1
|
Jameel E, Naz H, Khan P, Tarique M, Kumar J, Mumtazuddin S, Ahamad S, Islam A, Ahmad F, Hoda N, Hassan MI. Design, synthesis, and biological evaluation of pyrimidine derivatives as potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. Chem Biol Drug Des 2016; 89:741-754. [PMID: 27809417 DOI: 10.1111/cbdd.12898] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/17/2016] [Accepted: 10/22/2016] [Indexed: 01/18/2023]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a multifunctional Ser/Thr kinase, associated with cerebral hypoxia, cancer, and neurodegenerative diseases. Here, we report design, synthesis, and biological evaluation of seven pyrimidine-substituted novel inhibitors of CAMKIV. We successfully synthesized and extensively characterized (ESI-MS, 1 H NMR, and 13 C NMR studies) seven compounds that are showing appreciable binding affinity to the CAMKIV. Molecular docking and fluorescence binding studies revealed that compound 1 is showing very high binding free energy (ΔG = -11.52 kcal/mol) and binding affinity (K = 9.2 × 1010 m-1 ) to the CAMKIV. We further performed MTT assay to check the cytotoxicity and anticancer activity of these compounds. An appreciable IC50 (39 μm) value of compound 1 was observed on human hepatoma cell line and nontoxic till the 400 μm on human embryonic kidney cells. To ensure anticancer activity of all these compounds, we further performed propidium iodide assay to evaluate cell viability and DNA content during the cell cycle. We found that compound 1 is again showing a better anticancer activity on both human hepatoma and human embryonic kidney cell lines.
Collapse
Affiliation(s)
- Ehtesham Jameel
- Department of Chemistry, B.R. Ambedkar Bihar University, Muzaffarpur, Bihar, India
| | - Huma Naz
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Tarique
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jitendra Kumar
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Syed Mumtazuddin
- Department of Chemistry, B.R. Ambedkar Bihar University, Muzaffarpur, Bihar, India
| | - Shahzaib Ahamad
- Department of Biotechnology, College of Engineering and Technology, IFTM, Moradabad, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nasimul Hoda
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Zhu J, Cai Y, Liu P, Zhao W. Frequent Nek1 overexpression in human gliomas. Biochem Biophys Res Commun 2016; 476:522-527. [PMID: 27251576 DOI: 10.1016/j.bbrc.2016.05.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 02/01/2023]
Abstract
Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients' poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance.
Collapse
Affiliation(s)
- Jun Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Cai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Pin Liu
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weiguo Zhao
- Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Calcium/calmodulin-dependent protein kinase IV: A multifunctional enzyme and potential therapeutic target. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:54-65. [PMID: 26773169 DOI: 10.1016/j.pbiomolbio.2015.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 01/23/2023]
Abstract
The calcium/calmodulin-dependent protein kinase IV (CAMKIV) belongs to the serine/threonine protein kinase family, and is primarily involved in transcriptional regulation in lymphocytes, neurons and male germ cells. CAMKIV operates the signaling cascade and regulates activity of several transcription activators by phosphorylation, which in turn plays pivotal roles in immune response, inflammation and memory consolidation. In this review, we tried to focus on different aspects of CAMKIV to understand the significance of this protein in the biological system. This enzyme is associated with varieties of disorders such as cerebral hypoxia, azoospermia, endometrial and ovarian cancer, systemic lupus, etc., and hence it is considered as a potential therapeutic target. Structure of CAMKIV is comprised of five distinct domains in which kinase domain is responsible for enzyme activity. CAMKIV is involved in varieties of cellular functions such as regulation of gene expression, T-cell maturation, regulation of survival phase of dendritic cells, bone growth and metabolism, memory consolidation, sperm motility, regulation of microtubule dynamics, cell-cycle progression and apoptosis. In this review, we performed an extensive analysis on structure, function and regulation of CAMKIV and associated diseases.
