway, which is a major entry route in human epithelial cells. IMPORTANCE Herpesviruses are ubiquitous pathogens that cause lifelong latent infections and are characterized by multiple entry pathways. The HSV envelope gC regulates HSV entry by a low-pH entry route. The fusion protein gB undergoes pH-triggered conformational changes that are facilitated by gC. Here, we report that gC itself undergoes a conformational change at low pH. A monoclonal antibody to gC that binds to a region that undergoes pH-induced changes also selectively inhibits HSV low-pH entry, corroborating the importance of gC in the low-pH entry pathway. This study illustrates the complex role of endosomal pH during HSV entry and provides novel insights into the functions of gC.
Collapse
Affiliation(s)
- Katrina A. Gianopulos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Protein Biotechnology Graduate Training Program, Washington State University, Pullman, Washington, USA
| | - Tri Komala Sari
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Protein Biotechnology Graduate Training Program, Washington State University, Pullman, Washington, USA
- Faculty of Veterinary Medicine, Udayana University, Bali, Indonesia
| | - Darin J. Weed
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Protein Biotechnology Graduate Training Program, Washington State University, Pullman, Washington, USA
| | - Suzanne M. Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V. Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
12
|
Rice SA. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses 2021; 13:v13122395. [PMID: 34960664 PMCID: PMC8704881 DOI: 10.3390/v13122395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1, or HSV-1, is a widespread human pathogen that replicates in epithelial cells of the body surface and then establishes latent infection in peripheral neurons. When HSV-1 replicates, viral progeny must be efficiently released to spread infection to new target cells. Viral spread occurs via two major routes. In cell-cell spread, progeny virions are delivered directly to cellular junctions, where they infect adjacent cells. In cell-free release, progeny virions are released into the extracellular milieu, potentially allowing the infection of distant cells. Cell-cell spread of HSV-1 has been well studied and is known to be important for in vivo infection and pathogenesis. In contrast, HSV-1 cell-free release has received less attention, and its significance to viral biology is unclear. Here, I review the mechanisms and regulation of HSV-1 cell-free virion release. Based on knowledge accrued in other herpesviral systems, I argue that HSV-1 cell-free release is likely to be tightly regulated in vivo. Specifically, I hypothesize that this process is generally suppressed as the virus replicates within the body, but activated to high levels at sites of viral reactivation, such as the oral mucosa and skin, in order to promote efficient transmission of HSV-1 to new human hosts.
Collapse
Affiliation(s)
- Stephen A Rice
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
In Vitro Viral Evolution Identifies a Critical Residue in the Alphaherpesvirus Fusion Glycoprotein B Ectodomain That Controls gH/gL-Independent Entry. mBio 2021; 12:mBio.00557-21. [PMID: 33947756 PMCID: PMC8262866 DOI: 10.1128/mbio.00557-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus entry and spread requires fusion of viral and host cell membranes, which is mediated by the conserved surface glycoprotein B (gB). Upon activation, gB undergoes a major conformational change and transits from a metastable prefusion to a stable postfusion conformation. Although gB is a structural homolog of low-pH-triggered class III fusogens, its fusion activity depends strictly on the presence of the conserved regulatory gH/gL complex and nonconserved receptor binding proteins, which ensure that fusion occurs at the right time and space. How gB maintains its prefusion conformation and how gB fusogenicity is controlled remain poorly understood. Here, we report the isolation and characterization of a naturally selected pseudorabies virus (PrV) gB able to mediate efficient gH/gL-independent virus-cell and cell-cell fusion. We found that the control exerted on gB by the accompanying viral proteins is mediated via its cytosolic domain (CTD). Whereas gB variants lacking the CTD are inactive, a single mutation of a conserved asparagine residue in an alpha-helical motif of the ectodomain recently shown to be at the core of the gB prefusion trimer compensated for CTD absence and uncoupled gB from regulatory viral proteins, resulting in a hyperfusion phenotype. This phenotype was transferred to gB homologs from different alphaherpesvirus genera. Overall, our data propose a model in which the central helix acts as a molecular switch for the gB pre-to-postfusion transition by conveying the structural status of the endo- to the ectodomain, thereby governing their cross talk for fusion activation, providing a new paradigm for herpesvirus fusion regulation.
Collapse
|
14
|
Human Herpesvirus-6 and -7 in the Brain Microenvironment of Persons with Neurological Pathology and Healthy People. Int J Mol Sci 2021; 22:ijms22052364. [PMID: 33673426 PMCID: PMC7956495 DOI: 10.3390/ijms22052364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023] Open
Abstract
During persistent human beta-herpesvirus (HHV) infection, clinical manifestations may not appear. However, the lifelong influence of HHV is often associated with pathological changes in the central nervous system. Herein, we evaluated possible associations between immunoexpression of HHV-6, -7, and cellular immune response across different brain regions. The study aimed to explore HHV-6, -7 infection within the cortical lobes in cases of unspecified encephalopathy (UEP) and nonpathological conditions. We confirmed the presence of viral DNA by nPCR and viral antigens by immunohistochemistry. Overall, we have shown a significant increase (p < 0.001) of HHV antigen expression, especially HHV-7 in the temporal gray matter. Although HHV-infected neurons were found notably in the case of HHV-7, our observations suggest that higher (p < 0.001) cell tropism is associated with glial and endothelial cells in both UEP group and controls. HHV-6, predominantly detected in oligodendrocytes (p < 0.001), and HHV-7, predominantly detected in both astrocytes and oligodendrocytes (p < 0.001), exhibit varying effects on neural homeostasis. This indicates a high number (p < 0.001) of activated microglia observed in the temporal lobe in the UEP group. The question remains of whether human HHV contributes to neurological diseases or are markers for some aspect of the disease process.
Collapse
|
15
|
Vallbracht M, Klupp BG, Mettenleiter TC. Influence of N-glycosylation on Expression and Function of Pseudorabies Virus Glycoprotein gB. Pathogens 2021; 10:61. [PMID: 33445487 PMCID: PMC7827564 DOI: 10.3390/pathogens10010061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/13/2023] Open
Abstract
Envelope glycoprotein (g)B is conserved throughout the Herpesviridae and mediates fusion of the viral envelope with cellular membranes for infectious entry and spread. Like all viral envelope fusion proteins, gB is modified by asparagine (N)-linked glycosylation. Glycans can contribute to protein function, intracellular transport, trafficking, structure and immune evasion. gB of the alphaherpesvirus pseudorabies virus (PrV) contains six consensus sites for N-linked glycosylation, but their functional relevance is unknown. Here, we investigated the occupancy and functional relevance of N-glycosylation sites in PrV gB. To this end, all predicted N-glycosylation sites were inactivated either singly or in combination by the introduction of conservative mutations (N➔Q). The resulting proteins were tested for expression, fusion activity in cell-cell fusion assays and complementation of a gB-deficient PrV mutant. Our results indicate that all six sites are indeed modified. However, while glycosylation at most sites was dispensable for gB expression and fusogenicity, inactivation of N154 and N700 affected gB processing by furin cleavage and surface localization. Although all single mutants were functional in cell-cell fusion and viral entry, simultaneous inactivation of all six N-glycosylation sites severely impaired fusion activity and viral entry, suggesting a critical role of N-glycans for maintaining gB structure and function.
