1
|
Hernando-Redondo J, Malcampo M, Pérez-Vega KA, Paz-Graniel I, Martínez-González MÁ, Corella D, Estruch R, Salas-Salvadó J, Pintó X, Arós F, Bautista-Castaño I, Romaguera D, Lapetra J, Ros E, Cueto-Galán R, Fitó M, Castañer O. Mediterranean Diet Modulation of Neuroinflammation-Related Genes in Elderly Adults at High Cardiovascular Risk. Nutrients 2024; 16:3147. [PMID: 39339745 PMCID: PMC11434799 DOI: 10.3390/nu16183147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Individuals with dementia and neurodegenerative diseases (NDDs) often suffer from cardiovascular diseases (CVDs). Neuroinflammation driven by conditions involved in CVDs is linked to disruptions in the central nervous system triggering immune reactions, perpetuating an "inflammatory-like" environment. The Mediterranean diet (MedDiet), known for its anti-inflammatory and antioxidant properties, has been proposed as a key factor to attenuate these risks. Blood nuclear cell samples were collected from 134 participants of the PREDIMED trial, which randomized participants to three diets: one supplemented with extra-virgin olive oil (MedDiet-EVOO), another with nuts (MedDiet-Nuts), and a low-fat control diet. These samples were analyzed at baseline and 12-month follow-up to assess the impact of these dietary interventions on gene expression markers. We first selected target genes by analyzing intersections between NDD and CVD associations. Significant gene expression changes from baseline to 12 months were observed in the participants allocated to the MedDiet-EVOO, particularly in CDKN2A, IFNG, NLRP3, PIK3CB, and TGFB2. Additionally, TGFB2 expression changed over time in the MedDiet-Nuts group. Comparative analyses showed significant differences in TGFB2 between MedDiet-EVOO and control, and in NAMPT between MedDiet-Nuts and control. Longitudinal models adjusted for different covariates also revealed significant effects for TGFB2 and NAMPT. In conclusion, our results suggest that one year of traditional MedDiet, especially MedDiet-EVOO, modulates gene expression associated with CVD risk and NDDs in older adults at high CV risk.
Collapse
Affiliation(s)
- Javier Hernando-Redondo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
- Ph.D. Program in Food Science and Nutrition, University of Barcelona, 08028 Barcelona, Spain
| | - Mireia Malcampo
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Karla Alejandra Pérez-Vega
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Indira Paz-Graniel
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, 31009 Pamplona, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 46010 Barcelona, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Xavier Pintó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Lipids and Vascular Risk Unit, Internal Medicine, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitario de Bellvitge, University of Barcelona, 08028 Barcelona, Spain
| | - Fernando Arós
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Cardiology Department, Organización Sanitaria Integrada Araba (OSI ARABA), University Hospital of Araba, 01009 Gasteiz, Spain
- University of País Vasco/Euskal Herria Unibersitatea (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Inmaculada Bautista-Castaño
- Institute for Biomedical Research, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - Dora Romaguera
- Research Group in Nutritional Epidemiology and Cardiovascular Pathophysiology, Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - José Lapetra
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Department of Family Medicine, Research Unity, Distrito Sanitario Atención Primaria Sevilla, 41013 Seville, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 46010 Barcelona, Spain
| | - Raquel Cueto-Galán
- Preventive Medicine and Public Health Department, School of Medicine, University of Malaga, Spain, Biomedical Research Institute of Malaga (IBIMA), 29071 Malaga, Spain;
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Olga Castañer
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Adibi JJ, Zhao Y, Koistinen H, Mitchell RT, Barrett ES, Miller R, O'Connor TG, Xun X, Liang HW, Birru R, Smith M, Moog NK. Molecular pathways in placental-fetal development and disruption. Mol Cell Endocrinol 2024; 581:112075. [PMID: 37852527 PMCID: PMC10958409 DOI: 10.1016/j.mce.2023.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
The first trimester of pregnancy ranks high in priority when minimizing harmful exposures, given the wide-ranging types of organogenesis occurring between 4- and 12-weeks' gestation. One way to quantify potential harm to the fetus in the first trimester is to measure a corollary effect on the placenta. Placental biomarkers are widely present in maternal circulation, cord blood, and placental tissue biopsied at birth or at the time of pregnancy termination. Here we evaluate ten diverse pathways involving molecules expressed in the first trimester human placenta based on their relevance to normal fetal development and to the hypothesis of placental-fetal endocrine disruption (perturbation in development that results in abnormal endocrine function in the offspring), namely: human chorionic gonadotropin (hCG), thyroid hormone regulation, peroxisome proliferator activated receptor protein gamma (PPARγ), leptin, transforming growth factor beta, epiregulin, growth differentiation factor 15, small nucleolar RNAs, serotonin, and vitamin D. Some of these are well-established as biomarkers of placental-fetal endocrine disruption, while others are not well studied and were selected based on discovery analyses of the placental transcriptome. A literature search on these biomarkers summarizes evidence of placenta-specific production and regulation of each biomarker, and their role in fetal reproductive tract, brain, and other specific domains of fetal development. In this review, we extend the theory of fetal programming to placental-fetal programming.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, University of Pittsburgh School of Public Health, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yaqi Zhao
- St. Jude's Research Hospital, Memphis, TN, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Rod T Mitchell
- Department of Paediatric Endocrinology, Royal Hospital for Children and Young People, Edinburgh BioQuarter, Edinburgh, UK
| | - Emily S Barrett
- Environmental and Population Health Bio-Sciences, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Richard Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Hai-Wei Liang
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rahel Birru
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Megan Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora K Moog
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Shi W, Ren C, Zhang W, Gao C, Yu W, Ji X, Chang L. Hypoxic Postconditioning Promotes Angiogenesis After Ischemic Stroke. Neuroscience 2023; 526:35-47. [PMID: 37331689 DOI: 10.1016/j.neuroscience.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Although hypoxic postconditioning (HPC) has a protective effect on ischemic stroke, its effect on angiogenesis after ischemic stroke is still unclear. This study was designed to investigate the effects of HPC on angiogenesis after ischemic stroke and to preliminarily study the mechanism involved. Oxygen-glucose deprivation (OGD)-intervened bEnd.3 (mouse brain-derived Endothelial cell. 3) was used to simulate cerebral ischemia. Cell counting kit-8 (CCK-8), Cell BrdU proliferation, wound healing, Transwell and tube formation assays were used to evaluate the effect of HPC on the cell viability, proliferation, migration (horizontal and vertical migration), morphogenesis and tube formation of bEnd.3. A middle cerebral artery occlusion (MCAO) model was made in C57 mice to simulate focal cerebral ischemia. Rod rotation test, corner test, modified neurological severity score (mNSS), and balance beam walking test were used to evaluate the effect of HPC on the neurological impairment of mice. Immunofluorescence staining was used to evaluate the effect of HPC on angiogenesis in mice. The angiogenesis-related proteins were evaluated and quantified using western blot. Results showed that HPC significantly promoted proliferation, migration and tube formation of bEnd.3. HPC significantly reversed the neurological deficit of MCAO mice. Moreover, HPC significantly promoted angiogenesis in the peri-infarct area, and angiogenesis was found to be positively correlated with the improvement of neurological impairment. The HPC mice showed higher PLCλ and ALK5 than did MCAO. We conclude that HPC improves the neurological deficit caused by focal cerebral ischemia by promoting angiogenesis. Furthermore, the effect of HPC on improving angiogenesis may be related to PLCλ and ALK5.
Collapse
Affiliation(s)
- Wenjie Shi
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China; Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Wei Zhang
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wantong Yu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Lisha Chang
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China.
| |
Collapse
|
4
|
Anwar MJ, Alenezi SK, Alhowail AH. Molecular insights into the pathogenic impact of vitamin D deficiency in neurological disorders. Biomed Pharmacother 2023; 162:114718. [PMID: 37084561 DOI: 10.1016/j.biopha.2023.114718] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
Neurological disorders are the major cause of disability, leading to a decrease in quality of life by impairing cognitive, sensorimotor, and motor functioning. Several factors have been proposed in the pathogenesis of neurobehavioral changes, including nutritional, environmental, and genetic predisposition. Vitamin D (VD) is an environmental and nutritional factor that is widely distributed in the central nervous system's subcortical grey matter, neurons of the substantia nigra, hippocampus, thalamus, and hypothalamus. It is implicated in the regulation of several brain functions by preserving neuronal structures. It is a hormone rather than a nutritional vitamin that exerts a regulatory role in the pathophysiology of several neurological disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and multiple sclerosis. A growing body of epidemiological evidence suggests that VD is critical in neuronal development and shows neuroprotective effects by influencing the production and release of neurotrophins, antioxidants, immunomodulatory, regulation of intracellular calcium balance, and direct effect on the growth and differentiation of nerve cells. This review provides up-to-date and comprehensive information on vitamin D deficiency, risk factors, and clinical and preclinical evidence on its relationship with neurological disorders. Furthermore, this review provides mechanistic insight into the implications of vitamin D and its deficiency on the pathogenesis of neurological disorders. Thus, an understanding of the crucial role of vitamin D in the neurobiology of neurodegenerative disorders can assist in the better management of vitamin D-deficient individuals.
Collapse
Affiliation(s)
- Md Jamir Anwar
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Unaizah 51911, Saudi Arabia.
| | - Ahmad Hamad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
von Bohlen Und Halbach O. Neurotrophic Factors and Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:223-254. [PMID: 37962797 DOI: 10.1007/978-3-031-36159-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are highly dynamic structures that play important roles in neuronal plasticity. The morphologies and the numbers of dendritic spines are highly variable, and this diversity is correlated with the different morphological and physiological features of this neuronal compartment. Dendritic spines can change their morphology and number rapidly, allowing them to adapt to plastic changes. Neurotrophic factors play important roles in the brain during development. However, these factors are also necessary for a variety of processes in the postnatal brain. Neurotrophic factors, especially members of the neurotrophin family and the ephrin family, are involved in the modulation of long-lasting effects induced by neuronal plasticity by acting on dendritic spines, either directly or indirectly. Thereby, the neurotrophic factors play important roles in processes attributed, for example, to learning and memory.