Collapse
|
4
|
Bibi N, Parveen Z, Rashid S. Identification of potential Plk1 targets in a cell-cycle specific proteome through structural dynamics of kinase and Polo box-mediated interactions. PLoS One 2013; 8:e70843. [PMID: 23967120 PMCID: PMC3744538 DOI: 10.1371/journal.pone.0070843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/23/2013] [Indexed: 01/15/2023] Open
Abstract
Polo like kinase 1 (Plk1) is a key player in orchestrating the wide variety of cell-cycle events ranging from centrosome maturation, mitotic entry, checkpoint recovery, transcriptional control, spindle assembly, mitotic progression, cytokinesis and DNA damage checkpoints recovery. Due to its versatile nature, Plk1 is considered an imperative regulator to tightly control the diverse aspects of the cell cycle network. Interactions among Plk1 polo box domain (PBD) and its putative binding proteins are crucial for the activation of Plk1 kinase domain (KD). To date, only a few substrate candidates have been characterized through the inclusion of both polo box and kinase domain-mediated interactions. Thus it became compelling to explore precise and specific Plk1 substrates through reassessment and extension of the structure-function paradigm. To narrow this apparently wide gap in knowledge, here we employed a thorough sequence search of Plk1 phosphorylation signature containing proteins and explored their structure-based features like conceptual PBD-binding capabilities and subsequent recruitment of KD directed phosphorylation to dissect novel targets of Plk1. Collectively, we identified 4,521 phosphodependent proteins sharing similarity to the consensus phosphorylation and PBD recognition motifs. Subsequent application of filters including similarity index, Gene Ontology enrichment and protein localization resulted in stringent pre-filtering of irrelevant candidates and isolated unique targets with well-defined roles in cell-cycle machinery and carcinogenesis. These candidates were further refined structurally using molecular docking and dynamic simulation assays. Overall, our screening approach enables the identification of several undefined cell-cycle associated functions of Plk1 by uncovering novel phosphorylation targets.
Collapse
Affiliation(s)
- Nousheen Bibi
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zahida Parveen
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Patil M, Pabla N, Ding HF, Dong Z. Nek1 interacts with Ku80 to assist chromatin loading of replication factors and S-phase progression. Cell Cycle 2013; 12:2608-16. [PMID: 23851348 DOI: 10.4161/cc.25624] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NIMA-related kinases (Neks) play divergent roles in mammalian cells. While several Neks regulate mitosis, Nek1 was reported to regulate DNA damage response, centrosome duplication and primary cilium formation. Whether Nek1 participates in cell cycle regulation is not known. Here we report that loss of Nek1 results in severe proliferation defect due to a delay in S-phase of the cell cycle. Nek1-deficient cells show replication stress and checkpoint activation under normal growth conditions. Nek1 accumulates on the chromatin during normal DNA replication. In response to replication stress, Nek1 is further activated for chromatin localization. Nek1 interacts with Ku80 and, in Nek1-deficient cells chromatin localization of Ku80 and several other DNA replication factors is significantly reduced. Thus, Nek1 may facilitate S-phase progression by interacting with Ku80 and regulating chromatin loading of replication factors.
Collapse
Affiliation(s)
- Mallikarjun Patil
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | | | | | | |
Collapse
|
6
|
Nassirpour R, Shao L, Flanagan P, Abrams T, Jallal B, Smeal T, Yin MJ. Nek6 mediates human cancer cell transformation and is a potential cancer therapeutic target. Mol Cancer Res 2010; 8:717-28. [PMID: 20407017 DOI: 10.1158/1541-7786.mcr-09-0291] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the role of Nek6, a member of the NIMA-related serine/threonine kinase family, in tumorigenesis. Transcript, protein, and kinase activity levels of Nek6 were highly elevated in the malignant tumors and human cancer cell lines compared with normal tissue and fibroblast cells. Expression of exogenous wild-type Nek6 increased anchorage-independent growth of a variety of human cancer cell lines, whereas overexpression of the kinase-dead Nek6 and RNAi knockdown of endogenous Nek6 suppressed cancer cell transformation and induced apoptosis. Additionally, in in vivo xenograft nude mouse model, knockdown of Nek6 in HeLa cells resulted in reduction of tumor size relative to control siRNA tumors. Most importantly, knocking down endogenous Nek6 levels or exogenous expression of the kinase-dead form did not inhibit cell proliferation, nor did it induce apoptosis in normal fibroblast cells. Taken together, our data indicate a pivotal role for Nek6 in tumorigenesis and establish Nek6 as a potential target for treatment of a variety of human cancers.