Collapse
Affiliation(s)
| | | | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.V.); (B.G.K.)
| |
Collapse
|
16
|
Localization of the Interaction Site of Herpes Simplex Virus Glycoprotein D (gD) on the Membrane Fusion Regulator, gH/gL. J Virol 2020; 94:JVI.00983-20. [PMID: 32759318 DOI: 10.1128/jvi.00983-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
A cascade of protein-protein interactions between four herpes simplex virus (HSV) glycoproteins (gD, gH/gL, and gB) drive fusion between the HSV envelope and host membrane, thereby allowing for virus entry and infection. Specifically, binding of gD to one of its receptors induces a conformational change that allows gD to bind to the regulatory complex gH/gL, which then activates the fusogen gB, resulting in membrane fusion. Using surface plasmon resonance and a panel of anti-gD monoclonal antibodies (MAbs) that sterically blocked the interaction, we previously showed that gH/gL binds directly to gD at sites distinct from the gD receptor binding site. Here, using an analogous strategy, we first evaluated the ability of a panel of uncharacterized anti-gH/gL MAbs to block binding to gD and/or inhibit fusion. We found that the epitopes of four gD-gH/gL-blocking MAbs were located within flexible regions of the gH N terminus and the gL C terminus, while the fifth was placed around gL residue 77. Taken together, our data localized the gD binding region on gH/gL to a group of gH and gL residues at the membrane distal region of the heterodimer. Surprisingly, a second set of MAbs did not block gD-gH/gL binding but instead stabilized the complex by altering the kinetic binding. However, despite this prolonged gD-gH/gL interaction, "stabilizing" MAbs also inhibited cell-cell fusion, suggesting a unique mechanism by which the fusion process is halted. Our findings support targeting the gD-gH/gL interaction to prevent fusion in both therapeutic and vaccine strategies against HSV.IMPORTANCE Key to developing a human HSV vaccine is an understanding of the virion glycoproteins involved in entry. HSV employs multiple glycoproteins for attachment, receptor interaction, and membrane fusion. Determining how these proteins function was resolved, in part, by structural biology coupled with immunological and biologic evidence. After binding, virion gD interacts with a receptor to activate the regulator gH/gL complex, triggering gB to drive fusion. Multiple questions remain, one being the physical location of each glycoprotein interaction site. Using protective antibodies with known epitopes, we documented the long-sought interaction between gD and gH/gL, detailing the region on gD important to create the gD-gH/gL triplex. Now, we have identified the corresponding gD contact sites on gH/gL. Concurrently we discovered a novel mechanism whereby gH/gL antibodies stabilize the complex and inhibit fusion progression. Our model for the gD-gH/gL triplex provides a new framework for studying fusion, which identifies targets for vaccine development.
Collapse
|
17
|
Tailoring Uptake Efficacy of HSV-1 gD Derived Carrier Peptides. Biomolecules 2020; 10:biom10050721. [PMID: 32384673 PMCID: PMC7277387 DOI: 10.3390/biom10050721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Regions of the Herpes simplex virus-1 (HSV-1) glycoprotein D (gD) were chosen to design carrier peptides based on the known tertiary structure of the virus entry receptor complexes. These complexes consist of the following: HSV-1 gD–nectin-1 and HSV-1 gD–herpesvirus entry mediator (HVEM). Three sets of peptides were synthesised with sequences covering the (i) N-terminal HVEM- and nectin-1 binding region -5–42, (ii) the 181–216 medium region containing nectin-1 binding sequences and (iii) the C-terminal nectin-1 binding region 214–255. The carrier candidates were prepared with acetylated and 5(6)-carboxyfluorescein labelled N-termini. The peptides were chemically characterised and their conformational features in solution were also determined. In vitro internalisation profile and intracellular localisation were evaluated on SH-SY5Y neuroblastoma cells. Peptide originated from the C-terminal region 224–247 of the HSV-1 gD showed remarkable internalisation compared to the other peptides with low to moderate entry. Electronic circular dichroism secondary structure studies of the peptides revealed that the most effectively internalised peptides exhibit high helical propensity at increasing TFE concentrations. We proved that oligopeptides derived from the nectin-1 binding region are promising candidates—with possibility of Lys237Arg and/or Trp241Phe substitutions—for side-reaction free conjugation of bioactive compounds—drugs or gene therapy agents—as cargos.
Collapse
|
18
|
Komala Sari T, Gianopulos KA, Nicola AV. Glycoprotein C of Herpes Simplex Virus 1 Shields Glycoprotein B from Antibody Neutralization. J Virol 2020; 94:e01852-19. [PMID: 31826995 PMCID: PMC7022361 DOI: 10.1128/jvi.01852-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Viruses have evolved strategies to avoid neutralization by the host antibody response. Herpes simplex virus (HSV) glycoprotein C (gC) functions in viral entry and binds to complement component C3b, inhibiting complement-mediated immunity. We investigated whether gC protects HSV from antibody neutralization. HSV-1 that lacks gC was more sensitive to complement-independent neutralization by a panel of gB monoclonal antibodies than a wild-type gC rescuant virus. The presence of gC decreased neutralization by 2- to 16-fold. The gB in the native envelope of HSV-1 had reduced reactivity with antibodies in comparison to gB from the gC-null virus, suggesting that gC hampers the recognition of gB epitopes in the viral particle. The protein composition of the gC-null virus, including the surface glycoproteins essential for entry, was equivalent to that of the wild type, suggesting that gC is directly responsible for the reduced antibody recognition and neutralization. The neutralizing activity of antibodies to gD and gH antibodies was also increased in HSV lacking gC. Together, the data suggest that HSV-1 gC protects the viral envelope glycoproteins essential for entry, including gB, by shielding them from neutralization as a potential mechanism of immune evasion.IMPORTANCE HSV-1 causes lifelong infection in the human population and can be fatal in neonatal and immunocompromised individuals. There is no vaccine or cure, in part due to the ability of HSV to escape the host immune response by various mechanisms. The HSV particle contains at least 15 envelope proteins, four of which are required for entry and replication. This work suggests a novel role for gC in shielding the HSV entry glycoproteins. gC may function to help HSV escape neutralization by antibodies.
Collapse
Affiliation(s)
- Tri Komala Sari
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Katrina A Gianopulos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
19
|
Komala Sari T, Gianopulos KA, Weed DJ, Schneider SM, Pritchard SM, Nicola AV. Herpes Simplex Virus Glycoprotein C Regulates Low-pH Entry. mSphere 2020; 5:e00826-19. [PMID: 32024702 PMCID: PMC7002311 DOI: 10.1128/msphere.00826-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex viruses (HSVs) cause significant morbidity and mortality in humans worldwide. Herpesviruses mediate entry by a multicomponent virus-encoded machinery. Herpesviruses enter cells by endosomal low-pH and pH-neutral mechanisms in a cell-specific manner. HSV mediates cell entry via the envelope glycoproteins gB and gD and the heterodimer gH/gL regardless of pH or endocytosis requirements. Specifics concerning HSV envelope proteins that function selectively in a given entry pathway have been elusive. Here, we demonstrate that gC regulates cell entry and infection by a low-pH pathway. Conformational changes in the core herpesviral fusogen gB are critical for membrane fusion. The presence of gC conferred a higher pH threshold for acid-induced antigenic changes in gB. Thus, gC may selectively facilitate low-pH entry by regulating conformational changes in the fusion protein gB. We propose that gC modulates the HSV fusion machinery during entry into pathophysiologically relevant cells, such as human epidermal keratinocytes.IMPORTANCE Herpesviruses are ubiquitous pathogens that cause lifelong latent infections and that are characterized by multiple entry pathways. We propose that herpes simplex virus (HSV) gC plays a selective role in modulating HSV entry, such as entry into epithelial cells, by a low-pH pathway. gC facilitates a conformational change of the main fusogen gB, a class III fusion protein. We propose a model whereby gC functions with gB, gD, and gH/gL to allow low-pH entry. In the absence of gC, HSV entry occurs at a lower pH, coincident with trafficking to a lower pH compartment where gB changes occur at more acidic pHs. This report identifies a new function for gC and provides novel insight into the complex mechanism of HSV entry and fusion.
Collapse
Affiliation(s)
- Tri Komala Sari
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Protein Biotechnology Graduate Training Program, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Katrina A Gianopulos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Protein Biotechnology Graduate Training Program, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Darin J Weed
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Protein Biotechnology Graduate Training Program, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Seth M Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Suzanne M Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
20
|
Zuo Y, Whitbeck JC, Haila GJ, Hakim AA, Rothlauf PW, Eisenberg RJ, Cohen GH, Krummenacher C. Saliva enhances infection of gingival fibroblasts by herpes simplex virus 1. PLoS One 2019; 14:e0223299. [PMID: 31581238 PMCID: PMC6776388 DOI: 10.1371/journal.pone.0223299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 09/19/2019] [Indexed: 02/01/2023] Open
Abstract
Oral herpes is a highly prevalent infection caused by herpes simplex virus 1 (HSV-1). After an initial infection of the oral cavity, HSV-1 remains latent in sensory neurons of the trigeminal ganglia. Episodic reactivation of the virus leads to the formation of mucocutaneous lesions (cold sores), but asymptomatic reactivation accompanied by viral shedding is more frequent and allows virus spread to new hosts. HSV-1 DNA has been detected in many oral tissues. In particular, HSV-1 can be found in periodontal lesions and several studies associated its presence with more severe periodontitis pathologies. Since gingival fibroblasts may become exposed to salivary components in periodontitis lesions, we analyzed the effect of saliva on HSV-1 and -2 infection of these cells. We observed that human gingival fibroblasts can be infected by HSV-1. However, pre-treatment of these cells with saliva extracts from some but not all individuals led to an increased susceptibility to infection. Furthermore, the active saliva could expand HSV-1 tropism to cells that are normally resistant to infection due to the absence of HSV entry receptors. The active factor in saliva was partially purified and comprised high molecular weight complexes of glycoproteins that included secretory Immunoglobulin A. Interestingly, we observed a broad variation in the activity of saliva between donors suggesting that this activity is selectively present in the population. The active saliva factor, has not been isolated, but may lead to the identification of a relevant biomarker for susceptibility to oral herpes. The presence of a salivary factor that enhances HSV-1 infection may influence the risk of oral herpes and/or the severity of associated oral pathologies.
