1
|
Yuasa HJ, Stocker R. Methylene blue and ascorbate interfere with the accurate determination of the kinetic properties of IDO2. FEBS J 2021; 288:4892-4904. [PMID: 33686747 DOI: 10.1111/febs.15806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
Indoleamine 2,3-dioxygenases (IDOs) catalyze the oxidative cleavage of L-tryptophan (Trp) to N-formylkynurenine. Two IDOs, IDO1 and IDO2, are present in vertebrates. IDO1 is a high-affinity Trp-degrading enzyme involved in several physiological processes. By comparison, IDO2 generally has been reported to have low affinity (high Km -value) for Trp, and the enzyme's in vivo function remains unclear. Using IDOs from different species, we show that compared with ferrous-oxy (Fe2+ -O2 ) IDO1, Fe2+ -O2 IDO2 is substantially more stable and engages in multiple turnovers of the reaction in the absence of a reductant. Without reductant, Fe2+ -O2 IDO2 showed Km -values in the range of 80-356 μM, that is, values substantially lower than reported previously and close to the physiological concentrations of Trp. Methylene blue and ascorbate (Asc), used commonly as the reducing system for IDO activity determination, significantly affected the enzymatic activity of IDO2: In combination, the two reductants increased the apparent Km - and kcat -values 8- to 117-fold and 2-fold, respectively. Asc alone both activated and inhibited IDO2 by acting as a source of electrons and as a weak competitive inhibitor, respectively. In addition, ferric (Fe3+ ) IDO1 and IDO2 exhibited weak dioxygenase activity, similar to tryptophan 2,3-dioxygenase. Our results shed new light in the enzymatic activity of IDO2, and they support the view that this isoform of IDO also participates in the metabolism of Trp in vivo.
Collapse
Affiliation(s)
- Hajime J Yuasa
- Laboratory of Biochemistry, Department of Chemistry and Biotechnology, Faculty of Science and Technology, National University Corporation Kochi University, Japan
| | - Roland Stocker
- Arterial Inflammation and Redox Biology Group, Heart Research Institute, Newtown, NSW, Australia
| |
Collapse
|
2
|
Li X, Wu T, Jiang Y, Zhang Z, Han X, Geng W, Ding H, Kang J, Wang Q, Shang H. Plasma metabolic changes in Chinese HIV-infected patients receiving lopinavir/ritonavir based treatment: Implications for HIV precision therapy. Cytokine 2018; 110:204-212. [PMID: 29778008 DOI: 10.1016/j.cyto.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The goal of this study is to profile the metabolic changes in the plasma of HIV patients receiving lopinavir/ritonavir (LPV/r)-based highly active antiretroviral therapy (HAART) relative to their treatment-naïve phase, aimed to identify precision therapy for HIV for improving prognosis and predicting dyslipidemia caused by LPV/r. METHODS 38 longitudinal plasma samples were collected from 19 HIV-infected patients both before and after antiretroviral therapy, and 18 samples from healthy individuals were used as controls. Untargeted metabolomics profiling of these plasma samples was performed using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). RESULTS A total of 331 compounds of known identity were detected among these metabolites, a 67-metabolite signature mainly mapping to tryptophan, histidine, acyl carnitine, ketone bodies and fatty acid metabolism distinguished HIV patients from healthy controls. The levels of 19 out of the 67 altered metabolites including histidine, kynurenine, and 3-hydroxybutyrate (BHBA), recovered after LPV/r-based antiretroviral therapy, and histidine was positively correlated with the presence of CD4 + T lymphocytes. Furthermore, using receiver operating characteristic (ROC) analyses, we discovered that butyrylcarnitine in combination with myristic acid from plasma in treatment-naïve patients could predict dyslipidemia caused by LPV/r with 87% accuracy. CONCLUSIONS Metabolites alterations in treatment-naïve HIV patients may indicate an inflammatory, oxidative state and mitochondrial dysfunction that is permissive for disease progression. Histidine may provide a specific protective function for HIV patients. Besides, elevated fatty acids levels including butyrylcarnitine and myristic acid after infection may indicate patients at risk of suffering from dyslipidemia after LPV/r-based HAART.