Collapse
Affiliation(s)
- Rounak Nassirpour
- Pfizer Global Research and Development, La Jolla Laboratories, 10724 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Osmani AH, Davies J, Liu HL, Nile A, Osmani SA. Systematic deletion and mitotic localization of the nuclear pore complex proteins of Aspergillus nidulans. Mol Biol Cell 2006; 17:4946-61. [PMID: 16987955 PMCID: PMC1679664 DOI: 10.1091/mbc.e06-07-0657] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To define the extent of the modification of the nuclear pore complex (NPC) during Aspergillus nidulans closed mitosis, a systematic analysis of nuclear transport genes has been completed. Thirty genes have been deleted defining 12 nonessential and 18 essential genes. Several of the nonessential deletions caused conditional phenotypes and self-sterility, whereas deletion of some essential genes caused defects in nuclear structure. Live cell imaging of endogenously tagged NPC proteins (Nups) revealed that during mitosis 14 predicted peripheral Nups, including all FG repeat Nups, disperse throughout the cell. A core mitotic NPC structure consisting of membrane Nups, all components of the An-Nup84 subcomplex, An-Nup170, and surprisingly, An-Gle1 remained throughout mitosis. We propose this minimal mitotic NPC core provides a conduit across the nuclear envelope and acts as a scaffold to which dispersed Nups return during mitotic exit. Further, unlike other dispersed Nups, An-Nup2 locates exclusively to mitotic chromatin, suggesting it may have a novel mitotic role in addition to its nuclear transport functions. Importantly, its deletion causes lethality and defects in DNA segregation. This work defines the dramatic changes in NPC composition during A. nidulans mitosis and provides insight into how NPC disassembly may be integrated with mitosis.
Collapse
Affiliation(s)
- Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
8
|
Fernandez-Guerra A, Aze A, Morales J, Mulner-Lorillon O, Cosson B, Cormier P, Bradham C, Adams N, Robertson AJ, Marzluff WF, Coffman JA, Genevière AM. The genomic repertoire for cell cycle control and DNA metabolism in S. purpuratus. Dev Biol 2006; 300:238-51. [PMID: 17078944 DOI: 10.1016/j.ydbio.2006.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 02/06/2023]
Abstract
A search of the Strongylocentrotus purpuratus genome for genes associated with cell cycle control and DNA metabolism shows that the known repertoire of these genes is conserved in the sea urchin, although with fewer family members represented than in vertebrates, and with some cases of echinoderm-specific gene diversifications. For example, while homologues of the known cyclins are mostly encoded by single genes in S. purpuratus (unlike vertebrates, which have multiple isoforms), there are additional genes encoding novel cyclins of the B and K/L types. Almost all known cyclin-dependent kinases (CDKs) or CDK-like proteins have an orthologue in S. purpuratus; CDK3 is one exception, whereas CDK4 and 6 are represented by a single homologue, referred to as CDK4. While the complexity of the two families of mitotic kinases, Polo and Aurora, is close to that found in the nematode, the diversity of the NIMA-related kinases (NEK proteins) approaches that of vertebrates. Among the nine NEK proteins found in S. purpuratus, eight could be assigned orthologues in vertebrates, whereas the ninth is unique to sea urchins. Most known DNA replication, DNA repair and mitotic checkpoint genes are also present, as are homologues of the pRB (two) and p53 (one) tumor suppressors. Interestingly, the p21/p27 family of CDK inhibitors is represented by one homologue, whereas the INK4 and ARF families of tumor suppressors appear to be absent, suggesting that these evolved only in vertebrates. Our results suggest that, while the cell cycle control mechanisms known from other animals are generally conserved in sea urchin, parts of the machinery have diversified within the echinoderm lineage. The set of genes uncovered in this analysis of the S. purpuratus genome should enhance future research on cell cycle control and developmental regulation in this model.
Collapse
Affiliation(s)
- Antonio Fernandez-Guerra
- Observatoire Océanologique de Banyuls-Laboratoire Arago, CNRS-UMR7628/UPMC, 66650 Banyuls-sur-Mer, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The Nek family of cell-cycle kinases is widely represented in eukaryotes and includes numerous proteins that were described only recently and remain poorly characterized. Comparing Neks in the context of clades allows us to examine the question of whether microbial eukaryotic Neks, although not strictly orthologs of their vertebrate counterparts, can provide clues to ancestral functions that might be retained in the vertebrate Neks. Relatives of the Nek2/NIMA proteins play important roles at the G2-M transition in nuclear envelope breakdown and centromere separation. Nek6, Nek7 and Nek9 also seem to regulate mitosis. By contrast, Nek1 and Nek8 have been linked with polycystic kidney disease. Results of statistical analysis indicate that the family coevolved with centrioles that function as both microtubule-organizing centers and the basal bodies of cilia. This evolutionary perspective, taken together with functional studies of microbial Neks, provides new insights into the cellular roles of the proteins and disease with which some of them have been linked.