Collapse
Affiliation(s)
- Yi Zuo
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - J. Charles Whitbeck
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gabriel J. Haila
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey, United States of America
| | - Abraham A. Hakim
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Paul W. Rothlauf
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Roselyn J. Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Claude Krummenacher
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|
21
|
Vallbracht M, Backovic M, Klupp BG, Rey FA, Mettenleiter TC. Common characteristics and unique features: A comparison of the fusion machinery of the alphaherpesviruses Pseudorabies virus and Herpes simplex virus. Adv Virus Res 2019; 104:225-281. [PMID: 31439150 DOI: 10.1016/bs.aivir.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is a fundamental biological process that allows different cellular compartments delimited by a lipid membrane to release or exchange their respective contents. Similarly, enveloped viruses such as alphaherpesviruses exploit membrane fusion to enter and infect their host cells. For infectious entry the prototypic human Herpes simplex viruses 1 and 2 (HSV-1 and -2, collectively termed HSVs) and the porcine Pseudorabies virus (PrV) utilize four different essential envelope glycoproteins (g): the bona fide fusion protein gB and the regulatory heterodimeric gH/gL complex that constitute the "core fusion machinery" conserved in all members of the Herpesviridae; and the subfamily specific receptor binding protein gD. These four components mediate attachment and fusion of the virion envelope with the host cell plasma membrane through a tightly regulated sequential activation process. Although PrV and the HSVs are closely related and employ the same set of glycoproteins for entry, they show remarkable differences in the requirements for fusion. Whereas the HSVs strictly require all four components for membrane fusion, PrV can mediate cell-cell fusion without gD. Moreover, in contrast to the HSVs, PrV provides a unique opportunity for reversion analyses of gL-negative mutants by serial cell culture passaging, due to a limited cell-cell spread capacity of gL-negative PrV not observed in the HSVs. This allows a more direct analysis of the function of gH/gL during membrane fusion. Unraveling the molecular mechanism of herpesvirus fusion has been a goal of fundamental research for years, and yet important mechanistic details remain to be uncovered. Nevertheless, the elucidation of the crystal structures of all key players involved in PrV and HSV membrane fusion, coupled with a wealth of functional data, has shed some light on this complex puzzle. In this review, we summarize and discuss the contemporary knowledge on the molecular mechanism of entry and membrane fusion utilized by the alphaherpesvirus PrV, and highlight similarities but also remarkable differences in the requirements for fusion between PrV and the HSVs.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, UMR3569 (CNRS), Paris, France
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
22
|
Roa-Linares VC, Miranda-Brand Y, Tangarife-Castaño V, Ochoa R, García PA, Castro MÁ, Betancur-Galvis L, San Feliciano A. Anti-Herpetic, Anti-Dengue and Antineoplastic Activities of Simple and Heterocycle-Fused Derivatives of Terpenyl-1,4-Naphthoquinone and 1,4-Anthraquinone. Molecules 2019; 24:molecules24071279. [PMID: 30986933 PMCID: PMC6479402 DOI: 10.3390/molecules24071279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Quinones are secondary metabolites of higher plants associated with many biological activities, including antiviral effects and cytotoxicity. In this study, the anti-herpetic and anti-dengue evaluation of 27 terpenyl-1,4-naphthoquinone (NQ), 1,4-anthraquinone (AQ) and heterocycle-fused quinone (HetQ) derivatives was done in vitro against Human Herpesvirus (HHV) type 1 and 2, and Dengue virus serotype 2 (DENV-2). The cytotoxicity on HeLa and Jurkat tumor cell lines was also tested. Using plaque forming unit assays, cell viability assays and molecular docking, we found that NQ 4 was the best antiviral compound, while AQ 11 was the most active and selective molecule on the tested tumor cells. NQ 4 showed a fair antiviral activity against Herpesviruses (EC50: <0.4 µg/mL, <1.28 µM) and DENV-2 (1.6 µg/mL, 5.1 µM) on pre-infective stages. Additionally, NQ 4 disrupted the viral attachment of HHV-1 to Vero cells (EC50: 0.12 µg/mL, 0.38 µM) with a very high selectivity index (SI = 1728). The in silico analysis predicted that this quinone could bind to the prefusion form of the E glycoprotein of DENV-2. These findings demonstrate that NQ 4 is a potent and highly selective antiviral compound, while suggesting its ability to prevent Herpes and Dengue infections. Additionally, AQ 11 can be considered of interest as a leader for the design of new anticancer agents.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Group of Investigative Dermatology, Institute of Medical Research, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia.
| | - Yaneth Miranda-Brand
- Group of Investigative Dermatology, Institute of Medical Research, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia.
| | - Verónica Tangarife-Castaño
- Group of Investigative Dermatology, Institute of Medical Research, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia.
| | - Rodrigo Ochoa
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Facultad de Medicina, University of Antioquia, Medellín 050010, Colombia.
| | - Pablo A García
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL. Campus Miguel de Unamuno, University of Salamanca, 37007-Salamanca, Spain.
| | - Mª Ángeles Castro
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL. Campus Miguel de Unamuno, University of Salamanca, 37007-Salamanca, Spain.
| | - Liliana Betancur-Galvis
- Group of Investigative Dermatology, Institute of Medical Research, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia.
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL. Campus Miguel de Unamuno, University of Salamanca, 37007-Salamanca, Spain.
| |
Collapse
|
23
|
Akram Z, Al-Aali KA, Alrabiah M, Alonaizan FA, Abduljabbar T, AlAhmari F, Javed F, Vohra F. Current weight of evidence of viruses associated with peri-implantitis and peri-implant health: A systematic review and meta-analysis. Rev Med Virol 2019; 29:e2042. [PMID: 30901504 DOI: 10.1002/rmv.2042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/24/2022]
Abstract
The pathological role of human herpesviruses (HHVs) (Epstein-Barr virus [EBV], Human cytomegalovirus [CMV], and Herpes simplex virus [HSV]) in peri-implant health needs clarification quantitatively. To determine the weight of evidence for HHVs in patients with peri-implantitis (PI) and substantiate the significance of HHVs in peri-implant inflammation, electronic databases including EMBASE, MEDLINE, Cochrane Oral Health Group Trials Register, and Cochrane Central Register of Controlled Trials were searched from 1964 up to and including November 2018. Meta-analyses were conducted for prevalence of HHVs in PI and healthy controls. Forest plots were generated that recorded risk difference (RD) of outcomes and 95% confidence intervals (CI). Five clinical studies were considered and included. Four clinical studies reported data on EBV while three clinical studies reported data on CMV. Considering the risk of these viruses in PI, significant heterogeneity for CMV (χ2 = 53.37, p < 0.0001, I2 = 96.25%) and EBV (χ2 = 14.14, p = 0.002, I2 = 78.79%) prevalence was noticed between PI and healthy control sites. The overall RD for only EBV (RD = 0.20, 95% CI, 0.01-0.40, p = 0.03) was statistically significant between both groups. Frequencies of the viruses were increased in patients with PI compared with healthy nondiseased sites. However, the findings of the present study should be interpreted with caution because of significant heterogeneity and small number of included studies.