Collapse
|
6
|
Izsak J, Vizlin-Hodzic D, Iljin M, Strandberg J, Jadasz J, Olsson Bontell T, Theiss S, Hanse E, Ågren H, Funa K, Illes S. TGF-β1 Suppresses Proliferation and Induces Differentiation in Human iPSC Neural in vitro Models. Front Cell Dev Biol 2020; 8:571332. [PMID: 33195202 PMCID: PMC7655796 DOI: 10.3389/fcell.2020.571332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Persistent neural stem cell (NSC) proliferation is, among others, a hallmark of immaturity in human induced pluripotent stem cell (hiPSC)-based neural models. TGF-β1 is known to regulate NSCs in vivo during embryonic development in rodents. Here we examined the role of TGF-β1 as a potential candidate to promote in vitro differentiation of hiPSCs-derived NSCs and maturation of neuronal progenies. We present that TGF-β1 is specifically present in early phases of human fetal brain development. We applied confocal imaging and electrophysiological assessment in hiPSC-NSC and 3D neural in vitro models and demonstrate that TGF-β1 is a signaling protein, which specifically suppresses proliferation, enhances neuronal and glial differentiation, without effecting neuronal maturation. Moreover, we demonstrate that TGF-β1 is equally efficient in enhancing neuronal differentiation of human NSCs as an artificial synthetic small molecule. The presented approach provides a proof-of-concept to replace artificial small molecules with more physiological signaling factors, which paves the way to improve the physiological relevance of human neural developmental in vitro models.
Collapse
Affiliation(s)
- Julia Izsak
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Dzeneta Vizlin-Hodzic
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Oncology Laboratory, Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Margarita Iljin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Joakim Strandberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Janusz Jadasz
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Olsson Bontell
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stephan Theiss
- Result Medical GmbH, Düsseldorf, Germany.,Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Eric Hanse
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hans Ågren
- Section of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Keiko Funa
- Oncology Laboratory, Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Illes
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
ALK5 signaling pathway mediates neurogenesis and functional recovery after cerebral ischemia/reperfusion in rats via Gadd45b. Cell Death Dis 2019; 10:360. [PMID: 31043581 PMCID: PMC6494915 DOI: 10.1038/s41419-019-1596-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/26/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) serves critical functions in brain injury, especially in cerebral ischemia; however, apart from its neuroprotective effects, its role in regulating neurogenesis is unclear. TGF-β acts in different ways; the most important, canonical TGF-β activity involves TGF-β receptor I (TβRI) or the activin receptor-like kinase 5 (ALK5) signaling pathway. ALK5 signaling is a major determinant of adult neurogenesis. In our previous studies, growth arrest and DNA damage protein 45b (Gadd45b) mediated axonal plasticity after stroke. Here, we hypothesized that ALK5 signaling regulates neural plasticity and neurological function recovery after cerebral ischemia/reperfusion (I/R) via Gadd45b. First, ALK5 expression was significantly increased in middle cerebral artery occlusion/reperfusion (MCAO/R) rats. Then, we knocked down or overexpressed ALK5 with lentivirus (LV) in vivo. ALK5 knockdown reduced axonal and dendritic plasticity, with a concomitant decrease in neurological function recovery. Conversely, ALK5 overexpression significantly increased neurogenesis as well as functional recovery. Furthermore, ALK5 mediated Gadd45b protein levels by regulating Smad2/3 phosphorylation. Finally, ALK5 coimmunoprecipitated with Gadd45b. Our results suggested that the ALK5 signaling pathway plays a critical role in mediating neural plasticity and neurological function recovery via Gadd45b after cerebral ischemia, representing a new potential target for cerebral I/R injury.
Collapse
|
8
|
Zhou X, Spittau B. Lipopolysaccharide-Induced Microglia Activation Promotes the Survival of Midbrain Dopaminergic Neurons In Vitro. Neurotox Res 2017; 33:856-867. [DOI: 10.1007/s12640-017-9842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
|
9
|
Tiwari PC, Pal R. The potential role of neuroinflammation and transcription factors in Parkinson disease. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28566949 PMCID: PMC5442366 DOI: 10.31887/dcns.2017.19.1/rpal] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by dopaminergic neurons affected by inflammatory processes. Post-mortem analyses of brain and cerebrospinal fluid from PD patients show the accumulation of proinflammatory cytokines, confirming an ongoing neuroinflammation in the affected brain regions. These inflammatory mediators may activate transcription factors—notably nuclear factor κB, Ying-Yang 1 (YY1), fibroblast growth factor 20 (FGF20), and mammalian target of rapamycin (mTOR)—which then regulate downstream signaling pathways that in turn promote death of dopaminergic neurons through death domain-containing receptors. Dopaminergic neurons are vulnerable to oxidative stress and inflammatory attack. An increased level of inducible nitric oxide synthase observed in the substantia nigra and striatum of PD patients suggests that both cytokine—and chemokine-induced toxicity and inflammation lead to oxidative stress that contributes to degeneration of dopaminergic neurons and to disease progression. Lipopolysaccharide activation of microglia in the proximity of dopaminergic neurons in the substantia nigra causes their degeneration, and this appears to be a selective vulnerability of dopaminergic neurons to inflammation. In this review, we will look at the role of various transcription factors and signaling pathways in the development of PD.
Collapse
Affiliation(s)
| | - Rishi Pal
- Department of Pharmacology & Therapeutics, King George's Medical University, Utter Pradesh Lucknow-226003, India
| |
Collapse
|
10
|
MicroRNA-185 regulates spinal cord injuries induced by thoracolumbar spine compression fractures by targeting transforming growth factor-β1. Exp Ther Med 2017; 13:1127-1132. [PMID: 28450952 DOI: 10.3892/etm.2017.4052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/20/2016] [Indexed: 01/05/2023] Open
Abstract
The aims of the present study were to examine the expression of transforming growth factor (TGF)-β1 and microRNA (miR)-185 in the bone tissue, blood and cerebrospinal fluid of patients with spinal cord injuries and to evaluate the regulation of spinal cord injuries by miR-185. A total of 44 patients with spinal cord injuries induced by thoracolumbar spine compression fractures, who were hospitalized at Luoyang Orthopedic-Traumatological Hospital between June 2012 and February 2015 were enrolled in the present study. Among the patients enrolled, 18 underwent surgery between 1 and 7 days following fracture, and 26 patients underwent surgery between 8 and 14 days following fracture. Bone tissue, peripheral blood and cerebrospinal fluid were subsequently harvested from patients for analysis. Reverse transcription-quantitative polymerase chain reaction was performed to determine the expression of miR-185 and TGF-β1 mRNA. Western blotting was performed to evaluate TGF-β1 protein expression in bone tissue and ELISA was employed to quantify TGF-β1 protein expression in the blood and cerebrospinal fluid. TGF-β1 mRNA and protein levels in bone tissue, blood and cerebrospinal fluid from patients who underwent surgery 8-14 days post-fracture were significantly higher than those who underwent surgery 1-7 days post-fracture (P<0.05). By contrast, miR-185 levels were significantly lower in bone tissue, blood and cerebrospinal fluid from patients who underwent surgery 8-14 days post-fracture compared with those who underwent surgery 1-7 days post-fracture (P<0.05). The results of the present study desmonstrate that the upregulation of TGF-β1 in the bone tissue, blood and cerebrospinal fluid of patients with spinal cord injuries induced by thoracolumbar spine compression fractures is correlated with the downregulation of miR-185. Furthermore, miR-185 may target TGF-β1, affecting its transcription and translation, indicating that it serves an important role in spinal cord injuries induced by thoracolumbar spine compression fractures.