Collapse
Affiliation(s)
- Xiaolin Li
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Tong Wu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Yongjun Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Zining Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Wenqing Geng
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Jing Kang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Qi Wang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China.
| |
Collapse
|
3
|
Kynurenine Reduces Memory CD4 T-Cell Survival by Interfering with Interleukin-2 Signaling Early during HIV-1 Infection. J Virol 2016; 90:7967-79. [PMID: 27356894 DOI: 10.1128/jvi.00994-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Early HIV-1 infection is characterized by enhanced tryptophan catabolism, which contributes to immune suppression and disease progression. However, the mechanism by which kynurenine, a tryptophan-related metabolite, induces immune suppression remains poorly understood. Herein, we show that the increased production of kynurenine correlates with defective interleukin-2 (IL-2) signaling in memory CD4 T cells from HIV-infected subjects. Defective IL-2 signaling in these subjects, which drives reduced protection from Fas-mediated apoptosis, was also associated with memory CD4 T-cell loss. Treatment of memory CD4 T cells with the concentration of kynurenine found in plasma inhibited IL-2 signaling through the production of reactive oxygen species. We further show that IL-2 signaling in memory CD4 T cells is improved by the antioxidant N-acetylcysteine. Early initiation of antiretroviral therapy restored the IL-2 response in memory CD4 T cells by reducing reactive oxygen species and kynurenine production. The study findings provide a kynurenine-dependent mechanism through IL-2 signaling for reduced CD4 T-cell survival, which can be reversed by early treatment initiation in HIV-1 infection. IMPORTANCE The persistence of functional memory CD4 T cells represents the basis for long-lasting immune protection in individuals after exposure to HIV-1. Unfortunately, primary HIV-1 infection results in the massive loss of these cells within weeks of infection, which is mainly driven by inflammation and massive infection by the virus. These new findings show that the enhanced production of kynurenine, a metabolite related to tryptophan catabolism, also impairs memory CD4 T-cell survival and interferes with IL-2 signaling early during HIV-1 infection.
Collapse
|
4
|
Dagenais-Lussier X, Mouna A, Routy JP, Tremblay C, Sekaly RP, El-Far M, Grevenynghe JV. Current topics in HIV-1 pathogenesis: The emergence of deregulated immuno-metabolism in HIV-infected subjects. Cytokine Growth Factor Rev 2015; 26:603-13. [PMID: 26409789 DOI: 10.1016/j.cytogfr.2015.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/04/2015] [Indexed: 01/17/2023]
Abstract
HIV-1 infection results in long-lasting activation of the immune system including elevated production of pro-inflammatory cytokine/chemokines, and bacterial product release from gut into blood and tissue compartments, which are not fully restored by antiretroviral therapies. HIV-1 has also developed numerous strategies via viral regulatory proteins to hijack cell molecular mechanisms to enhance its own replication and dissemination. Here, we reviewed the relationship between viral proteins, immune activation/inflammation, and deregulated metabolism occurring in HIV-1-infected patients that ultimately dampens the protective innate and adaptive arms of immunity. Defining precisely the molecular mechanisms related to deregulated immuno-metabolism during HIV-1 infection could ultimately help in the development of novel clinical approaches to restore proper immune functions in these patients.
Collapse
Affiliation(s)
| | - Aounallah Mouna
- INRS-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Glen site, Montreal, Quebec H4A 3J1, Canada
| | | | | | | | - Julien van Grevenynghe
- INRS-Institut Armand Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada.