Collapse
Affiliation(s)
- Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | | |
Collapse
|
10
|
Sigala B, Edwards M, Puri T, Tsaneva IR. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis. Exp Cell Res 2005; 310:357-69. [PMID: 16157330 DOI: 10.1016/j.yexcr.2005.07.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/23/2005] [Accepted: 07/29/2005] [Indexed: 11/19/2022]
Abstract
TIP48 is a highly conserved eukaryotic AAA+ protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis, TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis.
Collapse
Affiliation(s)
- Barbara Sigala
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
11
|
Khan SM, Franke-Fayard B, Mair GR, Lasonder E, Janse CJ, Mann M, Waters AP. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 2005; 121:675-87. [PMID: 15935755 DOI: 10.1016/j.cell.2005.03.027] [Citation(s) in RCA: 292] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/10/2005] [Accepted: 03/22/2005] [Indexed: 11/22/2022]
Abstract
Gametocytes, the precursor cells of malaria-parasite gametes, circulate in the blood and are responsible for transmission from host to mosquito vector. The individual proteomes of male and female gametocytes were analyzed using mass spectrometry, following separation by flow sorting of transgenic parasites expressing green fluorescent protein, in a sex-specific manner. Promoter tagging in transgenic parasites confirmed the designation of stage and sex specificity of the proteins. The male proteome contained 36% (236 of 650) male-specific and the female proteome 19% (101 of 541) female-specific proteins, but they share only 69 proteins, emphasizing the diverged features of the sexes. Of all the malaria life-cycle stages analyzed, the male gametocyte has the most distinct proteome, containing many proteins involved in flagellar-based motility and rapid genome replication. By identification of gender-specific protein kinases and phosphatases and using targeted gene disruption of two kinases, new sex-specific regulatory pathways were defined.
Collapse
Affiliation(s)
- Shahid M Khan
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Yin MJ, Shao L, Voehringer D, Smeal T, Jallal B. The serine/threonine kinase Nek6 is required for cell cycle progression through mitosis. J Biol Chem 2003; 278:52454-60. [PMID: 14563848 DOI: 10.1074/jbc.m308080200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Aspergillus nidulans protein NIMA (never in mitosis, gene A) is a protein kinase required for the initiation of mitosis, whereas its inactivation is necessary for mitotic exit. Here, we demonstrate that human NIMA-related kinase 6 (Nek6) is required for mitotic progression of human cells. Nek6 is phosphorylated and activated during M phase. Inhibition of Nek6 function by either overexpression of an inactive Nek6 mutant or elimination of endogenous Nek6 by siRNA arrests cells in M phase and triggers apoptosis. Time-lapse recording of the cell cycle progression of cells expressing kinase-inactive Nek6 reveals mitotic arrest at the metaphase stage prior to cells entering apoptosis. In contrast to NIMA and the closely related mammalian Nek2 kinase, which regulate centrosome function and separation, our data demonstrate an important function for Nek6 during mitosis and suggest that Nek6 kinase is required for metaphase-anaphase transition.
Collapse
Affiliation(s)
- Min-Jean Yin
- SUGEN, Inc., South San Francisco, California 94080-4811, USA.
| | | | | | | | | |
Collapse
|
13
|
Osmani AH, Davies J, Oakley CE, Oakley BR, Osmani SA. TINA interacts with the NIMA kinase in Aspergillus nidulans and negatively regulates astral microtubules during metaphase arrest. Mol Biol Cell 2003; 14:3169-79. [PMID: 12925754 PMCID: PMC181558 DOI: 10.1091/mbc.e02-11-0715] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The tinA gene of Aspergillus nidulans encodes a protein that interacts with the NIMA mitotic protein kinase in a cell cycle-specific manner. Highly similar proteins are encoded in Neurospora crassa and Aspergillus fumigatus. TINA and NIMA preferentially interact in interphase and larger forms of TINA are generated during mitosis. Localization studies indicate that TINA is specifically localized to the spindle pole bodies only during mitosis in a microtubule-dependent manner. Deletion of tinA alone is not lethal but displays synthetic lethality in combination with the anaphase-promoting complex/cyclosome mutation bimE7. At the bimE7 metaphase arrest point, lack of TINA enhanced the nucleation of bundles of cytoplasmic microtubules from the spindle pole bodies. These microtubules interacted to form spindles joined in series via astral microtubules as revealed by live cell imaging. Because TINA is modified and localizes to the spindle pole bodies at mitosis, and lack of TINA causes enhanced production of cytoplasmic microtubules at metaphase arrest, we suggest TINA is involved in negative regulation of the astral microtubule organizing capacity of the spindle pole bodies during metaphase.