Collapse
|
11
|
Pal R, Tiwari PC, Nath R, Pant KK. Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease. Neurol Res 2016; 38:1111-1122. [DOI: 10.1080/01616412.2016.1249997] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rishi Pal
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | | | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | - Kamlesh Kumar Pant
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| |
Collapse
|
12
|
Caraci F, Tascedda F, Merlo S, Benatti C, Spampinato SF, Munafò A, Leggio GM, Nicoletti F, Brunello N, Drago F, Sortino MA, Copani A. Fluoxetine Prevents Aβ 1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1. Front Pharmacol 2016; 7:389. [PMID: 27826242 PMCID: PMC5078904 DOI: 10.3389/fphar.2016.00389] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023] Open
Abstract
Selective reuptake inhibitors (SSRIs), such as fluoxetine and sertraline, increase circulating Transforming-Growth-Factor-β1 (TGF-β1) levels in depressed patients, and are currently studied for their neuroprotective properties in Alzheimer’s disease. TGF-β1 is an anti-inflammatory cytokine that exerts neuroprotective effects against β-amyloid (Aβ)-induced neurodegeneration. In the present work, the SSRI, fluoxetine, was tested for the ability to protect cortical neurons against 1 μM oligomeric Aβ1-42-induced toxicity. At therapeutic concentrations (100 nM–1 μM), fluoxetine significantly prevented Aβ-induced toxicity in mixed glia-neuronal cultures, but not in pure neuronal cultures. Though to a lesser extent, also sertraline was neuroprotective in mixed cultures, whereas serotonin (10 nM–10 μM) did not mimick fluoxetine effects. Glia-conditioned medium collected from astrocytes challenged with fluoxetine protected pure cortical neurons against Aβ toxicity. The effect was lost in the presence of a neutralizing antibody against TGF-β1 in the conditioned medium, or when the specific inhibitor of type-1 TGF-β1 receptor, SB431542, was added to pure neuronal cultures. Accordingly, a 24 h treatment of cortical astrocytes with fluoxetine promoted the release of active TGF-β1 in the culture media through the conversion of latent TGF-β1 to mature TGF-β1. Unlike fluoxetine, both serotonin and sertraline did not stimulate the astrocyte release of active TGF-β1. We conclude that fluoxetine is neuroprotective against Aβ toxicity via a paracrine signaling mediated by TGF-β1, which does not result from a simplistic SERT blockade.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of CataniaCatania, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Oasi Maria SantissimaTroina, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia Modena, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia Modena, Italy
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Antonio Munafò
- Department of Drug Sciences, University of Catania Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Ferdinando Nicoletti
- Istituto di Ricovero e Cura a Carattere Scientifico NeuromedPozzilli, Italy; Department of Physiology and Pharmacology, University of Rome SapienzaRome, Italy
| | - Nicoletta Brunello
- Istituto di Ricovero e Cura a Carattere Scientifico Oasi Maria Santissima Troina, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Agata Copani
- Department of Drug Sciences, University of CataniaCatania, Italy; Institute of Biostructure and Bioimaging, National Research CouncilCatania, Italy
| |
Collapse
|
13
|
Fjodorova M, Noakes Z, Li M. How to make striatal projection neurons. NEUROGENESIS 2015; 2:e1100227. [PMID: 27606330 PMCID: PMC4973609 DOI: 10.1080/23262133.2015.1100227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Medium spiny neurons (MSNs) are the main projection neurons of the striatum and are preferentially lost in Huntington's disease (HD). With no current cure for this neurodegenerative disorder, the specificity of neuronal loss in the striatum makes cell transplantation therapy an attractive avenue for its treatment. Also, given that MSNs are particularly vulnerable in HD, it is necessary to understand why these neurons degenerate in order to develop new therapeutic options. Both approaches require access to human MSN progenitors and their mature neuronal derivatives. Human embryonic stem cells and HD patient induced pluripotent stem cells (together referred to as hPSCs) may serve as an unlimited source of such tissue if they can be directed toward authentic striatal neuronal lineage. Understanding the MSN differentiation pathway in the brain is therefore of paramount importance for the generation of accurate protocols to obtain striatal cells in vitro. The focus of this mini review will be on striatal development and current methods to generate MSNs from hPSCs.
Collapse
Affiliation(s)
- Marija Fjodorova
- Stem Cell Neurogenesis Group; Neuroscience and Mental Health Research Institute; School of Medicine and School of Bioscience; Cardiff University ; Cardiff, UK
| | - Zoe Noakes
- Stem Cell Neurogenesis Group; Neuroscience and Mental Health Research Institute; School of Medicine and School of Bioscience; Cardiff University ; Cardiff, UK
| | - Meng Li
- Stem Cell Neurogenesis Group; Neuroscience and Mental Health Research Institute; School of Medicine and School of Bioscience; Cardiff University ; Cardiff, UK
| |
Collapse
|
14
|
Nazem A, Sankowski R, Bacher M, Al-Abed Y. Rodent models of neuroinflammation for Alzheimer's disease. J Neuroinflammation 2015; 12:74. [PMID: 25890375 PMCID: PMC4404276 DOI: 10.1186/s12974-015-0291-y] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 03/27/2015] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease remains incurable, and the failures of current disease-modifying strategies for Alzheimer's disease could be attributed to a lack of in vivo models that recapitulate the underlying etiology of late-onset Alzheimer's disease. The etiology of late-onset Alzheimer's disease is not based on mutations related to amyloid-β (Aβ) or tau production which are currently the basis of in vivo models of Alzheimer's disease. It has recently been suggested that mechanisms like chronic neuroinflammation may occur prior to amyloid-β and tau pathologies in late-onset Alzheimer's disease. The aim of this study is to analyze the characteristics of rodent models of neuroinflammation in late-onset Alzheimer's disease. Our search criteria were based on characteristics of an idealistic disease model that should recapitulate causes, symptoms, and lesions in a chronological order similar to the actual disease. Therefore, a model based on the inflammation hypothesis of late-onset Alzheimer's disease should include the following features: (i) primary chronic neuroinflammation, (ii) manifestations of memory and cognitive impairment, and (iii) late development of tau and Aβ pathologies. The following models fit the pre-defined criteria: lipopolysaccharide- and PolyI:C-induced models of immune challenge; streptozotocin-, okadaic acid-, and colchicine neurotoxin-induced neuroinflammation models, as well as interleukin-1β, anti-nerve growth factor and p25 transgenic models. Among these models, streptozotocin, PolyI:C-induced, and p25 neuroinflammation models are compatible with the inflammation hypothesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Amir Nazem
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institute for Medical Research, 350 Community drive, Manhasset, NY, 11030, USA.
| | - Roman Sankowski
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institute for Medical Research, 350 Community drive, Manhasset, NY, 11030, USA.
| | - Michael Bacher
- Institute of Immunology, Philipps University Marburg, Hans-Meerwein-Str., 35043, Marburg, Germany.
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
15
|
Koszinowski S, Buss K, Kaehlcke K, Krieglstein K. Signaling via the transcriptionally regulated activin receptor 2B is a novel mediator of neuronal cell death during chicken ciliary ganglion development. Int J Dev Neurosci 2015; 41:98-104. [PMID: 25660516 DOI: 10.1016/j.ijdevneu.2015.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 11/25/2022] Open
Abstract
The TGF-β ligand superfamily members activin A and BMP control important aspects of embryonic neuronal development and differentiation. Both are known to bind to activin receptor subtypes IIA (ActRIIA) and IIB, while in the avian ciliary ganglion (CG), so far only ActRIIA-expression has been described. We show that the expression of ACVR2B, coding for the ActRIIB, is tightly regulated during CG development and the knockdown of ACVR2B expression leads to a deregulation in the execution of neuronal apoptosis and therefore affects ontogenetic programmed cell death in vivo. While the differentiation of choroid neurons was impeded in the knockdown, pointing toward a reduction in activin A-mediated neural differentiation signaling, naturally occurring neuronal cell death in the CG was not prevented by follistatin treatment. Systemic injections of the BMP antagonist noggin, on the other hand, reduced the number of apoptotic neurons to a similar extent as ACVR2B knockdown. We therefore propose a novel pathway in the regulation of CG neuron ontogenetic programmed cell death, which could be mediated by BMP and signals via the ActRIIB.
Collapse
Affiliation(s)
- S Koszinowski
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany.
| | - K Buss
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - K Kaehlcke
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - K Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany.
| |
Collapse
|
16
|
He Y, Zhang H, Yung A, Villeda SA, Jaeger PA, Olayiwola O, Fainberg N, Wyss-Coray T. ALK5-dependent TGF-β signaling is a major determinant of late-stage adult neurogenesis. Nat Neurosci 2014; 17:943-52. [PMID: 24859199 PMCID: PMC4096284 DOI: 10.1038/nn.3732] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/30/2014] [Indexed: 01/19/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway serves critical functions in CNS development, but, apart from its proposed neuroprotective actions, its physiological role in the adult brain is unclear. We observed a prominent activation of TGF-β signaling in the adult dentate gyrus and expression of downstream Smad proteins in this neurogenic zone. Consistent with a function of TGF-β signaling in adult neurogenesis, genetic deletion of the TGF-β receptor ALK5 reduced the number, migration and dendritic arborization of newborn neurons. Conversely, constitutive activation of neuronal ALK5 in forebrain caused a marked increase in these aspects of neurogenesis and was associated with higher expression of c-Fos in newborn neurons and with stronger memory function. Our findings describe an unexpected role for ALK5-dependent TGF-β signaling as a regulator of the late stages of adult hippocampal neurogenesis, which may have implications for changes in neurogenesis during aging and disease.