| |
Collapse
|
5
|
Mehraj V, Jenabian MA, Vyboh K, Routy JP. Immune Suppression by Myeloid Cells in HIV Infection: New Targets for Immunotherapy. Open AIDS J 2014; 8:66-78. [PMID: 25624956 PMCID: PMC4302459 DOI: 10.2174/1874613601408010066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 02/07/2023] Open
Abstract
Over thirty years of extensive research has not yet solved the complexity of HIV pathogenesis leading to a continued need for a successful cure. Recent immunotherapy-based approaches are aimed at controlling the infection by reverting immune dysfunction. Comparatively less appreciated than the role of T cells in the context of HIV infection, the myeloid cells including macrophages monocytes, dendritic cells (DCs) and neutrophils contribute significantly to immune dysfunction. Host restriction factors are cellular proteins expressed in these cells which are circumvented by HIV. Guided by the recent literature, the role of myeloid cells in HIV infection will be discussed highlighting potential targets for immunotherapy. HIV infection, which is mainly characterized by CD4 T cell dysfunction, also manifests in a vicious cycle of events comprising of inflammation and immune activation. Targeting the interaction of programmed death-1 (PD-1), an important regulator of T cell function; with PD-L1 expressed mainly on myeloid cells could bring promising results. Macrophage functional polarization from pro-inflammatory M1 to anti-inflammatory M2 and vice versa has significant implications in viral pathogenesis. Neutrophils, recently discovered low density granular cells, myeloid derived suppressor cells (MDSCs) and yolk sac macrophages provide new avenues of research on HIV pathogenesis and persistence. Recent evidence has also shown significant implications of neutrophil extracellular traps (NETs), antimicrobial peptides and opsonizing antibodies. Further studies aimed to understand and modify myeloid cell restriction mechanisms have the potential to contribute in the future development of more effective anti-HIV interventions that may pave the way to viral eradication.
Collapse
Affiliation(s)
- Vikram Mehraj
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada ; Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Département des Sciences Biologiques et Centre de recherche BioMed, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Kishanda Vyboh
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada ; Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada ; Research Institute, McGill University Health Centre, Montreal, QC, Canada ; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
6
|
Lebouché B, Jenabian MA, Singer J, Graziani GM, Engler K, Trottier B, Thomas R, Brouillette MJ, Routy JP. The role of extended-release niacin on immune activation and neurocognition in HIV-infected patients treated with antiretroviral therapy - CTN PT006: study protocol for a randomized controlled trial. Trials 2014; 15:390. [PMID: 25293882 PMCID: PMC4283109 DOI: 10.1186/1745-6215-15-390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Approximately 30% of HIV-1-infected patients receiving antiretroviral therapy who achieve virologic control have unsatisfactory immune reconstitution, with CD4+ T-cell counts persistently below 350 cells/μL. These patients are at elevated risk for clinical progression to AIDS and non-AIDS events. CD4+ T-cell depletion following infection and persistent immune activation can partially explain this low CD4+ T-cell recovery. Recent data suggest a link between the tryptophan oxidation pathway, immune activation and HIV disease progression based on overstimulation of the tryptophan oxidation pathway by HIV antigens and by interferon-gamma. This overstimulation reduces levels of circulating tryptophan, resulting in inflammation which has been implicated in the development of neurocognitive dysfunction. Niacin (vitamin B3) is able to control the excess tryptophan oxidation, correcting tryptophan depletion, and therefore represents an interesting strategy to improve CD4 recovery.We aim to design a crossover proof-of-concept study to assess supplementation with an extended-release form of niacin (Niaspan FCT™) in combination with antiretroviral therapy, compared to antiretroviral therapy alone, on T-cell immune activation as defined by changes in the percentage of CD8+ CD38+ HLA-DR+ T-cells. METHODS/DESIGN This randomized, open-label, interventional crossover study with an immediate versus deferred use of Niaspan FCT for 24 weeks will assess its ability to reduce immune activation and thus increase CD4 recovery in 20 HIV-infected individuals with suboptimal immune responses despite sustained virologic suppression. A substudy evaluating neurocognitive function will also be conducted. DISCUSSION This randomized trial will provide an opportunity to evaluate the potential benefit of oral extended-release niacin, a drug that can indirectly increase tryptophan, to reduce immune activation and in turn increase CD4+ T-cell recovery. The study will also allow for the evaluation of the impact of Niaspan FCT on neurocognitive function in HIV-infected individuals with suboptimal immune responses despite sustained virologic suppression. TRIAL REGISTRATION This study was registered with ClinicalTrials.gov on 17 December 2013 (registration number: NCT02018965).