Collapse
Affiliation(s)
- Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | |
Collapse
|
14
|
Ohsugi M, Tokai-Nishizumi N, Shiroguchi K, Toyoshima YY, Inoue JI, Yamamoto T. Cdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes. EMBO J 2003; 22:2091-103. [PMID: 12727876 PMCID: PMC156080 DOI: 10.1093/emboj/cdg208] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The chromokinesin Kid is important in chromosome alignment at the metaphase plate. Here, we report that Kid function is regulated by phosphorylation. We identify Ser427 and Thr463 as M phase-specific phosphorylation sites and Cdc2-cyclin B as a Thr463 kinase. Kid with a Thr463 to alanine mutation fails to be localized on chromosomes and is only detected along spindles, although it retains the ability to bind DNA or chromosomes. Localization of rigor-type mutant Kid, which shows nucleotide-independent microtubule association, is also confined to the spindle, implying that strong association of Kid with the spindle can sequester it from chromosomes. T463A substitution in DNA-binding domain-truncated Kid consistently enhances its spindle localization. At physiological ionic strength, unphosphorylated Kid shows ATP-independent microtubule association, whereas Thr463-phosphorylated Kid shows ATP dependency. Moreover, the stalk region of unphosphorylated Kid interacts with microtubules and the interaction is weakened when Thr463 is phosphorylated. Our data suggest that phosphorylation on Thr463 of Kid downregulates its affinity for microtubules to ensure reversible association with spindles, allowing Kid to bind chromosomes and exhibit its function.
Collapse
Affiliation(s)
- Miho Ohsugi
- Departments of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Lizcano JM, Deak M, Morrice N, Kieloch A, Hastie CJ, Dong L, Schutkowski M, Reimer U, Alessi DR. Molecular basis for the substrate specificity of NIMA-related kinase-6 (NEK6). Evidence that NEK6 does not phosphorylate the hydrophobic motif of ribosomal S6 protein kinase and serum- and glucocorticoid-induced protein kinase in vivo. J Biol Chem 2002; 277:27839-49. [PMID: 12023960 DOI: 10.1074/jbc.m202042200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The AGC family of protein kinases, which includes isoforms of protein kinase B (also known as Akt), ribosomal S6 protein kinase (S6K), and serum- and glucocorticoid-induced protein kinase (SGK) are activated in response to many extracellular signals and play key roles in regulating diverse cellular processes. They are activated by the phosphorylation of the T loop of their kinase domain by the 3-phosphoinositide-dependent protein kinase-1 and by phosphorylation of a residue located C-terminal to the kinase domain in a region termed the hydrophobic motif. Recent work has implicated the NIMA (never in mitosis, gene A)-related kinase-6 (NEK6) as the enzyme that phosphorylates the hydrophobic motif of S6K1 in vivo. Here we demonstrate that in addition to phosphorylating S6K1 and SGK1 at their hydrophobic motif, NEK6 also phosphorylates S6K1 at two other sites and phosphorylates SGK1 at one other site in vitro. Employing the Jerini pepSTAR method in combination with kinetic analysis of phosphorylation of variant peptides, we establish the key substrate specificity determinants for NEK6. Our analysis indicates that NEK6 has a strong preference for Leu 3 residues N-terminal to the site of phosphorylation. Its mutation to either Ile or Val severely reduced the efficacy with which NEK6-phosphorylated peptide substrates, and moreover, mutation of the equivalent Leu residue in S6K1 or SGK1 prevented phosphorylation of their hydrophobic motifs by NEK6 in vitro. However, these mutants of S6K1 or SGK1 still became phosphorylated at their hydrophobic motif following insulin-like growth factor-1 stimulation of transfected 293 cells. This study provides the first description of the basis for the substrate specificity of NEK6 and indicates that NEK6 is unlikely to be responsible for the IGF1-induced phosphorylation of the hydrophobic motif of S6K, SGK, and protein kinase B isoforms in vivo.