Collapse
Affiliation(s)
- Yingbo He
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hui Zhang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Andrea Yung
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Saul A Villeda
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Philipp A Jaeger
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Oluwatobi Olayiwola
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nina Fainberg
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
- Center for Tissue Regeneration, Repair and Rehabilitation, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| |
Collapse
|
17
|
Kraus S, Lehner B, Reichhart N, Couillard-Despres S, Wagner K, Bogdahn U, Aigner L, Strauß O. Transforming growth factor-β1 primes proliferating adult neural progenitor cells to electrophysiological functionality. Glia 2013; 61:1767-83. [DOI: 10.1002/glia.22551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Sabrina Kraus
- Department of Experimental Ophthalmology, Eye Clinic; University Medical Center Regensburg; Regensburg Germany
| | - Bernadette Lehner
- Department of Neurology; University Medical Center Regensburg; Regensburg Germany
| | - Nadine Reichhart
- Department of Experimental Ophthalmology, Eye Clinic; University Medical Center Regensburg; Regensburg Germany
- Department of Experimental Ophthalmology, Ophthalmology; Charite Universitaetsmedizin Berlin; Berlin Germany
| | - Sebastien Couillard-Despres
- Institute of Molecular Regenerative Medicine; Paracelsus Medical University; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg; Paracelsus Medical University; Salzburg Austria
| | - Katrin Wagner
- Institute of Molecular Regenerative Medicine; Paracelsus Medical University; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg; Paracelsus Medical University; Salzburg Austria
| | - Ulrich Bogdahn
- Department of Neurology; University Medical Center Regensburg; Regensburg Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine; Paracelsus Medical University; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg; Paracelsus Medical University; Salzburg Austria
| | - Olaf Strauß
- Department of Experimental Ophthalmology, Eye Clinic; University Medical Center Regensburg; Regensburg Germany
- Department of Experimental Ophthalmology, Ophthalmology; Charite Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
18
|
Liu B, Sun X, Suyeoka G, Garcia JGN, Leiderman YI. TGFβ signaling induces expression of Gadd45b in retinal ganglion cells. Invest Ophthalmol Vis Sci 2013; 54:1061-9. [PMID: 23329662 PMCID: PMC3565994 DOI: 10.1167/iovs.12-10142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 12/19/2012] [Accepted: 01/10/2013] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Growth arrest and DNA damage protein 45b (Gadd45b) functions as an intrinsic neuroprotective molecule protecting retinal ganglion cells (RGCs) from injury. This study was performed to elucidate further the induction pathway of Gadd45b expression in RGCs. METHODS The induction of Gadd45b expression in response to TGFβNFκB signaling was investigated in RGC5 cultures in vitro and murine retina in vivo. Gadd45b mRNA and protein expression were detected by quantitative real-time RT-PCR, immunoblot assay, immunohistochemistry, and immunocytochemistry. Activation of NFκB and TGFβ/Gadd45b signaling were assessed by measuring phosphorylation of NFκB and using specific inhibitors. Gadd45b siRNA was transfected into RGC5 to silence Gadd45b mRNA expression. RESULTS Expression of TGFβ receptors I and II was detected in RGC5 in vitro and RGCs in vivo. TGFβ induced abundant Gadd45b mRNA and protein expression, exhibiting a dose-dependent response in vitro. Exogenous TGFβ1 induced upregulation of Gadd45b expression in RGCs in murine retina in vivo. TGFβ stimulated phosphorylation of NFκB, and inhibition of NFκB phosphorylation blocked induction of Gadd45b by TGFβ in RGC5 cells. Induction of Gadd45b by TGFβ increased the resistance of RGC5 cells against TNFα cytotoxicity and paraquat oxidative stress. CONCLUSIONS TGFβ signaling induced Gadd45b expression in RGCs. Modulation of the TGFβ/NFκB/Gadd45b signaling pathway may provide a means to enhance the neuroprotective effect of Gadd45b in RGCs.
Collapse
Affiliation(s)
- Bin Liu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois Hospitals and Health Sciences System, 1855 West Taylor Street, MC 648, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
19
|
Abutbul S, Shapiro J, Szaingurten-Solodkin I, Levy N, Carmy Y, Baron R, Jung S, Monsonego A. TGF-β signaling through SMAD2/3 induces the quiescent microglial phenotype within the CNS environment. Glia 2012; 60:1160-71. [PMID: 22511296 DOI: 10.1002/glia.22343] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/22/2012] [Indexed: 12/16/2022]
Abstract
Microglia are myeloid-derived cells that colonize the central nervous system (CNS) at early stages of development and constitute up to 20% of the glial populations throughout life. While extensive progress has been recently made in identifying the cellular origin of microglia, the mechanism whereby the cells acquire the unique ramified and quiescent phenotype within the CNS milieu remains unknown. Here, we show that upon co-culturing of either CD117(+) /Lin(-) hematopoietic progenitors or CD11c(+) bone marrow derived cells with organotypic hippocampal slices or primary glia, the cells acquire a ramified morphology concomitant with reduced levels of CD86, MHCII, and CD11c and up-regulation of the microglial cell-surface proteins CX(3) CR1 and Iba-1. We further demonstrate that the transforming growth factor beta (TGF-β) signaling pathway via SMAD2/3 phosphorylation is essential for both primary microglia and myeloid-derived cells in order to acquire their quiescent phenotype. Our study suggests that the abundant expression of TGF-β within the CNS during development and various inflammatory processes plays a key role in promoting the quiescent phenotype of microglia and may thus serve as a target for therapeutic strategies aimed at modulating the function of microglia in neurodegenerative diseases such as Alzheimer's and prion.
Collapse
Affiliation(s)
- Shai Abutbul
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Krieglstein K, Zheng F, Unsicker K, Alzheimer C. More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses. Trends Neurosci 2011; 34:421-9. [PMID: 21742388 DOI: 10.1016/j.tins.2011.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 12/14/2022]
Abstract
It is becoming increasingly clear that members of the transforming growth factor-β (TGF-β) family have roles in the central nervous system that extend beyond their well-established roles as neurotrophic and neuroprotective factors. Recent findings have indicated that the TGF-β signaling pathways are involved in the modulation of both excitatory and inhibitory synaptic transmission in the adult mammalian brain. In this review, we discuss how TGF-β, bone morphogenetic protein and activin signaling at central synapses modulate synaptic plasticity, cognition and affective behavior. We also discuss the implications of these findings for the molecular understanding and potential treatment of neuropsychiatric diseases, such as anxiety, depression and other neurological disorders.
Collapse
Affiliation(s)
- Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
21
|
Rodini CO, Suzuki DE, Nakahata AM, Pereira MCL, Janjoppi L, Toledo SRC, Okamoto OK. Aberrant signaling pathways in medulloblastomas: a stem cell connection. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 68:947-52. [PMID: 21243257 DOI: 10.1590/s0004-282x2010000600021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/10/2010] [Indexed: 11/22/2022]
Abstract
Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.
Collapse
|
22
|
Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, Drago F, Nicoletti F, Copani A. Dysfunction of TGF-β1 signaling in Alzheimer's disease: perspectives for neuroprotection. Cell Tissue Res 2011; 347:291-301. [PMID: 21879289 DOI: 10.1007/s00441-011-1230-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/07/2011] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects about 35 million people worldwide. Current drugs for AD only treat the symptoms and do not interfere with the underlying pathogenic mechanisms of the disease. AD is characterized by the presence of β-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Identification of the molecular determinants underlying Aβ-induced neurodegeneration is an essential step for the development of disease-modifying drugs. Recently, an impairment of the transforming growth factor-β1 (TGF-β1) signaling pathway has been demonstrated to be specific to the AD brain and, particularly, to the early phase of the disease. TGF-β1 is a neurotrophic factor responsible for the initiation and maintenance of neuronal differentiation and synaptic plasticity. The deficiency of TGF-β1 signaling is associated with Aβ pathology and neurofibrillary tangle formation in AD animal models. Reduced TGF-β1 signaling seems to contribute both to microglial activation and to ectopic cell-cycle re-activation in neurons, two events that contribute to neurodegeneration in the AD brain. The neuroprotective features of TGF-β1 indicate the advantage of rescuing TGF-β1 signaling as a means to slow down the neurodegenerative process in AD.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Beck K, Schachtrup C. Vascular damage in the central nervous system: a multifaceted role for vascular-derived TGF-β. Cell Tissue Res 2011; 347:187-201. [PMID: 21850492 DOI: 10.1007/s00441-011-1228-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/22/2011] [Indexed: 01/16/2023]
Abstract
The brain function depends on a continuous supply of blood. The blood-brain barrier (BBB), which is formed by vascular cells and glia, separates components of the circulating blood from neurons and maintains the precisely regulated brain milieu required for proper neuronal function. A compromised BBB alters the transport of molecules between the blood and brain and has been associated with or shown to precede neurodegenerative disease. Blood components immediately leak into the brain after mechanical damage or as a consequence of a compromised BBB in brain disease changing the extracellular environment at sites of vascular damage. It is intriguing how blood-derived components alter the cellular and molecular constituents of the neurovascular interface after BBB opening. We recently identified an unexpected role for the blood protein fibrinogen, which is deposited in the nervous system promptly after vascular damage, as an initial scar inducer by promoting the availability of active TGF-β. Fibrinogen-bound latent TGF-β interacts with astrocytes, leading to active TGF-β formation and activation of the TGF-β/Smad signaling pathway. Here, we discuss the pleiotropic effects of potentially vascular-derived TGF-β on cells at the neurovascular interface and we speculate how these biological effects might contribute to degeneration and regeneration processes. Summarizing the effects of the components derived from the brain vascular system on nervous system regeneration might support the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Kristina Beck
- Centre of Chronic Immunodeficiency, University Medical Centre Freiburg and University of Freiburg, 79106 Freiburg, Germany
| | | |
Collapse
|
24
|
Mirza N, Vasieva O, Marson AG, Pirmohamed M. Exploring the genomic basis of pharmacoresistance in epilepsy: an integrative analysis of large-scale gene expression profiling studies on brain tissue from epilepsy surgery. Hum Mol Genet 2011; 20:4381-94. [PMID: 21852245 DOI: 10.1093/hmg/ddr365] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Some patients with pharmacoresistant epilepsy undergo therapeutic resection of the epileptic focus. At least 12 large-scale microarray studies on brain tissue from epilepsy surgery have been published over the last 10 years, but they have failed to make a significant impact upon our understanding of pharmacoresistance, because (1) doubts have been raised about their reproducibility, (2) only a small number of the gene expression changes found in each microarray study have been independently validated and (3) the results of different studies have not been integrated to give a coherent picture of the genetic changes involved in epilepsy pharmacoresistance. To overcome these limitations, we (1) assessed the reproducibility of the microarray studies by calculating the overlap between lists of differentially regulated genes from pairs of microarray studies and determining if this was greater than would be expected by chance alone, (2) used an inter-study cross-validation technique to simultaneously verify the expression changes of large numbers of genes and (3) used the combined results of the different microarray studies to perform an integrative analysis based on enriched gene ontology terms, networks and pathways. Using this approach, we respectively (1) demonstrate that there are statistically significant overlaps between the gene expression changes in different publications, (2) verify the differential expression of 233 genes and (3) identify the biological processes, networks and genes likely to be most important in the development of pharmacoresistant epilepsy. Our analysis provides novel biologically plausible candidate genes and pathways which warrant further investigation to assess their causal relevance.