Collapse
Affiliation(s)
- Zohaib Akram
- Department of Oral Restorative and Rehabilitative Sciences, UWA Dental School, The University of Western Australia (M512), Perth, Western Australia, Australia
| | - Khulud Abdulrahman Al-Aali
- Department of Prosthodontics, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammed Alrabiah
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Abdullah Alonaizan
- Department of Restorative Dental Sciences, College Of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fatemah AlAhmari
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Fawad Javed
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
24
|
Glycoprotein K8.1A of Kaposi's Sarcoma-Associated Herpesvirus Is a Critical B Cell Tropism Determinant Independent of Its Heparan Sulfate Binding Activity. J Virol 2019; 93:JVI.01876-18. [PMID: 30567992 DOI: 10.1128/jvi.01876-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes are the major cellular reservoir in individuals infected with Kaposi's sarcoma-associated herpesvirus (KSHV), and the virus is etiologically linked to two B cell lymphoproliferative disorders. We previously described the MC116 human B cell line as a KSHV-susceptible model to overcome the paradoxical refractoriness of B cell lines to experimental KSHV infection. Here, using monoclonal antibody inhibition and a deletion mutant virus, we demonstrate that the KSHV virion glycoprotein K8.1A is critical for infection of MC116, as well as tonsillar B cells; in contrast, we confirm previous reports on the dispensability of the glycoprotein for infection of primary endothelial cells and other commonly studied non-B cell targets. Surprisingly, we found that the role of K8.1A in B cell infection is independent of its only known biochemical activity of binding to surface heparan sulfate, suggesting the possible involvement of an additional molecular interaction(s). Our finding that K8.1A is a critical determinant for KSHV B cell tropism parallels the importance of proteins encoded by positionally homologous genes for the cell tropism of other gammaherpesviruses.IMPORTANCE Elucidating the molecular mechanisms by which KSHV infects B lymphocytes is critical for understanding how the virus establishes lifelong persistence in infected people, in whom it can cause life-threatening B cell lymphoproliferative disease. Here, we show that K8.1A, a KSHV-encoded glycoprotein on the surfaces of the virus particles, is critical for infection of B cells. This finding stands in marked contrast to previous studies with non-B lymphoid cell types, for which K8.1A is known to be dispensable. We also show that the required function of K8.1A in B cell infection does not involve its binding to cell surface heparan sulfate, the only known biochemical activity of the glycoprotein. The discovery of this critical role of K8.1A in KSHV B cell tropism opens promising new avenues to unravel the complex mechanisms underlying infection and disease caused by this viral human pathogen.
Collapse
|
25
|
Holmes VM, Maluquer de Motes C, Richards PT, Roldan J, Bhargava AK, Orange JS, Krummenacher C. Interaction between nectin-1 and the human natural killer cell receptor CD96. PLoS One 2019; 14:e0212443. [PMID: 30759143 PMCID: PMC6373967 DOI: 10.1371/journal.pone.0212443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022] Open
Abstract
Regulation of Natural Killer (NK) cell activity is achieved by the integration of both activating and inhibitory signals acquired at the immunological synapse with potential target cells. NK cells express paired receptors from the immunoglobulin family which share common ligands from the nectin family of adhesion molecules. The activating receptor CD226 (DNAM-1) binds to nectin-2 and CD155, which are also recognized by the inhibitory receptor TIGIT. The third receptor in this family is CD96, which is less well characterized and may have different functions in human and mouse models. Human CD96 interacts with CD155 and ligation of this receptor activates NK cells, while in mice the presence of CD96 correlates with decreased NK cell activation. Mouse CD96 also binds nectin-1, but the effect of this interaction has not yet been determined. Here we show that human nectin-1 directly interacts with CD96 in vitro. The binding site for CD96 is located on the nectin-1 V-domain, which comprises a canonical interface that is shared by nectins to promote cell adhesion. The affinity of nectin-1 for CD96 is lower than for other nectins such as nectin-3 and nectin-1 itself. However, the affinity of nectin-1 for CD96 is similar to its affinity for herpes simplex virus glycoprotein D (HSV gD), which binds the nectin-1 V-domain during virus entry. The affinity of human CD96 for nectin-1 is lower than for its known activating ligand CD155. We also found that human erythroleukemia K562 cells, which are commonly used as susceptible targets to assess NK cell cytotoxicity did not express nectin-1 on their surface and were resistant to HSV infection. When expressed in K562 cells, nectin-1-GFP accumulated at cell contacts and allowed HSV entry. Furthermore, overexpression of nectin-1-GFP led to an increased susceptibility of K562 cells to NK-92 cell cytotoxicity.
Collapse
Affiliation(s)
- Veronica M. Holmes
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Paige T. Richards
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Jessenia Roldan
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Arjun K. Bhargava
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jordan S. Orange
- Department of Pediatrics, Columbia University, New York, New York, United States of America
| | - Claude Krummenacher
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|
26
|
Majmudar H, Hao M, Sankaranarayanan NV, Zanotti B, Volin MV, Desai UR, Tiwari V. A synthetic glycosaminoglycan mimetic blocks HSV-1 infection in human iris stromal cells. Antiviral Res 2018; 161:154-162. [PMID: 30481525 DOI: 10.1016/j.antiviral.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 11/26/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) is a significant pathogen that affects vision by targeting multiple regions in the human eye including iris. Using a focused library of synthetic non-saccharide glycosaminoglycan mimetics (NSGMs), we identified sulfated pentagalloylglucoside (SPGG) as a potent inhibitor of HSV-1 entry and cell-to-cell spread in the primary cultures of human iris stromal (HIS) cells isolated from eye donors. Using in vitro β-galactosidase reporter assay and plaque reduction assay, SPGG was found to inhibit HSV-1 entry in a dosage-dependent manner (IC50 ∼6.0 μM). Interestingly, a pronounced inhibition in HSV-1 entry and spread was observed in HIS cells, or a cell line expressing specific gD-receptor, when virions were pre-treated with mimetics suggesting a possible interaction between SPGG and the HSV-1 glycoprotein. To examine the significance of gD-SPGG interaction, HIS cells were pretreated with SPGG, which showed a significant reduction in gD binding. Taken together, our results provide strong evidence of SPGG being a novel viral entry inhibitor against ocular HSV infection.
Collapse
Affiliation(s)
- Hardik Majmudar
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Meng Hao
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Brian Zanotti
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Michael V Volin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA.
| |
Collapse
|
27
|
Liu J, Jardetzky TS, Chin AL, Johnson DC, Vanarsdall AL. The Human Cytomegalovirus Trimer and Pentamer Promote Sequential Steps in Entry into Epithelial and Endothelial Cells at Cell Surfaces and Endosomes. J Virol 2018; 92:e01336-18. [PMID: 30111564 PMCID: PMC6189492 DOI: 10.1128/jvi.01336-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects a wide variety of human cell types by different entry pathways that involve distinct envelope glycoprotein complexes that include gH/gL, a trimer complex consisting of gHgL/gO, and a pentamer complex consisting of gH/gL/UL128/UL130/UL131. We characterized the effects of soluble forms of these proteins on HCMV entry. Soluble trimer and pentamer blocked entry of HCMV into epithelial and endothelial cells, whereas soluble gH/gL did not. Trimer inhibited HCMV entry into fibroblast cells, but pentamer and gH/gL did not. Both trimer and pentamer bound to the surfaces of fibroblasts and epithelial cells, whereas gH/gL did not bind to either cell type. Cell surface binding of trimer and pentamer did not involve heparin sulfate moieties. The ability of soluble trimer to block entry of HCMV into epithelial cells did not involve platelet-derived growth factor PDGFRα, which has been reported as a trimer receptor for fibroblasts. Soluble trimer reduced the amount of virus particles that could be adsorbed onto the surface of epithelial cells, whereas soluble pentamer had no effect on virus adsorption. However, soluble pentamer reduced the ability of virus particles to exit from early endosomes into the cytoplasm and then travel to the nucleus. These studies support a model in which both the trimer and pentamer are required for HCMV entry into epithelial and endothelial cells, with trimer interacting with cell surface receptors other than PDGFR and pentamer acting later in the entry pathway to promote egress from endosomes.IMPORTANCE HCMV infects nearly 80% of the world's population and causes significant morbidity and mortality. The current antiviral agents used to treat HCMV infections are prone to resistance and can be toxic to patients, and there is no current vaccine against HCMV available. The data in this report will lead to a better understanding of how essential HCMV envelope glycoproteins function during infection of biologically important cell types and will have significant implications for understanding HCMV pathogenesis for developing new therapeutics.