Collapse
Affiliation(s)
- Jose M Lizcano
- Medical Research Council Protein Phosphorylation Unit, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Holland PM, Milne A, Garka K, Johnson RS, Willis C, Sims JE, Rauch CT, Bird TA, Virca GD. Purification, cloning, and characterization of Nek8, a novel NIMA-related kinase, and its candidate substrate Bicd2. J Biol Chem 2002; 277:16229-40. [PMID: 11864968 DOI: 10.1074/jbc.m108662200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We describe the isolation, cloning, and characterization of human Nek8, a new mammalian NIMA-related kinase, and its candidate substrate Bicd2. Nek8 was isolated as a beta-casein kinase activity in rabbit lung and has an N-terminal catalytic domain homologous to the Nek family of protein kinases. Nek8 also contains a central domain with homology to RCC1, a guanine nucleotide exchange factor for the GTPase Ran, and a C-terminal coiled-coil domain. Like Nek2, Nek8 prefers beta-casein over other exogenous substrates, has shared biochemical requirements for kinase activity, and is capable of autophosphorylation and oligomerization. Nek8 activity is not cell cycle regulated, but like Nek3, levels are consistently higher in G(0)-arrested cells. During the purification of Nek8 a second protein co-chromatographed with Nek8 activity. This protein, Bicd2, is a human homolog of the Drosophila protein Bicaudal D, a coiled-coil protein. Bicd2 is phosphorylated by Nek8 in vitro, and the endogenous proteins associate in vivo. Bicd2 localizes to cytoskeletal structures, and its subcellular localization is dependent on microtubule morphology. Treatment of cells with nocodazole leads to dramatic reorganization of Bicd2, and correlates with Nek8 phosphorylation. This may be indicative of a role for Nek8 and Bicd2 associated with cell cycle independent microtubule dynamics.
Collapse
|
17
|
Gräf R. DdNek2, the first non-vertebrate homologue of human Nek2, is involved in the formation of microtubule-organizing centers. J Cell Sci 2002; 115:1919-29. [PMID: 11956323 DOI: 10.1242/jcs.115.9.1919] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium Nek2 (DdNek2) is the first structural and functional non-vertebrate homologue of human Nek2, a NIMA-related serine/threonine kinase required for centrosome splitting in early mitosis. DdNek2 shares 43% overall amino-acid identity with its human counterpart and 54% identity within the catalytic domain. Both proteins can be subdivided in an N-terminal catalytic domain, a leucine zipper and a C-terminal domain. Kinase assays with bacterially expressed DdNek2 and C-terminal deletion mutants revealed that catalytic activity requires the presence of the leucine zipper and that autophosphorylation occurs at the C-terminus. Microscopic analyses with DdNek2 antibodies and expression of a GFP-DdNek2 fusion protein in Dictyostelium showed that DdNek2 is a permanent centrosomal resident and suggested that it is a component of the centrosomal core. The GFP-DdNek2-overexpressing mutants frequently exhibit supernumerary microtubule-organizing centers (MTOCs). This phenotype did not require catalytic activity because it was also observed in cells expressing inactive GFP-K33R. However, it was shown to be caused by overexpression of the C-terminal domain since it also occurred in GFP-mutants expressing only the C-terminus or a leucine zipper/C-terminus construct but not in those mutants expressing only the catalytic domain or a catalytic domain/leucine zipper construct. These results suggest that DdNek2 is involved in the formation of MTOCs. Furthermore, the localization of the GFP-fusion proteins revealed two independent centrosomal targeting domains of DdNek2, one within the catalytic or leucine zipper domain and one in the C-terminal domain.