Collapse
Affiliation(s)
- Bertrand Lebouché
- />Chronic Viral Illness Service, Montreal Chest Institute, McGill University Health Centre, 3650 Saint Urbain St., Montreal, QC H2X 2P4 Canada
- />Canadian Institutes of Health Research (CIHR) Canadian HIV Trials Network (the CTN), 588-1081 Burrard St., Vancouver, BC V6B 3E6 Canada
- />Department of Family Medicine, McGill University, 5858, chemin de la Côte-des-Neiges, Montreal, QC H3S 1Z1 Canada
| | - Mohammad-Ali Jenabian
- />Chronic Viral Illness Service, Montreal Chest Institute, McGill University Health Centre, 3650 Saint Urbain St., Montreal, QC H2X 2P4 Canada
- />Canadian Institutes of Health Research (CIHR) Canadian HIV Trials Network (the CTN), 588-1081 Burrard St., Vancouver, BC V6B 3E6 Canada
| | - Joel Singer
- />Canadian Institutes of Health Research (CIHR) Canadian HIV Trials Network (the CTN), 588-1081 Burrard St., Vancouver, BC V6B 3E6 Canada
| | - Gina M Graziani
- />Canadian Institutes of Health Research (CIHR) Canadian HIV Trials Network (the CTN), 588-1081 Burrard St., Vancouver, BC V6B 3E6 Canada
- />Ottawa Hospital Research Institute, 501 Smyth Rd., Ottawa, ON K1H 8L6 Canada
| | - Kim Engler
- />Chronic Viral Illness Service, Montreal Chest Institute, McGill University Health Centre, 3650 Saint Urbain St., Montreal, QC H2X 2P4 Canada
| | - Benoit Trottier
- />Clinique médicale l’Actuel, 1001 boul. de Maisonneuve E, Montreal, QC H2L 4P9 Canada
| | - Réjean Thomas
- />Clinique médicale l’Actuel, 1001 boul. de Maisonneuve E, Montreal, QC H2L 4P9 Canada
| | - Marie-Josée Brouillette
- />Chronic Viral Illness Service, Montreal Chest Institute, McGill University Health Centre, 3650 Saint Urbain St., Montreal, QC H2X 2P4 Canada
| | - Jean-Pierre Routy
- />Chronic Viral Illness Service, Montreal Chest Institute, McGill University Health Centre, 3650 Saint Urbain St., Montreal, QC H2X 2P4 Canada
- />Canadian Institutes of Health Research (CIHR) Canadian HIV Trials Network (the CTN), 588-1081 Burrard St., Vancouver, BC V6B 3E6 Canada
| |
Collapse
|
7
|
Jenabian MA, Patel M, Kema I, Kanagaratham C, Radzioch D, Thébault P, Lapointe R, Tremblay C, Gilmore N, Ancuta P, Routy JP. Distinct tryptophan catabolism and Th17/Treg balance in HIV progressors and elite controllers. PLoS One 2013; 8:e78146. [PMID: 24147117 PMCID: PMC3797729 DOI: 10.1371/journal.pone.0078146] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/15/2013] [Indexed: 02/07/2023] Open
Abstract
Tryptophan (Trp) catabolism into immunosuppressive kynurenine (Kyn) by indoleamine 2,3-dioxygenase (IDO) was previously linked to Th17/Treg differentiation and immune activation. Here we examined Trp catabolism and its impact on Th17/Treg balance in uninfected healthy subjects (HS) and a large cohort of HIV-infected patients with different clinical outcomes: ART-naïve, Successfully Treated (ST), and elite controllers (EC). In ART-naïve patients, increased IDO activity/expression, together with elevated levels of TNF-α and sCD40L, were associated with Treg expansion and an altered Th17/Treg balance. These alterations were normalized under ART. In contrast, Trp 2,3-dioxegenase (TDO) expression was dramatically lower in EC when compared to all other groups. Interestingly, EC displayed a distinctive Trp metabolism characterized by low Trp plasma levels similar to ART-naïve patients without accumulating immunosuppressive Kyn levels which was accompanied by a preserved Th17/Treg balance. These results suggest a distinctive Trp catabolism and Th17/Treg balance in HIV progressors and EC. Thus, IDO-induced immune-metabolism may be considered as a new inflammation-related marker for HIV-1 disease progression.