Collapse
Affiliation(s)
- Jing Liu
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Ted S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Andrea L Chin
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - David C Johnson
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Adam L Vanarsdall
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
28
|
Azab W, Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 223:1-27. [PMID: 28528437 DOI: 10.1007/978-3-319-53168-7_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The entry process of herpesviruses into host cells is complex and highly variable. It involves a sequence of well-orchestrated events that begin with virus attachment to glycan-containing proteinaceous structures on the cell surface. This initial contact tethers virus particles to the cell surface and results in a cascade of molecular interactions, including the tight interaction of viral envelope glycoproteins to specific cell receptors. These interactions trigger intracellular signaling and finally virus penetration after fusion of the viral envelope with cellular membranes. Based on the engaged cellular receptors and co-receptors, and the subsequent signaling cascades, the entry pathway will be decided on the spot. A number of viral glycoproteins and many cellular receptors and molecules have been identified as players in one or several of these events during virus entry. This chapter will review viral glycoproteins, cellular receptors and signaling cascades associated with the very first interactions of herpesviruses with their target cells.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| | - Klaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| |
Collapse
|
29
|
CD147 Promotes Entry of Pentamer-Expressing Human Cytomegalovirus into Epithelial and Endothelial Cells. mBio 2018; 9:mBio.00781-18. [PMID: 29739904 PMCID: PMC5941078 DOI: 10.1128/mbio.00781-18] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) replicates in many diverse cell types in vivo, and entry into different cells involves distinct entry mechanisms and different envelope glycoproteins. HCMV glycoprotein gB is thought to act as the virus fusogen, apparently after being triggered by different gH/gL proteins that bind distinct cellular receptors or entry mediators. A trimer of gH/gL/gO is required for entry into all cell types, and entry into fibroblasts involves trimer binding to platelet-derived growth factor receptor alpha (PDGFRα). HCMV entry into biologically relevant epithelial and endothelial cells and monocyte-macrophages also requires a pentamer, gH/gL complexed with UL128, UL130, and UL131, and there is evidence that the pentamer binds unidentified receptors. We screened an epithelial cell cDNA library and identified the cell surface protein CD147, which increased entry of pentamer-expressing HCMV into HeLa cells but not entry of HCMV that lacked the pentamer. A panel of CD147-specific monoclonal antibodies inhibited HCMV entry into epithelial and endothelial cells, but not entry into fibroblasts. shRNA silencing of CD147 in endothelial cells inhibited HCMV entry but not entry into fibroblasts. CD147 colocalized with HCMV particles on cell surfaces and in endosomes. CD147 also promoted cell-cell fusion induced by expression of pentamer and gB in epithelial cells. However, soluble CD147 did not block HCMV entry and trimer and pentamer did not bind directly to CD147, supporting the hypothesis that CD147 acts indirectly through other proteins. CD147 represents the first HCMV entry mediator that specifically functions to promote entry of pentamer-expressing HCMV into epithelial and endothelial cells.IMPORTANCE Human cytomegalovirus infects nearly 80% of the world's population and causes significant morbidity and mortality. The current method of treatment involves the use of antiviral agents that are prone to resistance and can be highly toxic to patients; currently, there is no vaccine against HCMV available. HCMV infections involve virus dissemination throughout the body, infecting a wide variety of tissues; however, the mechanism of spread is not well understood, particularly with regard to which cellular proteins are utilized by HCMV to establish infection. This report describes the characterization of a newly identified cellular molecule that affects HCMV entry into epithelial and endothelial cells. These results will lead to a better understanding of HCMV pathogenesis and have implications for the development of future therapeutics.
Collapse
|
30
|
Kornfeind EM, Visalli RJ. Human herpesvirus portal proteins: Structure, function, and antiviral prospects. Rev Med Virol 2018; 28:e1972. [PMID: 29573302 DOI: 10.1002/rmv.1972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 01/28/2023]
Abstract
Herpesviruses (Herpesvirales) and tailed bacteriophages (Caudovirales) package their dsDNA genomes through an evolutionarily conserved mechanism. Much is known about the biochemistry and structural biology of phage portal proteins and the DNA encapsidation (viral genome cleavage and packaging) process. Although not at the same level of detail, studies on HSV-1, CMV, VZV, and HHV-8 have revealed important information on the function and structure of herpesvirus portal proteins. During dsDNA phage and herpesviral genome replication, concatamers of viral dsDNA are cleaved into single length units by a virus-encoded terminase and packaged into preformed procapsids through a channel located at a single capsid vertex (portal). Oligomeric portals are formed by the interaction of identical portal protein monomers. Comparing portal protein primary aa sequences between phage and herpesviruses reveals little to no sequence similarity. In contrast, the secondary and tertiary structures of known portals are remarkable. In all cases, function is highly conserved in that portals are essential for DNA packaging and also play a role in releasing viral genomic DNA during infection. Preclinical studies have described small molecules that target the HSV-1 and VZV portals and prevent viral replication by inhibiting encapsidation. This review summarizes what is known concerning the structure and function of herpesvirus portal proteins primarily based on their conserved bacteriophage counterparts and the potential to develop novel portal-specific DNA encapsidation inhibitors.
Collapse
Affiliation(s)
- Ellyn M Kornfeind
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Robert J Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|
31
|
Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses 2018; 10:v10020092. [PMID: 29473915 PMCID: PMC5850399 DOI: 10.3390/v10020092] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons.
Collapse
|
32
|
Vallbracht M, Brun D, Tassinari M, Vaney MC, Pehau-Arnaudet G, Guardado-Calvo P, Haouz A, Klupp BG, Mettenleiter TC, Rey FA, Backovic M. Structure-Function Dissection of Pseudorabies Virus Glycoprotein B Fusion Loops. J Virol 2018; 92:e01203-17. [PMID: 29046441 PMCID: PMC5730762 DOI: 10.1128/jvi.01203-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023] Open
Abstract
Conserved across the family Herpesviridae, glycoprotein B (gB) is responsible for driving fusion of the viral envelope with the host cell membrane for entry upon receptor binding and activation by the viral gH/gL complex. Although crystal structures of the gB ectodomains of several herpesviruses have been reported, the membrane fusion mechanism has remained elusive. Here, we report the X-ray structure of the pseudorabies virus (PrV) gB ectodomain, revealing a typical class III postfusion trimer that binds membranes via its fusion loops (FLs) in a cholesterol-dependent manner. Mutagenesis of FL residues allowed us to dissect those interacting with distinct subregions of the lipid bilayer and their roles in membrane interactions. We tested 15 gB variants for the ability to bind to liposomes and further investigated a subset of them in functional assays. We found that PrV gB FL residues Trp187, Tyr192, Phe275, and Tyr276, which were essential for liposome binding and for fusion in cellular and viral contexts, form a continuous hydrophobic patch at the gB trimer surface. Together with results reported for other alphaherpesvirus gBs, our data suggest a model in which Phe275 from the tip of FL2 protrudes deeper into the hydrocarbon core of the lipid bilayer, while the side chains of Trp187, Tyr192, and Tyr276 form a rim that inserts into the more superficial interfacial region of the membrane to catalyze the fusion process. Comparative analysis with gBs from beta- and gamma-herpesviruses suggests that this membrane interaction model is valid for gBs from all herpesviruses.IMPORTANCE Herpesviruses are common human and animal pathogens that infect cells by entering via fusion of viral and cellular membranes. Central to the membrane fusion event is glycoprotein B (gB), which is the most conserved envelope protein across the herpesvirus family. Like other viral fusion proteins, gB anchors itself in the target membrane via two polypeptide segments called fusion loops (FLs). The molecular details of how gB FLs insert into the lipid bilayer have not been described. Here, we provide structural and functional data regarding key FL residues of gB from pseudorabies virus, a porcine herpesvirus of veterinary concern, which allows us to propose, for the first time, a molecular model to understand how the initial interactions by gBs from all herpesviruses with target membranes are established.