Collapse
Affiliation(s)
- Ralph Gräf
- Adolf-Butenandt-Institut/Zellbiologie, Universität München, Schillerstrasse 42, D-80336 Münich, Germany.
| |
Collapse
|
18
|
Li J, Wang Y, Sun Y, Lawrence TS. Wild-type TP53 inhibits G(2)-phase checkpoint abrogation and radiosensitization induced by PD0166285, a WEE1 kinase inhibitor. Radiat Res 2002; 157:322-30. [PMID: 11839095 DOI: 10.1667/0033-7587(2002)157[0322:wttigp]2.0.co;2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The WEE1 protein kinase carries out the inhibitory phosphorylation of CDC2 on tyrosine 15 (Tyr15), which is required for activation of the G(2)-phase checkpoint in response to DNA damage. PD0166285 is a newly identified WEE1 inhibitor and is a potential selective G(2)-phase checkpoint abrogator. To determine the role of TP53 in PD0166285-induced G(2)-phase checkpoint abrogation, human H1299 lung carcinoma cells expressing a temperature-sensitive TP53 were used. Upon exposure to gamma radiation, cells cultured under nonpermissive conditions (TP53 mutant conformation) underwent G(2)-phase arrest. However, under permissive conditions (TP53 wild-type conformation), PD0166285 greatly inhibited the accumulation of cells in G(2) phase. This abrogation was accompanied by a nearly complete blockage of Tyr15 phosphorylation of CDC2, an increased activity of CDC2 kinase, and an enhanced sensitivity to radiation. However, under permissive conditions (TP53 wild-type conformation), PD0166285 neither disrupted the G(2)-phase arrest nor increased cell death. The compound inhibited Tyr15 phosphorylation only partially and did not activate CDC2 kinase activity. To understand the potential mechanism(s) by which TP53 inhibits PD0166285-induced G(2)-phase checkpoint abrogation, two TP53 target proteins, 14-3-3rho and CDKN1A (also known as p21), that are known to be involved in G(2)-phase checkpoint control in other cell models were examined. It was found that 14-3-3rho was not expressed in H1299 cells, and that although CDKN1A did associate with CDC2 to form a complex, the level of CDKN1A associated with CDC2 was not increased in response to radiation or to PD0166285. The level of cyclin B1, required for CDC2 activity, was decreased in the presence of functional TP53. Thus inhibition of PD0166285-induced G(2)-phase checkpoint abrogation by TP53 was achieved at least in part through partial blockage of CDC2 dephosphorylation of Tyr15 and inhibition of cyclin B1 expression.
Collapse
Affiliation(s)
- Jun Li
- Department of Radiation Oncology, University of Michigan, Ann Arbor Michigan 48109, USA
| | | | | | | |
Collapse
|
19
|
Hames RS, Fry AM. Alternative splice variants of the human centrosome kinase Nek2 exhibit distinct patterns of expression in mitosis. Biochem J 2002; 361:77-85. [PMID: 11742531 PMCID: PMC1222281 DOI: 10.1042/0264-6021:3610077] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nek2 is a cell-cycle-regulated protein kinase that localizes to the centrosome and is likely to be involved in regulating centrosome structure at the G(2)/M transition. Here, we localize the functional human Nek2 gene to chromosome 1 and show that alternative polyadenylation signals provide a mechanism for generating two distinct isoforms. Sequencing of products generated by reverse transcriptase PCR, immunoblotting of cell extracts and transfection of antisense oligonucleotides together demonstrate that human Nek2 is expressed as two splice variants. These isoforms, designated Nek2A and Nek2B, are detected in primary blood lymphocytes as well as adult transformed cells. Nek2A and Nek2B, which can form homo- and hetero-dimers, both localize to the centrosome, although only Nek2A can induce centrosome splitting upon overexpression. Importantly, Nek2A and Nek2B exhibit distinct patterns of cell-cycle-dependent expression. Both are present in low amounts in the G(1) phase and exhibit increased abundance in the S and G(2) phases. However, Nek2A disappears in prometaphase-arrested cells, whereas Nek2B remains elevated. These results demonstrate that two alternative splice variants of the human centrosomal kinase Nek2 exist that differ in their expression patterns during mitosis. This has important implications for our understanding of both Nek2 protein kinase regulation and the control of centrosome structure during mitosis.