Collapse
Affiliation(s)
- Nasir Mirza
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | | | | | | |
Collapse
|
25
|
Survival and differentiation of neuroectodermal cells with stem cell properties at different oxygen levels. Exp Neurol 2010; 227:136-48. [PMID: 20969864 DOI: 10.1016/j.expneurol.2010.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/06/2010] [Accepted: 10/12/2010] [Indexed: 12/15/2022]
Abstract
Freeze-lesioned regions of the forebrain cortex provide adequate environment for growth of non-differentiated neural progenitors, but do not support their neuron formation. Reduced oxygen supply, among numerous factors, was suspected to impair neuronal cell fate commitment. In the present study, proliferation and differentiation of neural stem/progenitor cells were investigated at different oxygen levels both in vitro and in vivo. Low (1% atmospheric) oxygen supply did not affect the in vitro viability and proliferation of stem cells or the transcription of "stemness" genes but impaired the viability of committed neuronal progenitors and the expression of proneural and neuronal genes. Consequently, the rate of in vitro neuron formation was markedly reduced under hypoxic conditions. In vivo, neural stem/progenitor cells survived and proliferated in freeze-lesioned adult mouse forebrains, but did not develop into neurons. Hypoperfusion-caused hypoxia in lesioned cortices was partially corrected by hyperbaric oxygen treatment (HBOT). HBOT, while reduced the rate of cell proliferation at the lesion site, resulted in sporadic neuron formation from implanted neural stem cells. The data indicate that in hypoxic brain areas, neural stem cells survive and proliferate, but neural tissue-type differentiation can not proceed. Oxygenation renders the damaged brain areas more permissive for tissue-type differentiation and may help the integration of neural stem/progenitor cells.
Collapse
|
26
|
Qian L, Flood PM, Hong JS. Neuroinflammation is a key player in Parkinson's disease and a prime target for therapy. J Neural Transm (Vienna) 2010; 117:971-9. [PMID: 20571837 PMCID: PMC3392895 DOI: 10.1007/s00702-010-0428-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/22/2010] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. Increasing evidence has demonstrated that inflammation is the fundamental process contributing to neuron death in PD. Neuroinflammation, which is characterized by activated microglia and infiltrating T cells at sites of neuronal injury, is a prominent contributor to the pathogenesis of progressive PD. Microglia play a critical role in forming a self-propelling cycle leading to sustained chronic neuroinflammation and driving the progressive neurodegeneration in PD. This activation depends heavily on the respiratory burst within the microglia, which in turn regulates a number of downstream pro-inflammatory activities. On the other hand, the adaptive immune responses, most notably T cells, are now emerging as important components of the inflammatory response that contribute to the pathogenesis of PD. This review paper focus on the understanding of the inflammatory etiology of PD, as well as the molecular signaling involved in this inflammatory response, with the aim to provide more effective treatments to slow down or halt the progression of chronic inflammation-induced CNS disorders, such as PD.
Collapse
Affiliation(s)
- Li Qian
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
27
|
Wittwer M, Grandgirard D, Rohrbach J, Leib SL. Tracking the transcriptional host response from the acute to the regenerative phase of experimental pneumococcal meningitis. BMC Infect Dis 2010; 10:176. [PMID: 20565785 PMCID: PMC2915993 DOI: 10.1186/1471-2334-10-176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 06/17/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Despite the availability of effective antibiotic therapies, pneumococcal meningitis (PM) has a case fatality rate of up to 30% and causes neurological sequelae in up to half of the surviving patients. The underlying brain damage includes apoptosis of neurons in the hippocampus and necrosis in the cortex. Therapeutic options to reduce acute injury and to improve outcome from PM are severely limited.With the aim to develop new therapies a number of pharmacologic interventions have been evaluated. However, the often unpredictable outcome of interventional studies suggests that the current concept of the pathophysiologic events during bacterial meningitis is fragmentary. The aim of this work is to describe the transcriptomic changes underlying the complex mechanisms of the host response to pneumococcal meningitis in a temporal and spatial context using a well characterized infant rat model. METHODS Eleven days old nursing Wistar rats were infected by direct intracisternal injection of 2 x 106 cfu/ml of Streptococcus pneumoniae. Animals were sacrificed at 1, 3, 10 and 26 days after infection, the brain harvested and the cortex and hippocampus were sampled. The first two time points represent the acute and sub-acute phase of bacterial meningitis, whereas the latter represent the recovery phase of the disease. RESULTS The major events in the regulation of the host response on a transcriptional level occur within the first 3 days after infection. Beyond this time, no differences in global gene expression in infected and control animals were detectable by microarray analysis. Whereas in the acute phase of the disease immunoregulatory processes prevail in the hippocampus and the cortex, we observed a strong activation of neurogenic processes in the hippocampal dentate gyrus, both by gene expression and immunohistology starting as early as 3 days after infection. CONCLUSIONS Here we describe the cellular pathways involved in the host response to experimental pneumococcal meningitis in specified disease states and brain regions. With these results we hope to provide the scientific basis for the development of new treatment strategies which take the temporal aspects of the disease into account.
Collapse
Affiliation(s)
- Matthias Wittwer
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|
28
|
Waki H, Gouraud SS, Maeda M, Paton JFR. Evidence of specific inflammatory condition in nucleus tractus solitarii of spontaneously hypertensive rats. Exp Physiol 2010; 95:595-600. [DOI: 10.1113/expphysiol.2009.047324] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
29
|
Arnold TD, McQuillen PS. From death to recovery following hypoxia ischemia: if TGFbeta is a central regulator, is integrin beta8 the switch? Neurotox Res 2009; 17:418-20. [PMID: 20039156 PMCID: PMC2835727 DOI: 10.1007/s12640-009-9145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
30
|
Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML, Drago F, Sortino MA, Nicoletti F, Copani A. TGF-β1 pathway as a new target for neuroprotection in Alzheimer's disease. CNS Neurosci Ther 2009; 17:237-49. [PMID: 19925479 DOI: 10.1111/j.1755-5949.2009.00115.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 37 million people worldwide. Current drugs for AD are only symptomatic, but do not interfere with the underlying pathogenic mechanisms of the disease. AD is characterized by the presence of ß-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. The identification of the molecular determinants underlying AD pathogenesis is a fundamental step to design new disease-modifying drugs. Recently, a specific impairment of transforming-growth-factor-β1 (TGF-β1) signaling pathway has been demonstrated in AD brain. The deficiency of TGF-β1 signaling has been shown to increase both Aβ accumulation and Aβ-induced neurodegeneration in AD models. The loss of function of TGF-ß1 pathway seems also to contribute to tau pathology and neurofibrillary tangle formation. Growing evidence suggests a neuroprotective role for TGF-β1 against Aβ toxicity both in vitro and in vivo models of AD. Different drugs, such as lithium or group II mGlu receptor agonists are able to increase TGF-β1 levels in the central nervous system (CNS), and might be considered as new neuroprotective tools against Aβ-induced neurodegeneration. In the present review, we examine the evidence for a neuroprotective role of TGF-β1 in AD, and discuss the TGF-β1 signaling pathway as a new pharmacological target for the treatment of AD.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Pharmaceutical Sciences, University of Catania, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 2009; 5:e1000604. [PMID: 19680447 PMCID: PMC2718706 DOI: 10.1371/journal.pgen.1000604] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 07/16/2009] [Indexed: 12/23/2022] Open
Abstract
Synaptic activity can boost neuroprotection through a mechanism that requires synapse-to-nucleus communication and calcium signals in the cell nucleus. Here we show that in hippocampal neurons nuclear calcium is one of the most potent signals in neuronal gene expression. The induction or repression of 185 neuronal activity-regulated genes is dependent upon nuclear calcium signaling. The nuclear calcium-regulated gene pool contains a genomic program that mediates synaptic activity-induced, acquired neuroprotection. The core set of neuroprotective genes consists of 9 principal components, termed Activity-regulated Inhibitor of Death (AID) genes, and includes Atf3, Btg2, GADD45β, GADD45γ, Inhibin β-A, Interferon activated gene 202B, Npas4, Nr4a1, and Serpinb2, which strongly promote survival of cultured hippocampal neurons. Several AID genes provide neuroprotection through a common process that renders mitochondria more resistant to cellular stress and toxic insults. Stereotaxic delivery of AID gene-expressing recombinant adeno-associated viruses to the hippocampus confers protection in vivo against seizure-induced brain damage. Thus, treatments that enhance nuclear calcium signaling or supplement AID genes represent novel therapies to combat neurodegenerative conditions and neuronal cell loss caused by synaptic dysfunction, which may be accompanied by a deregulation of calcium signal initiation and/or propagation to the cell nucleus. The dialogue between the synapse and the nucleus plays an important role in the physiology of neurons because it links brief changes in the membrane potential to the transcriptional regulation of genes critical for neuronal survival and long-term memory. The propagation of activity-induced calcium signals to the cell nucleus represents a major route for synapse-to-nucleus communication. Here we identified nuclear calcium-regulated genes that are responsible for a neuroprotective shield that neurons build up upon synaptic activity. We found that among the 185 genes controlled by nuclear calcium signaling, a set of 9 genes had strong survival promoting activity both in cell culture and in an animal model of neurodegeneration. The mechanism through which several genes prevent cell death involves the strengthening of mitochondria against cellular stress and toxic insults. The discovery of an activity-induced neuroprotective gene program suggest that impairments of synaptic activity and synapse-to-nucleus signaling, for example due to expression of Alzheimer's disease protein or in aging, may comprise the cells' own neuroprotective system eventually leading to cell death. Thus, malfunctioning of nuclear calcium signaling could be a key etiological factor common to many neuropathological conditions, providing a simple and unifying concept to explain disease- and aging-related cell loss.