Collapse
Affiliation(s)
- Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Delphine Brun
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| | - Matteo Tassinari
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| | - Marie-Christine Vaney
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| | - Gérard Pehau-Arnaudet
- Institut Pasteur, Ultrapole, Département de Biologie Cellulaire et Infection, Paris, France
- CNRS UMR3528, Paris, France
| | - Pablo Guardado-Calvo
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| | - Ahmed Haouz
- CNRS UMR3528, Paris, France
- Institut Pasteur, Plate-Forme de Cristallographie, Paris, France
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie, Paris, France
- CNRS UMR3569, Paris, France
| |
Collapse
|
33
|
Vennard LM, Atanasiu D, Saw WT, Eisenberg RJ, Cohen GH, Fontana J. Recent insights into the structural characterization of herpes simplex virus fusion protein, gB. Future Virol 2018. [DOI: 10.2217/fvl-2017-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Lorelai M Vennard
- Faculty of Biology & Astbury Center for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Doina Atanasiu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan Ting Saw
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roselyn J Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Juan Fontana
- Faculty of Biology & Astbury Center for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
34
|
Wudiri GA, Schneider SM, Nicola AV. Herpes Simplex Virus 1 Envelope Cholesterol Facilitates Membrane Fusion. Front Microbiol 2017; 8:2383. [PMID: 29270154 PMCID: PMC5723649 DOI: 10.3389/fmicb.2017.02383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022] Open
Abstract
Methyl beta-cyclodextrin (MβCD) treatment of herpes simplex virus 1 (HSV-1) reduced envelope cholesterol levels and inhibited viral entry and infectivity in several cell types, regardless of the dependence of entry on endocytosis or low pH. Viral protein composition was similar in MβCD-treated and untreated virions, and ultrastructural analysis by electron microscopy revealed that cholesterol removal did not grossly affect virion structure or integrity. Removal of envelope cholesterol greatly reduced virion fusion activity as measured by fusion-from-without, suggesting that virion cholesterol is critical for the step of membrane fusion. MβCD-treatment of HSV-1 did not reduce viral attachment to the cells nor endocytic uptake of HSV-1 from the cell surface. The pre-fusion form of gB present in the HSV-1 envelope undergoes conformational changes in response to mildly acidic pH. These gB changes occurred independently of envelope cholesterol. Removal of cholesterol compromised virion stability as measured by recovery of infectivity following cycles of freeze-thaw. Taken together, the data suggest that HSV-1 envelope cholesterol is important for viral entry and infectivity due to a critical role in membrane fusion.
Collapse
Affiliation(s)
| | | | - Anthony V. Nicola
- Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
35
|
Masood M, Herberstein ME, Raftos DA, Nair SV. Double stranded RNA is processed differently in two oyster species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:285-291. [PMID: 28687485 DOI: 10.1016/j.dci.2017.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/07/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Ostreid herpes virus causes serious disease in the Pacific oyster (Crassostrea gigas), but not in the Sydney Rock Oyster (Saccostrea glomerata). To investigate differences in disease progression, we injected oysters with double stranded RNA (dsRNA). dsRNA is known to mimic viral infection, and can evoke immune responses when Toll-like receptors detect the dsRNA, leading to the production of type 1 interferon and inflammation cytokines. The uptake and processing of dsRNA was tracked in gill and mantle tissue of Crassostrea gigas and Saccostrea glomerata after injection of fluorochrome labelled poly (I:C) dsRNA. The two species showed significant differences in tissue uptake and clearance, and differences in immune responses confirmed by real time PCR. These results showed that S. glomerata was more efficient in processing dsRNA than C. gigas, and that the gill tissue is an important site of dsRNA processing and response.
Collapse
Affiliation(s)
- Muhammad Masood
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia.
| | - Marie E Herberstein
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - David A Raftos
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Sham V Nair
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| |
Collapse
|
36
|
Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol 2017; 102:1199-1217. [PMID: 28848041 DOI: 10.1189/jlb.4ru0417-145rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses use diverse strategies to elude the immune system, including copying and repurposing host cytokine and cytokine receptor genes. For herpesviruses, the chemokine system of chemotactic cytokines and receptors is a common source of copied genes. Here, we review the current state of knowledge about herpesvirus-encoded chemokines and discuss their possible roles in viral pathogenesis, as well as their clinical potential as novel anti-inflammatory agents or targets for new antiviral strategies.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Bailer SM, Funk C, Riedl A, Ruzsics Z. Herpesviral vectors and their application in oncolytic therapy, vaccination, and gene transfer. Virus Genes 2017. [PMID: 28634751 DOI: 10.1007/s11262-017-1482-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herpesviruses are enveloped DNA viruses that infect vertebrate cells. Their high potential cloning capacity and the lifelong persistence of their genomes in various host cells make them attractive platforms for vector-based therapy. In this review, we would like to highlight recent advances of three major areas of herpesvirus vector development and application: (i) oncolytic therapy, (ii) recombinant vaccines, and (iii) large capacity gene transfer vehicles.
Collapse
Affiliation(s)
- Susanne M Bailer
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstrasse 12, 70569, Stuttgart, Germany. .,Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstrasse 12, 70569, Stuttgart, Germany.
| | - Christina Funk
- Institute for Interfacial Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstrasse 12, 70569, Stuttgart, Germany.,Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Nobelstrasse 12, 70569, Stuttgart, Germany
| | - André Riedl
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104, Freiburg, Germany.,German Center for Infection Research - DZIF, Freiburg, Germany
| | - Zsolt Ruzsics
- Department for Medical Microbiology and Hygiene, Institute of Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, 79104, Freiburg, Germany. .,German Center for Infection Research - DZIF, Freiburg, Germany.
| |
Collapse
|
38
|
You Y, Cheng AC, Wang MS, Jia RY, Sun KF, Yang Q, Wu Y, Zhu D, Chen S, Liu MF, Zhao XX, Chen XY. The suppression of apoptosis by α-herpesvirus. Cell Death Dis 2017; 8:e2749. [PMID: 28406478 PMCID: PMC5477576 DOI: 10.1038/cddis.2017.139] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/09/2017] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
Apoptosis, an important innate immune mechanism that eliminates pathogen-infected cells, is primarily triggered by two signalling pathways: the death receptor pathway and the mitochondria-mediated pathway. However, many viruses have evolved various strategies to suppress apoptosis by encoding anti-apoptotic factors or regulating apoptotic signalling pathways, which promote viral propagation and evasion of the host defence. During its life cycle, α-herpesvirus utilizes an elegant multifarious anti-apoptotic strategy to suppress programmed cell death. This progress article primarily focuses on the current understanding of the apoptosis-inhibition mechanisms of α-herpesvirus anti-apoptotic genes and their expression products and discusses future directions, including how the anti-apoptotic function of herpesvirus could be targeted therapeutically.
Collapse
Affiliation(s)
- Yu You
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - An-Chun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ming-Shu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ren-Yong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Kun-Feng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ma-Feng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Xiao-Yue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| |
Collapse
|
39
|
Alzahrani AA. Association between human herpes virus and aggressive periodontitis: A systematic review. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.sjdr.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Atanasiu D, Saw WT, Eisenberg RJ, Cohen GH. Regulation of Herpes Simplex Virus Glycoprotein-Induced Cascade of Events Governing Cell-Cell Fusion. J Virol 2016; 90:10535-10544. [PMID: 27630245 PMCID: PMC5110162 DOI: 10.1128/jvi.01501-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
Receptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. IMPORTANCE Cell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when using deregulated forms of gD1 and gH2/gL2, the fusogenic potential of gB could only be increased in the absence of receptor, underlining the exquisite regulation that occurs in the presence of receptor. Our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion.