Collapse
Affiliation(s)
- Mohammad-Ali Jenabian
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada ; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Brenk M, Scheler M, Koch S, Neumann J, Takikawa O, Häcker G, Bieber T, von Bubnoff D. Tryptophan deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic cells favoring the induction of human CD4+CD25+ Foxp3+ T regulatory cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:145-54. [PMID: 19535644 DOI: 10.4049/jimmunol.0803277] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tryptophan catabolism through IDO activity can cause nonresponsiveness and tolerance acting on T cells. Given the crucial importance of dendritic cells (DCs) in the initiation of a T cell response, surprisingly little is known about the impact of IDO activity and tryptophan deprivation on DCs themselves. In the present study, we show that human DCs differentiated under low-tryptophan conditions acquire strong tolerogenic capacity. This effect is associated with a markedly decreased Ag uptake as well as the down-regulation of costimulatory molecules (CD40, CD80). In contrast, the inhibitory receptors ILT3 and ILT4 are significantly increased. Functionally, tryptophan-deprived DCs show a reduced capacity to stimulate T cells, which can be restored by blockade of ILT3. Moreover, ILT3(high)ILT4(high) DCs lead to the induction of CD4(+)CD25(+) Foxp3(+) T regulatory cells with suppressive activity from CD4(+)CD25(-) T cells. The generation of ILT3(high)ILT4(high) DCs with tolerogenic properties by tryptophan deprivation is linked to a stress response pathway mediated by the GCN2 kinase. These results demonstrate that tryptophan degradation establishes a regulatory microenvironment for DCs, enabling these cells to induce T regulatory cells. The impact of IDO thus extends beyond local immune suppression to a systemic control of the immune response.
Collapse
Affiliation(s)
- Manuela Brenk
- Department of Dermatology and Allergy, Friedrich-Wilhelms-University of Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Immunosuppression routed via the kynurenine pathway: a biochemical and pathophysiologic approach. Adv Clin Chem 2008; 45:155-97. [PMID: 18429497 DOI: 10.1016/s0065-2423(07)00007-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past years, it has been shown that kynurenines pathway is a regulator of both the innate and the adaptive immune responses. Particularly, the initial enzyme of this pathway, indoleamine 2,3-dioxygenase (IDO), is implicated in maintaining tolerance during pregnancy, and also can be expressed in tumors to avoid the immune attack. In this chapter, we will describe how the kynurenine pathway affects the immune system with important implications both in physiology and in pathology. The incorrect activation or blockade suppressive properties of the kynurenine pathway are also implicated in a number of other diseases such as AIDS or autoimmune diseases.
Collapse
|
10
|
Assessment of the kynurenine pathway in humans: I. Normal plasma values, ethnic differences and their clinical implications. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Abstract
Human immunodeficiency virus (HIV) infection is often complicated by the development of acquired immunodeficiency syndrome (AIDS) dementia complex (ADC). Quinolinic acid (QUIN) is an end product of tryptophan, metabolized through the kynurenine pathway (KP) that can act as an endogenous brain excitotoxin when produced and released by activated macrophages/microglia, the very cells that are prominent in the pathogenesis of ADC. This review examines QUIN's involvement in the features of ADC and its role in pathogenesis. We then synthesize these findings into a hypothetical model for the role played by QUIN in ADC, and discuss the implications of this model for ADC and other inflammatory brain diseases.
Collapse
Affiliation(s)
- Gilles J Guillemin
- Centre for Immunology, Department of Neurology, St Vincent's Hospital, Sydney, Australia
| | | | | |
Collapse
|