Collapse
|
32
|
Abstract
Chronic inflammation mediated by microglial cells is the fundamental process contributing to the death of dopamine (DA)-producing neurons in the brain. Production of inflammatory products by these microglial cells characterizes the slow destructive process in Parkinson's disease (PD). The activation of microglial cells and the generation of pro-inflammatory cytokines that characterize PD are mediated by several different signaling pathways, with the activation of the respiratory burst by microglial cells being a critical event in the ultimate toxicity of DA-neurons. The work on our lab is concerned with understanding the mechanisms of activation, response, and therapeutic targets of microglial cells, with the aim to provide more effective treatments for PD and other inflammatory diseases of the CNS.
Collapse
Affiliation(s)
- Li Qian
- Department of Microbiology, The University of North Carolina Schools of Medicine and Dentistry, Chapel Hill, NC 27599-7455, USA
| | | |
Collapse
|
33
|
Xiyang YB, Liu S, Liu J, Hao CG, Wang ZJ, Ni W, Wang XY, Wang TH. Roles of Platelet-Derived Growth Factor-B Expression in the Ventral Horn and Motor Cortex in the Spinal Cord–Hemisected Rhesus Monkey. J Neurotrauma 2009; 26:275-87. [PMID: 19236168 DOI: 10.1089/neu.2007.0374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yan-Bin Xiyang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Su Liu
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Jia Liu
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Chun-Guang Hao
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Zhao-Jun Wang
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Wei Ni
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Xu-Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| |
Collapse
|
34
|
Orme R, Fricker-Gates RA, Gates MA. Ontogeny of substantia nigra dopamine neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:3-18. [PMID: 20411764 DOI: 10.1007/978-3-211-92660-4_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the ontogeny of A9 dopamine (DA) neurons is critical not only to determining basic developmental events that facilitate the emergence of the substantia nigra pars compacta (SNc) but also to the extraction and de novo generation of DA neurons as a potential cell therapy for Parkinson's disease. Recent research has identified a precise window for DA cell birth (differentiation) in the ventral mesencephalon (VM) as well as a number of factors that may facilitate this process. However, application of these factors in vitro has had limited success in specifying a dopaminergic cell fate from undifferentiated cells, suggesting that other cell/molecular signals may as yet remain undiscovered. To resolve this, current work seeks to identify particularly potent and novel DA neuron differentiation factors within the developing VM specifically at the moment of ontogeny. Through such (past and present) studies, a catalog of proteins that play a pivotal role in the generation of nigral DA neurons during normal CNS development has begun to emerge. In the future, it will be crucial to continue to evaluate the critical developmental window where DA neuron ontogeny occurs, not only to facilitate our potential to protect these cells from degeneration in the adult brain but also to mimic the developmental environment in a way that enhances our ability to generate these cells anew either in vitro or in vivo. Here we review our present understanding of factors that are thought to be involved in the emergence of the A9 dopamine neuron group from the ventral mesencephalon.
Collapse
Affiliation(s)
- R Orme
- School of Life Sciences, Keele University, Keele Staffordshire, UK
| | | | | |
Collapse
|
35
|
Waki H, Gouraud SS, Maeda M, Paton JFR. Specific inflammatory condition in nucleus tractus solitarii of the SHR: novel insight for neurogenic hypertension? Auton Neurosci 2008; 142:25-31. [PMID: 18722165 DOI: 10.1016/j.autneu.2008.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/24/2008] [Accepted: 07/01/2008] [Indexed: 11/28/2022]
Abstract
Human essential hypertension is a complex polygenic trait with underlying genetic components that remain unknown. Since the brainstem structure--the nucleus of the solitary tract (NTS)--is a pivotal region for regulating the set-point of arterial pressure, we proposed a role for it in the development of primary hypertension. Using microarray and real-time RT-PCR, we have recently identified that some pro-inflammatory molecules, such as junctional adhesion molecule-1 (JAM-1; a leukocyte/platelet adhesion molecule), were over expressed in endothelial cells in the NTS of an animal model of human essential hypertension--the spontaneously hypertensive rat (SHR) compared to normotensive Wistar Kyoto rats (WKY). Adenoviral mediated over expression of JAM-1 in NTS of WKY rats produced both hypertension and localized leukocyte adherence to the microvasculature. With a known effect of leukocyte adhesion causing cytokine release, we predicted differences in the level of gene expression of cytokines in the NTS of SHR relative to WKY. Gene expression of monocyte chemoattractant protein-1 (MCP-1) was higher in the NTS of SHR while inter-leukin-6 (IL-6) was lower in the NTS of SHR compared to the WKY. Because both inflammatory molecules are known to affect neural functions, our data suggest that the microvasculature of NTS of the SHR exhibits a specific inflammatory state. We propose a new hypothesis that as a consequence of enhanced expression of leukocyte adhesion molecules within the microvasculature of NTS there is a specific inflammatory response that leads to cardiovascular autonomic dysfunction contributing to neurogenic hypertension.
Collapse
Affiliation(s)
- Hidefumi Waki
- Department of Physiology, Wakayama Medical University School of Medicine, 811-1, Kimiidera, Wakayama 641-8509, Japan.
| | | | | | | |
Collapse
|
36
|
Waki H, Gouraud SS, Maeda M, Paton JFR. Gene expression profiles of major cytokines in the nucleus tractus solitarii of the spontaneously hypertensive rat. Auton Neurosci 2008; 142:40-4. [PMID: 18703386 DOI: 10.1016/j.autneu.2008.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 06/13/2008] [Accepted: 07/01/2008] [Indexed: 12/22/2022]
Abstract
Since the nucleus of the solitary tract (NTS) is a pivotal region for regulating the set-point of arterial pressure, we proposed a role for it in the development of neurogenic hypertension. Recent studies have suggested that pro-inflammatory molecules are highly expressed in the NTS of an animal model of human essential hypertension--the spontaneously hypertensive rat (SHR), compared to normotensive Wistar-Kyoto rat (WKY). Based on this evidence, we hypothesized that inflammatory mediators such as cytokines are up-regulated in the hypertensive NTS. In the present study, we have assessed the level of gene expression of some cytokines in the NTS of SHR compared to WKY. In addition, for further confirmation of abnormal inflammatory condition within the NTS of SHR, we identified gene expression levels of an inflammatory marker, glycoprotein-39 (gp39) precursor, which is homologous to chitinase 3-like protein 1, human cartilage-gp39 or YKL40. The NTS was micro-dissected from 15-week-old male SHR and WKY rats. Total RNA was extracted and quantitative RT-PCR was performed. Gene expression of gp39 precursor and monocyte chemoattractant protein-1 were higher in the NTS of SHR while inter-leukin-6 was lower in the NTS of SHR compared to the WKY. In contrast, there were no significant differences in the expression of other cytokines including: inter-leukin-1 beta, tumor necrosis factor-alpha and transforming growth factor beta 1. These data together with our previous published finding of an over expression of junctional adhesion molecule-1 suggest that the NTS of the SHR exhibits a specific inflammatory state.
Collapse
Affiliation(s)
- Hidefumi Waki
- Department of Physiology, Wakayama Medical University School of Medicine, 811-1, Kimiidera, Wakayama City 641-8509, Japan.
| | | | | | | |
Collapse
|
37
|
Qian L, Wei SJ, Zhang D, Hu X, Xu Z, Wilson B, El-Benna J, Hong JS, Flood PM. Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia. THE JOURNAL OF IMMUNOLOGY 2008; 181:660-8. [PMID: 18566433 DOI: 10.4049/jimmunol.181.1.660] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-beta1 is one of the most potent endogenous immune modulators of inflammation. The molecular mechanism of its anti-inflammatory effect on the activation of the transcription factor NF-kappaB has been well-studied; however, the potential effects of TGF-beta1 on other proinflammatory signaling pathways is less clear. In this study, using the well-established LPS and the 1-methyl-4-phenylpyridinium-mediated models of Parkinson's disease, we demonstrate that TGF-beta1 exerts significant neuroprotection in both models via its anti-inflammatory properties. The neuroprotective effects of TGF-beta1 are mainly attributed to its ability to inhibit the production of reactive oxygen species from microglia during their activation or reactivation. Moreover, we demonstrate that TGF-beta1 inhibited LPS-induced NADPH oxidase (PHOX) subunit p47phox translocation from the cytosol to the membrane in microglia within 10 min. Mechanistic studies show that TGF-beta1 fails to protect dopaminergic neurons in cultures from PHOX knockout mice, and significantly reduced LPS-induced translocation of the PHOX cytosolic subunit p47phox to the cell membrane. In addition, LPS-induced ERK phosphorylation and subsequent Ser345 phosphorylation on p47phox were significantly inhibited by TGF-beta1 pretreatment. Taken together, our results show that TGF-beta1 exerted potent anti-inflammatory and neuroprotective properties, either through the prevention of the direct activation of microglia by LPS, or indirectly through the inhibition of reactive microgliosis elicited by 1-methyl-4-phenylpyridinium. The molecular mechanisms of TGF-beta1-mediated anti-inflammatory properties is through the inhibition of PHOX activity by preventing the ERK-dependent phosphorylation of Ser345 on p47phox in microglia to reduce oxidase activities induced by LPS.