Collapse
Affiliation(s)
- Doina Atanasiu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wan Ting Saw
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roselyn J Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Bueno R, Perrott M, Dunowska M, Brosnahan C, Johnston C. In situ hybridization and histopathological observations during ostreid herpesvirus-1-associated mortalities in Pacific oysters Crassostrea gigas. DISEASES OF AQUATIC ORGANISMS 2016; 122:43-55. [PMID: 27901503 DOI: 10.3354/dao03062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In a previous longitudinal study conducted during a mortality investigation associated with ostreid herpesvirus-1 (OsHV-1) microvariant in New Zealand Pacific oysters in 2010-2011, temporality of OsHV-1 nucleic acid detection by real-time PCR assay and onset of Pacific oyster mortality was observed. The present study further elucidated the role of OsHV-1 using an in situ hybridization (ISH) assay on sections of Pacific oysters collected from the same longitudinal study. Hybridization of the labelled probe with the target region of the OsHV-1 genome in infected cells was detected colorimetrically using nitro blue tetrazolium (NBT). OsHV-1 presence and distribution in spat indicated by the ISH signal was then compared with the existence of pathological changes in oyster tissues. Dark blue to purplish black NBT cell labelling was seen predominantly in the stroma of the mantle and gills at Day 5 post introduction to the farm. The distribution and location of ISH signals indicated the extent of OsHV-1-infected cells in multiple tissues. Histopathological abnormalities were mostly non-specific; however, a progressive pattern of increasingly widespread haemocytosis coincided with the appearance of OsHV-1-infected cells in spat collected at different time-points. The visualisation of an increasing number of OsHV-1-positive cells in spat prior to a marked increase in mortality indicated the strong likelihood of an on-going and active viral infection in some oysters. Further studies are recommended to elucidate OsHV-1 pathogenesis in Pacific oysters in association with other potentially causal variables, such as elevated temperature and interaction with Vibrio spp. bacteria.
Collapse
Affiliation(s)
- Rudolfo Bueno
- Animal Health Laboratory, Investigation, Diagnostic Centres and Response-Wallaceville, Ministry for Primary Industries, 66 Ward St, PO Box 40742, Upper Hutt 5018, New Zealand
| | | | | | | | | |
Collapse
|
42
|
Cell Surface THY-1 Contributes to Human Cytomegalovirus Entry via a Macropinocytosis-Like Process. J Virol 2016; 90:9766-9781. [PMID: 27558416 DOI: 10.1128/jvi.01092-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/23/2016] [Indexed: 12/14/2022] Open
Abstract
Previously we showed that THY-1 has a critical role in the initial stage of infection of certain cell types with human cytomegalovirus (HCMV) and that THY-1 is important for HCMV-mediated activation of phosphatidylinositol 3-kinase (PI3K)/Akt during virus entry. THY-1 is known to interact with integrins and is a major cargo protein of clathrin-independent endocytic vesicles. Since macropinocytosis involves integrin signaling, is PI3K/Akt dependent, and is a clathrin-independent endocytic process, we determined whether THY-1 has a role in HCMV entry by macropinocytosis. Using electron microscopy in two cell lines that support HCMV infection in a THY-1-dependent manner, we found that HCMV enters these cells by a macropinocytosis-like process. THY-1 associated with HCMV virions on the cell surface and colocalized with virus inside macropinosomes. 5-(N-Ethyl-N-isopropyl)amiloride (EIPA) and soluble THY-1 blocked HCMV infection in the cell lines by ≥80% and 60%, respectively. HCMV entry into the cells triggered increased influx of extracellular fluid, a marker of macropinocytosis, and this increased fluid uptake was inhibited by EIPA and by soluble THY-1. Blocking actin depolymerization, Na+/H+ exchange, PI3K, and Pak1 kinase, which are critical for macropinocytosis, impaired HCMV infection. Neither internalized HCMV virions nor THY-1 in virus-infected cells colocalized with transferrin as determined by confocal microscopy, indicating that clathrin-mediated endocytosis was not involved in THY-1-associated virus entry. These results suggest that HCMV has adapted to utilize THY-1, a cargo protein of clathrin-independent endocytotic vesicles, to facilitate efficient entry into certain cell types by a macropinocytosis-like process. IMPORTANCE Human cytomegalovirus (HCMV) infects over half of the population and is the most common infectious cause of birth defects. The virus is the most important infection occurring in transplant recipients. The mechanism of how HCMV enters cells is controversial. In this study, we show that THY-1, a cell surface protein that is critical for the early stage of entry of HCMV into certain cell types, contributes to virus entry by macropinocytosis. Our findings suggest that HCMV has adapted to utilize THY-1 to facilitate entry of HCMV into macropinosomes in certain cell types. Further knowledge about the mechanism of HCMV entry into cells may facilitate the development of novel inhibitors of virus infection.
Collapse
|
43
|
B Virus (Macacine Herpesvirus 1) Divergence: Variations in Glycoprotein D from Clinical and Laboratory Isolates Diversify Virus Entry Strategies. J Virol 2016; 90:9420-32. [PMID: 27512063 DOI: 10.1128/jvi.00799-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED B virus (Macacine herpesvirus 1) can cause deadly zoonotic disease in humans. Molecular mechanisms of B virus cell entry are poorly understood for both macaques and humans. Here we investigated the abilities of clinical B virus isolates to use entry receptors of herpes simplex viruses (HSV). We showed that resistant B78H1 cells became susceptible to B virus clinical strains upon expression of either human nectin-2 or nectin-1. Antibody against glycoprotein D (gD) protected these nectin-bearing cells from B virus infection, and a gD-negative recombinant B virus failed to enter these cells, indicating that the nectin-mediated B virus entry depends on gD. We observed that the infectivity of B virus isolates with a single amino acid substitution (D122N) in the IgV-core of the gD ectodomain was impaired on nectin-1-bearing cells. Computational homology-based modeling of the B virus gD-nectin-1 complex revealed conformational differences between the structures of the gD-122N and gD-122D variants that affected the gD-nectin-1 protein-protein interface and binding affinity. Unlike HSV, B virus clinical strains were unable to use herpesvirus entry mediator (HVEM) as a receptor, regardless of conservation of the gD amino acid residues essential for HSV-1 entry via HVEM. Based on the model of the B virus gD-HVEM interface, we predict that residues R7, R11, and G15 are largely responsible for the inability of B virus to utilize HVEM for entry. The ability of B virus to enter cells of a human host by using a combination of receptors distinct from those for HSV-1 or HSV-2 suggests a possible mechanism of enhanced neuropathogenicity associated with zoonotic infections. IMPORTANCE B virus causes brainstem destruction in infected humans in the absence of timely diagnosis and intervention. Nectins are cell adhesion molecules that are widely expressed in human tissues, including neurons and neuronal synapses. Here we report that human nectin-2 is a target receptor for B virus entry, in addition to the reported receptor human nectin-1. Similar to a B virus lab strain, B virus clinical strains can effectively use both nectin-1 and nectin-2 as cellular receptors for entry into human cells, but unlike HSV-1 and HSV-2, none of the clinical strains uses an HVEM-mediated entry pathway. Ultimately, these differences between B virus and HSV-1 and -2 may provide insight into the neuropathogenicity of B virus during zoonotic infections.
Collapse
|
44
|
Nicola AV. Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH. Traffic 2016; 17:965-75. [PMID: 27126894 PMCID: PMC5444542 DOI: 10.1111/tra.12408] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
Abstract
Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question.
Collapse
Affiliation(s)
- Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
45
|
Abstract
Viruses have evolved many mechanisms by which to evade and subvert the immune system to ensure survival and persistence. However, for each method undertaken by the immune system for pathogen removal, there is a counteracting mechanism utilized by pathogens. The new and emerging role of microvesicles in immune intercellular communication and function is no different. Viruses across many different families have evolved to insert viral components in exosomes, a subtype of microvesicle, with many varying downstream effects. When assessed cumulatively, viral antigens in exosomes increase persistence through cloaking viral genomes, decoying the immune system, and even by increasing viral infection in uninfected cells. Exosomes therefore represent a source of viral antigen that can be used as a biomarker for disease and targeted for therapy in the control and eradication of these disorders. With the rise in the persistence of new and reemerging viruses like Ebola and Zika, exploring the role of exosomes become more important than ever.
Collapse
Affiliation(s)
- Monique R Anderson
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, Bethesda, MD, 20892, USA.