Collapse
Affiliation(s)
- Li Qian
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, NC 27599-7455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Electroacupuncture Induced Spinal Plasticity is Linked to Multiple Gene Expressions in Dorsal Root Deafferented Rats. J Mol Neurosci 2008; 37:97-110. [PMID: 18581269 DOI: 10.1007/s12031-008-9095-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 04/28/2008] [Indexed: 12/21/2022]
|
39
|
Paton JFR, Waki H. Is neurogenic hypertension related to vascular inflammation of the brainstem? Neurosci Biobehav Rev 2008; 33:89-94. [PMID: 18585782 DOI: 10.1016/j.neubiorev.2008.05.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 05/07/2008] [Accepted: 05/15/2008] [Indexed: 01/12/2023]
Abstract
Essential hypertension is idiopathic although it is accepted as a complex polygenic trait with underlying genetic components, which remain unknown. Our supposition is that hypertension involves activation of the sympathetic nervous system. One pivotal region controlling arterial pressure set point is nucleus tractus solitarii (NTS). We recently identified that pro-inflammatory molecules, such as junctional adhesion molecule-1 (JAM-1), were over expressed in endothelial cells of the microvasculature supplying the NTS in an animal model of human hypertension (the spontaneously hypertensive rat) compared to normotensive Wistar-Kyoto rats (WKY). Over expression of JAM-1 in NTS of WKY rats was pro-hypertensive and induced leukocyte adherence to the microvasculature. Since leukocyte adhesion causes cytokine release, we found expression of monocyte chemoattractant protein-1 (MCP-1) was higher in the NTS of SHR while inter-leukin-6 (IL-6) was lower compared to the WKY rat. Inflammation of the brainstem microvasculature may increase vascular resistance within the brainstem. High brainstem vascular resistance and its inflammation may release pathological paracrine signaling molecules affecting central neural cardiovascular activity conducive to neurogenic hypertension.
Collapse
Affiliation(s)
- Julian F R Paton
- Department of Physiology & Pharmacology, Bristol Heart Institute, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
40
|
Li XL, Liu J, Wang XY, Li LY, Ni W, Zheng RY, Yang HJ, Lu YC, Qi JG, Wang TH. Temporal changes in the expression of TGF-beta 1 and EGF in the ventral horn of the spinal cord and associated precentral gyrus in adult Rhesus monkeys subjected to cord hemisection. J Neurol Sci 2008; 268:163-71. [DOI: 10.1016/j.jns.2007.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 12/01/2007] [Accepted: 12/04/2007] [Indexed: 01/19/2023]
|
41
|
Abstract
Axon growth is critical to the establishment of neuronal connectivity. The E3 ubiquitin ligase Cdh1-anaphase-promoting complex (Cdh1-APC) and its substrate the transcriptional modulator SnoN form a cell-intrinsic pathway that orchestrates axonal morphogenesis in the mammalian brain. How the Cdh1-APC/SnoN pathway is controlled in the nervous system remained unknown. Here, we report that the TGFbeta-regulated signaling protein Smad2 plays a key role in regulating the Cdh1-APC/SnoN pathway in neurons. We find that Smad2 is expressed in primary granule neurons of the developing rat cerebellar cortex. The Smad signaling pathway is basally activated in neurons. Endogenous Smad2 is phosphorylated, localized in the nucleus, and forms a physical complex with endogenous SnoN in granule neurons. Inhibition of Smad signaling by several distinct approaches, including genetic knock-down of Smad2, stimulates axonal growth. Biochemical evidence and genetic epistasis analyses reveal that Smad2 acts upstream of SnoN in a shared pathway with Cdh1-APC in the control of axonal growth. Remarkably, Smad2 knock-down also overrides the ability of adult rat myelin to inhibit axonal growth. Collectively, our findings define a novel function for Smad2 in regulation of the Cdh1-APC/SnoN cell-intrinsic pathway of axonal morphogenesis, and suggest that inhibition of Smad signaling may hold therapeutic potential in stimulating axonal growth after injury in the CNS.
Collapse
|
42
|
Lacmann A, Hess D, Gohla G, Roussa E, Krieglstein K. Activity-dependent release of transforming growth factor-beta in a neuronal network in vitro. Neuroscience 2007; 150:647-57. [DOI: 10.1016/j.neuroscience.2007.09.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 09/05/2007] [Accepted: 10/11/2007] [Indexed: 01/17/2023]
|
43
|
Rodríguez-Rodríguez E, Sánchez-Juan P, Mateo I, Llorca J, Infante J, García-Gorostiaga I, Berciano J, Combarros O. Serum levels and genetic variation of TGF-beta1 are not associated with Alzheimer's disease. Acta Neurol Scand 2007; 116:409-12. [PMID: 17986101 DOI: 10.1111/j.1600-0404.2007.00892.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE As transforming growth factor-beta1 (TGF-beta1) determines important neurotrophic and neuroprotective actions, we postulated serum TGF-beta1 levels could be low in Alzheimer's disease (AD), and TGF-beta1 genetic variation could be associated with AD risk through modulating serum TGF-beta1 levels. METHODS TGF-beta1 (-800) (rs 1800468), (-509) (rs 1800469) and (+869) (rs 1982073) polymorphisms were genotyped in 412 AD patients and 406 controls. We measured serum TGF-beta1 levels (by ELISA) in 63 AD patients and compared them with 77 age- and gender-matched non-demented controls. RESULTS Serum TGF-beta1 levels were not different in AD patients than in controls. Distribution of the allele and genotype frequencies of TGF-beta1 polymorphisms did not differ between AD patients and controls. There was no significant correlation between serum TGF-beta1 levels and TGF-beta1 polymorphisms. CONCLUSION Serum TGF-beta1 concentration is not a potential biomarker for AD, and TGF-beta1 genetic variants (-800, -509, and +869) are not risk factors for AD.
Collapse
Affiliation(s)
- E Rodríguez-Rodríguez
- Neurology Service, Marqués de Valdecilla University Hospital, University of Cantabria, Santander, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, Brook GA. TGF-beta1 and TGF-beta2 expression after traumatic human spinal cord injury. Spinal Cord 2007; 46:364-71. [PMID: 18040277 DOI: 10.1038/sj.sc.3102148] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Immunohistochemical investigation in control and lesioned human spinal cords. OBJECTIVES To assess the spatial and temporal expression patterns of transforming growth factor-beta1 and -beta2 (TGF-beta1 and TGF-beta2) in the human spinal cord after traumatic injury. SETTING Germany, Aachen, Aachen University Hospital. METHODS Sections from human spinal cords from 4 control patients and from 14 patients who died at different time points after traumatic spinal cord injury (SCI) were investigated immunohistochemically. RESULTS In control cases, TGF-beta1 was confined to occasional blood vessels, intravascular monocytes and some motoneurons, whereas TGF-beta2 was only found in intravascular monocytes. After traumatic SCI, TGF-beta1 immunoreactivity was dramatically upregulated by 2 days after injury (the earliest survival time investigated) and was detected within neurons, astrocytes and invading macrophages. The staining was most intense over the first weeks after injury but gradually declined by 1 year. TGF-beta2 immunoreactivity was first detected 24 days after injury. It was located in macrophages and astrocytes and remained elevated for up to 1 year. In white matter tracts undergoing Wallerian degeneration, there was no induction of either isoform. CONCLUSION The early induction of TGF-beta1 at the point of SCI suggests a role in the acute inflammatory response and formation of the glial scar, while the later induction of TGF-beta2 may indicate a role in the maintenance of the scar. Neither of these TGF-beta isoforms appears to contribute to the astrocytic scar formation in nerve fibre tracts undergoing Wallerian degeneration.
Collapse
Affiliation(s)
- A Buss
- Department of Neurology, Aachen University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Chavarría-Siles I, Walss-Bass C, Quezada P, Dassori A, Contreras S, Medina R, Ramírez M, Armas R, Salazar R, Leach RJ, Raventos H, Escamilla MA. TGFB-induced factor (TGIF): a candidate gene for psychosis on chromosome 18p. Mol Psychiatry 2007; 12:1033-41. [PMID: 17440433 DOI: 10.1038/sj.mp.4001997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Schizophrenia (SC) and bipolar disorder (BP) share many clinical features, among them psychosis. We previously identified a putative gene locus for psychosis on chromosome 18p in a sample from the Central Valley of Costa Rica (CVCR) population. The present study replicated the association to a specific allele of microsatellite marker D18S63 on 18p11.3, using a newly collected sample from the CVCR. A combined analysis of both samples, plus additional subjects, showed that this specific allele on D18S63, which lies within an intron on the TGFB-induced factor (TGIF) gene, is strongly associated (P-value=0.0005) with psychosis. Eleven additional SNP markers, spanning five genes in the region, were analyzed in the combined sample from the CVCR. Only the four SNPs within the TGIF gene were in strong linkage disequilibrium with D18S63 (D'=1.00). A specific haplotype for all five markers within the TGIF gene showed evidence of association (P-value=0.011) to psychosis. A second, distinct haplotype, containing a newly identified nonsynonymous polymorphism in exon 5 of the TGIF gene, showed a nonsignificant trend towards association to psychosis (P-value=0.077). TGIF is involved in neurodevelopment, neuron survival and controls the expression of dopamine receptors. Altogether, our results point to the possible involvement of TGIF in the pathophysiology of psychotic disorders in the CVCR population.
Collapse
Affiliation(s)
- I Chavarría-Siles
- Psychiatric Genetics Research Center, Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kramer ER, Aron L, Ramakers GMJ, Seitz S, Zhuang X, Beyer K, Smidt MP, Klein R. Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 2007; 5:e39. [PMID: 17298183 PMCID: PMC1808500 DOI: 10.1371/journal.pbio.0050039] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 12/07/2006] [Indexed: 12/16/2022] Open
Abstract
Support of ageing neurons by endogenous neurotrophic factors such as glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) may determine whether the neurons resist or succumb to neurodegeneration. GDNF has been tested in clinical trials for the treatment of Parkinson disease (PD), a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. BDNF modulates nigrostriatal functions and rescues DA neurons in PD animal models. The physiological roles of GDNF and BDNF signaling in the adult nigrostriatal DA system are unknown. We generated mice with regionally selective ablations of the genes encoding the receptors for GDNF (Ret) and BDNF (TrkB). We find that Ret, but not TrkB, ablation causes progressive and adult-onset loss of DA neurons specifically in the substantia nigra pars compacta, degeneration of DA nerve terminals in striatum, and pronounced glial activation. These findings establish Ret as a critical regulator of long-term maintenance of the nigrostriatal DA system and suggest conditional Ret mutants as useful tools for gaining insights into the molecular mechanisms involved in the development of PD. What does a neuron need to survive? Our body produces its own survival factors for neurons, so-called neurotrophic factors, which have additional roles in neuron differentiation, growth, and function. Declining production of a neurotrophic factor or impaired signal transduction in ageing neurons may contribute to pathological neurodegeneration in humans. Glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) have been suggested as survival factors for midbrain dopaminergic neurons, a group of neurons primarily affected in Parkinson disease. To investigate the physiological requirements for GDNF and BDNF to establish and maintain an important output pathway of these neurons—the nigrostriatal pathway—in the intact brain, we generated mutant mice with regionally selective ablations of the receptors for these survival factors, Ret (receptor of GDNF and related family members) or TrkB (BDNF receptor). Surprisingly, these mice survive to adulthood and show normal development and maturation of the nigrostriatal system. However, in ageing mice, ablation of Ret leads to a progressive and cell-type–specific loss of substantia nigra pars compacta neurons and their projections into the striatum. Our findings establish Ret and subsequent downstream effectors as critical regulators of long-term maintenance of the nigrostriatal system. Ret, a receptor for glial cell line-derived neurotrophic factor, selectively regulates long-term maintenance of the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Edgar R Kramer
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Martinsried, Germany
- * To whom correspondence should be addressed. E-mail: (RK), (ERK)
| | - Liviu Aron
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Martinsried, Germany
| | - Geert M. J Ramakers
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sabine Seitz
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany
- Institute for Clinical Neuroimmunology, Ludwig Maximilians University, Munich, Germany
| | - Xiaoxi Zhuang
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois, United States of America
| | - Klaus Beyer
- Department of Metabolic Biochemistry, Adolf Butenandt Institute, Munich, Germany
| | - Marten P Smidt
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rüdiger Klein
- Department of Molecular Neurobiology, Max-Planck Institute of Neurobiology, Martinsried, Germany
- * To whom correspondence should be addressed. E-mail: (RK), (ERK)
| |
Collapse
|
47
|
Aigner L, Bogdahn U. TGF-beta in neural stem cells and in tumors of the central nervous system. Cell Tissue Res 2007; 331:225-41. [PMID: 17710437 DOI: 10.1007/s00441-007-0466-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/04/2007] [Indexed: 10/22/2022]
Abstract
Mechanisms that regulate neural stem cell activity in the adult brain are tightly coordinated. They provide new neurons and glia in regions associated with high cellular and functional plasticity, after injury, or during neurodegeneration. Because of the proliferative and plastic potential of neural stem cells, they are currently thought to escape their physiological control mechanisms and transform to cancer stem cells. Signals provided by proteins of the transforming growth factor (TGF)-beta family might represent a system by which neural stem cells are controlled under physiological conditions but released from this control after transformation to cancer stem cells. TGF-beta is a multifunctional cytokine involved in various physiological and patho-physiological processes of the brain. It is induced in the adult brain after injury or hypoxia and during neurodegeneration when it modulates and dampens inflammatory responses. After injury, although TGF-beta is neuroprotective, it may limit the self-repair of the brain by inhibiting neural stem cell proliferation. Similar to its effect on neural stem cells, TGF-beta reveals anti-proliferative control on most cell types; however, paradoxically, many brain tumors escape from TGF-beta control. Moreover, brain tumors develop mechanisms that change the anti-proliferative influence of TGF-beta into oncogenic cues, mainly by orchestrating a multitude of TGF-beta-mediated effects upon matrix, migration and invasion, angiogenesis, and, most importantly, immune escape mechanisms. Thus, TGF-beta is involved in tumor progression. This review focuses on TGF-beta and its role in the regulation and control of neural and of brain-cancer stem cells.
Collapse
Affiliation(s)
- Ludwig Aigner
- Department of Neurology, University of Regensburg, Universitätsstrasse 84, 93053, Regensburg, Germany.
| | | |
Collapse
|
48
|
Nakajima K, Tohyama Y, Maeda S, Kohsaka S, Kurihara T. Neuronal regulation by which microglia enhance the production of neurotrophic factors for GABAergic, catecholaminergic, and cholinergic neurons. Neurochem Int 2007; 50:807-20. [PMID: 17459525 DOI: 10.1016/j.neuint.2007.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 02/09/2007] [Accepted: 02/15/2007] [Indexed: 11/25/2022]
Abstract
A phenomenon-in which microglia are activated in axotomized rat facial nucleus suggests that a certain neuronal stimulus triggers the activation of microglia. However, how the microglial characteristics are regulated by this neuronal stimulus has not previously been determined. In this study, therefore, the regulation of microglial properties by neurons was characterized in vitro from a neurotrophic perspective. To evaluate the neurotrophic effects of microglia stimulated with neurons, the effects of conditioned medium (CM) of microglia stimulated with neuronal CM (NCM) were assessed in neuronal cultures. The amounts of tyrosine hydroxylase (TH) in neuronal culture exposed to CM of microglia stimulated with NCM was much more than those in neurons exposed to CM of control microglia, suggesting that neuronal stimulus enhances the production of neurotrophic factors for catecholaminergic neurons in microglia. Therefore, the neurotrophic effects of CM of microglia stimulated with NCM were analyzed in detail. The immunocytochemical and biochemical experiments revealed that the CM of microglia stimulated with NCM enhances the survival/maturation of GABAergic and catecholaminergic neurons. The levels of choline acetyltransferase specific to cholinergic neurons also significantly increased in response to stimulation with the same microglial CM. These results allowed us to investigate the production of neurotrophic factors in the CM of microglia stimulated with NCM. The results indicated that NCM induces nerve growth factor (NGF), and enhances neurotrophin-4/5 (NT-4/5), transforming growth factor beta1 (TGFbeta1), glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), interleukin-3 (IL-3), and IL-10 in microglia. The promoted neurotrophic effects of CM of microglia stimulated with NCM were significantly abrogated by deprivation of neurotrophic factors by means of an immunoprecipitation method. Taken together, neuronal stimulus was found to activate microglia to produce more neurotrophic factors as above, thereby changing microglia into more neurotrophic cells.
Collapse
Affiliation(s)
- Kazuyuki Nakajima
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Accumulation of beta-amyloid peptide (Abeta) in the brain is believed to trigger a complex and poorly understood pathologic reaction that results in the development of Alzheimer's disease (AD). Despite intensive study, there is no consensus as to how Abeta accumulation causes neurodegeneration in AD. In this issue of the JCI, Tesseur et al. report that the expression of TGF-beta type II receptor (TbetaRII) by neurons is reduced very early in the course of AD and that reduced TGF-beta signaling increased Abeta deposition and neurodegeneration in a mouse model of AD (see the related article beginning on page 3060). Intriguingly, reduced TGF-beta signaling in neuroblastoma cells resulted in neuritic dystrophy and increased levels of secreted Abeta. Collectively, these data suggest that dysfunction of the TGF-beta/TbetaRII signaling axis in the AD brain may accelerate Abeta deposition and neurodegeneration.
Collapse
Affiliation(s)
- Pritam Das
- Department of Neuroscience, College of Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA.
| | | |
Collapse
|
50
|
Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P, Mucke L, Masliah E, Wyss-Coray T. Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology. J Clin Invest 2006; 116:3060-9. [PMID: 17080199 PMCID: PMC1626127 DOI: 10.1172/jci27341] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 08/01/2006] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration and cerebral accumulation of the beta-amyloid peptide (Abeta), but it is unknown what makes neurons susceptible to degeneration. We report that the TGF-beta type II receptor (TbetaRII) is mainly expressed by neurons, and that TbetaRII levels are reduced in human AD brain and correlate with pathological hallmarks of the disease. Reducing neuronal TGF-beta signaling in mice resulted in age-dependent neurodegeneration and promoted Abeta accumulation and dendritic loss in a mouse model of AD. In cultured cells, reduced TGF-beta signaling caused neuronal degeneration and resulted in increased levels of secreted Abeta and beta-secretase-cleaved soluble amyloid precursor protein. These results show that reduced neuronal TGF-beta signaling increases age-dependent neurodegeneration and AD-like disease in vivo. Increasing neuronal TGF-beta signaling may thus reduce neurodegeneration and be beneficial in AD.
Collapse
Affiliation(s)
- Ina Tesseur
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Kun Zou
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Luke Esposito
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Frederique Bard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Elisabeth Berber
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Judith Van Can
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Amy H. Lin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Leslie Crews
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Patrick Tremblay
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Paul Mathews
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Lennart Mucke
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Eliezer Masliah
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA.
Gladstone Institute of Neurological Disease and
Department of Neurology, University of California San Francisco, San Francisco, California, USA.
Elan Pharmaceuticals Inc., South San Francisco, California, USA.
Departments of Neuroscience and Pathology, University of California San Diego, San Diego, California, USA.
Center for Dementia Research, New York University School of Medicine, Orangeburg, New York, USA.
Geriatric Research, Education, and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|