- Department of Pathology Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| | - Fatah Kashanchi
- George Mason University, National Center for Biodefense and Infectious Disease, Laboratory of Molecular Virology, Manassas, VA, 20110, USA
| | - Steven Jacobson
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Neuroimmunology Branch, Viral Immunology Section, Bethesda, MD, 20892, USA
| |
Collapse
|
46
|
Bagdonaite I, Nordén R, Joshi HJ, King SL, Vakhrushev SY, Olofsson S, Wandall HH. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus. J Biol Chem 2016; 291:12014-28. [PMID: 27129252 DOI: 10.1074/jbc.m116.721746] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/27/2022] Open
Abstract
Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Rickard Nordén
- the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Hiren J Joshi
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sarah L King
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sigvard Olofsson
- the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Hans H Wandall
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| |
Collapse
|
47
|
Patrone M, Coroadinha AS, Teixeira AP, Alves PM. Palmitoylation Strengthens Cholesterol-dependent Multimerization and Fusion Activity of Human Cytomegalovirus Glycoprotein B (gB). J Biol Chem 2015; 291:4711-22. [PMID: 26694613 DOI: 10.1074/jbc.m115.682252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
Herpesviruses are a large order of animal enveloped viruses displaying a virion fusion mechanism of unusual complexity. Their multipartite machinery has a conserved core made of the gH/gL ancillary complexes and the homo-trimeric fusion protein glycoprotein B (gB). Despite its essential role in starting the viral infection, gB interaction with membrane lipids is still poorly understood. Here, evidence is provided demonstrating that human cytomegalovirus (HCMV) gB depends on the S-palmitoylation of its endodomain for an efficient interaction with cholesterol-rich membrane patches. We found that, unique among herpesviral gB proteins, the HCMV fusion factor has a Cys residue in the C-terminal region that is palmitoylated and mediates methyl-β-cyclodextrin-sensitive self-association of purified gB. A cholesterol-dependent virus-like particle trap assay, based on co-expression of the HIV Gag protein, confirmed that this post-translational modification is functional in the context of cellular membranes. Mutation of the palmitoylated Cys residue to Ala or inhibition of protein palmitoylation decreased HCMV gB export via Gag particles. Moreover, purified gBC777A showed an increased kinetic sensitivity in a cholesterol depletion test, demonstrating that palmitoyl-gB limits outward cholesterol diffusion. Finally, gB palmitoylation was required for full fusogenic activity in human epithelial cells. Altogether, these results uncover the palmitoylation of HCMV gB and its role in gB multimerization and activity.
Collapse
Affiliation(s)
- Marco Patrone
- From the Animal Cell Technology Unit, iBET Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal, the Biocrystallography Unit, DIBIT Fondazione Centro San Raffaele, 20132 Milano, Italy, and
| | - Ana Sofia Coroadinha
- From the Animal Cell Technology Unit, iBET Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal, the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2784-505 Oeiras, Portugal
| | - Ana P Teixeira
- From the Animal Cell Technology Unit, iBET Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal, the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2784-505 Oeiras, Portugal
| | - Paula M Alves
- From the Animal Cell Technology Unit, iBET Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal, the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2784-505 Oeiras, Portugal
| |
Collapse
|
48
|
Roa-Linares VC, Brand YM, Agudelo-Gomez LS, Tangarife-Castaño V, Betancur-Galvis LA, Gallego-Gomez JC, González MA. Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. Eur J Med Chem 2015; 108:79-88. [PMID: 26638041 PMCID: PMC7115619 DOI: 10.1016/j.ejmech.2015.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/23/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023]
Abstract
The abietane-type diterpenoid (+)-ferruginol (1), a bioactive compound isolated from several plants, has attracted much attention as consequence of its pharmacological properties, which includes antibacterial, antifungal, antimicrobial, cardioprotective, anti-oxidative, anti-plasmodial, leishmanicidal, anti-ulcerogenic, anti-inflammatory and antitumor actions. In this study, we report on the antiviral evaluation of ferruginol (1) and several analogues synthesized from commercial (+)-dehydroabietylamine. Thus, the activity against Human Herpesvirus type 1, Human Herpesvirus type 2 and Dengue Virus type 2, was studied. Two ferruginol analogues showed high antiviral selectivity index and reduced viral plaque-size in post-infection stages against both Herpes and Dengue viruses. A promising lead, compound 8, was ten-fold more potent (EC50 = 1.4 μM) than the control ribavirin against Dengue Virus type 2. Our findings suggest that the 12-hydroxyabieta-8,11,13-triene skeleton, which is characteristic of the diterpenoid ferruginol (1), is an interesting molecular scaffold for development of novel antivirals. In addition, the cytotoxic and antifungal activities of the synthesized ferruginol analogues have also been investigated. (©)20155 Elsevier Science. All rights reserved.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Group of Investigative Dermatology, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, A.A1226, Antioquia, Colombia; Translational and Molecular Medicine Group, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, Colombia
| | - Yaneth M Brand
- Group of Investigative Dermatology, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, A.A1226, Antioquia, Colombia; Translational and Molecular Medicine Group, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, Colombia
| | - Lee S Agudelo-Gomez
- Group of Investigative Dermatology, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, A.A1226, Antioquia, Colombia
| | - Verónica Tangarife-Castaño
- Group of Investigative Dermatology, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, A.A1226, Antioquia, Colombia
| | - Liliana A Betancur-Galvis
- Group of Investigative Dermatology, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, A.A1226, Antioquia, Colombia; Translational and Molecular Medicine Group, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, Colombia
| | - Juan C Gallego-Gomez
- Translational and Molecular Medicine Group, Institute of Medical Research, Medicine Faculty, University of Antioquia, Medellin, Colombia
| | - Miguel A González
- Departamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Valencia, Spain.
| |
Collapse
|
49
|
Aravind S, Kamble NM, Gaikwad SS, Shukla SK, Saravanan R, Dey S, Mohan CM. Protective effects of recombinant glycoprotein D based prime boost approach against duck enteritis virus in mice model. Microb Pathog 2015; 88:78-86. [PMID: 26188265 DOI: 10.1016/j.micpath.2015.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 11/24/2022]
Abstract
Duck virus enteritis, also known as duck plague, is an acute herpes viral infection of ducks caused by duck enteritis virus (DEV). The method of repeated immunization with a live attenuated vaccine has been used for the prevention and control of duck enteritis virus (DEV). However, the incidence of the disease in vaccinated flocks and latency reactivation are the major constraints in the present vaccination programme. The immunogenicity and protective efficacy afforded by intramuscular inoculation of plasmid DNA encoding DEV glycoprotein D (pCDNA-gD) followed by DEV gD expressed in Saccharomyces cerevisia (rgD) was assessed in a murine model. Compared with mice inoculated with DNA (pCDNA-gD) or protein (rgD) only, mice inoculated with the combination of gD DNA and protein had enhanced ELISA antibody titers to DEV and had accelerated clearance of virus following challenge infection. Furthermore, the highest levels of lymphocyte proliferation response, IL-4, IL-12 and IFN-γ production were induced following priming with the DNA vaccine and boosting with the rgD protein. For instance, the specially designed recombinant DEV vector vaccine would be the best choice to use in ducks. It offers an excellent solution to the low vaccination coverage rate in ducks. We expect that the application of this novel vaccine in the near future will greatly decrease the virus load in the environment and reduce outbreaks of DEV in ducks.
Collapse
Affiliation(s)
- S Aravind
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| | - Nitin Machindra Kamble
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Satish S Gaikwad
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Sanjeev Kumar Shukla
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - R Saravanan
- Immunology Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Sohini Dey
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - C Madhan Mohan
- Recombinant DNA Laboratory, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| |
Collapse
|
50
|
Dissociation of HSV gL from gH by αvβ6- or αvβ8-integrin promotes gH activation and virus entry. Proc Natl Acad Sci U S A 2015; 112:E3901-10. [PMID: 26157134 DOI: 10.1073/pnas.1506846112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Herpes simplex virus (HSV) is an important human pathogen. It enters cells through an orchestrated process that requires four essential glycoproteins, gD, gH/gL, and gB, activated in cascade fashion by receptor-binding and signaling. gH/gL heterodimer is conserved across the Herpesviridae family. HSV entry is enabled by gH/gL interaction with αvβ6- or αvβ8-integrin receptors. We report that the interaction of virion gH/gL with integrins resulted in gL dissociation and its release in the medium. gL dissociation occurred if all components of the entry apparatus-receptor-bound gD and gB-were present and was prevented if entry was blocked by a neutralizing monoclonal antibody to gH or by a mutation in gH. We propose that (i) gL dissociation from gH/gL is part of the activation of HSV glycoproteins, critical for HSV entry; and (ii) gL is a functional inhibitor of gH and maintains gH in an inhibited form until receptor-bound gD and integrins signal to gH/gL.
Collapse
|