Collapse
Affiliation(s)
- Rebecca S Hames
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | | |
Collapse
|
20
|
Makino K, Yu D, Hung MC. Transcriptional upregulation and activation of p55Cdc via p34(cdc2) in Taxol-induced apoptosis. Oncogene 2001; 20:2537-43. [PMID: 11420663 DOI: 10.1038/sj.onc.1204366] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Revised: 01/31/2001] [Accepted: 02/12/2001] [Indexed: 01/13/2023]
Abstract
Paclitaxel (Taxol) is a potent and highly effective antineoplastic agent for the treatment of advanced, drug-refractory, metastatic breast cancers. Taxol not only induces tubulin polymerization, stabilizes microtubules, blocks cell cycle progression, and induces apoptosis, but it also alters gene expression. Here, we have identified that Taxol can upregulate expression of the gene encoding the cell cycle protein p55Cdc by using cDNA array technique. Taxol induced p55Cdc mRNA expression through activation of the p55Cdc promoter, which led to increase p55Cdc protein expression. Taxol also activated p55Cdc-associated kinase. In addition, overexpression of the p55Cdc gene resulted in cell death in both HeLa cells and NIH3T3 cells in a dose-dependent manner. A dominant-negative mutant of p34(cdc2) blocked Taxol-induced p55Cdc activation and inhibited p55Cdc-induced and Taxol-induced cell death. Our data suggest that transcriptional upregulation of p55Cdc and activation of p55Cdc by Taxol-mediated p34(cdc2) activation play a critical role in Taxol-induced cell death.
Collapse
Affiliation(s)
- K Makino
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, TX 77030, USA
| | | | | |
Collapse
|
21
|
Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene 2001; 20:1803-15. [PMID: 11313928 DOI: 10.1038/sj.onc.1204252] [Citation(s) in RCA: 1194] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2000] [Revised: 12/28/2000] [Accepted: 01/08/2001] [Indexed: 12/14/2022]
Abstract
p53 protects mammals from neoplasia by inducing apoptosis, DNA repair and cell cycle arrest in response to a variety of stresses. p53-dependent arrest of cells in the G1 phase of the cell cycle is an important component of the cellular response to stress. Here we review recent evidence that implicates p53 in controlling entry into mitosis when cells enter G2 with damaged DNA or when they are arrested in S phase due to depletion of the substrates required for DNA synthesis. Part of the mechanism by which p53 blocks cells at the G2 checkpoint involves inhibition of Cdc2, the cyclin-dependent kinase required to enter mitosis. Cdc2 is inhibited simultaneously by three transcriptional targets of p53, Gadd45, p21, and 14-3-3 sigma. Binding of Cdc2 to Cyclin B1 is required for its activity, and repression of the cyclin B1 gene by p53 also contributes to blocking entry into mitosis. p53 also represses the cdc2 gene, to help ensure that cells do not escape the initial block. Genotoxic stress also activates p53-independent pathways that inhibit Cdc2 activity, activation of the protein kinases Chk1 and Chk2 by the protein kinases Atm and Atr. Chk1 and Chk2 inhibit Cdc2 by inactivating Cdc25, the phosphatase that normally activates Cdc2. Chk1, Chk2, Atm and Atr also contribute to the activation of p53 in response to genotoxic stress and therefore play multiple roles. p53 induces transcription of the reprimo, B99, and mcg10 genes, all of which contribute to the arrest of cells in G2, but the mechanisms of cell cycle arrest by these genes is not known. Repression of the topoisomerase II gene by p53 helps to block entry into mitosis and strengthens the G2 arrest. In summary, multiple overlapping p53-dependent and p53-independent pathways regulate the G2/M transition in response to genotoxic stress.
Collapse
Affiliation(s)
- W R Taylor
- Department of Molecular Biology, Lerner Research Insititute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
22
|
Kandli M, Feige E, Chen A, Kilfin G, Motro B. Isolation and characterization of two evolutionarily conserved murine kinases (Nek6 and nek7) related to the fungal mitotic regulator, NIMA. Genomics 2000; 68:187-96. [PMID: 10964517 DOI: 10.1006/geno.2000.6293] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Entrance and exit from mitosis in Aspergillus nidulans require activation and proteolysis, respectively, of the NIMA (never in mitosis, gene A) serine/threonine kinase. Four different NIMA-related kinases were reported in mammals (Nek1-4), but none of them has been shown to perform mitotic functions related to those demonstrated for NIMA. We describe here the isolation of two novel murine protein kinase genes, designated nek6 and nek7, which are highly similar to each other (87% amino acid identity in the predicted kinase domain). Interestingly, Nek6 and Nek7 are also highly similar to the F19H6.1 protein kinase of Caenorhabditis elegans (76 and 73% amino acid identity in the kinase domain, respectively), and phylogenetic analysis suggests that these three proteins constitute a novel subfamily within the NIMA family of serine/threonine kinases. In contrast to the other documented NIMA-related kinases, Nek6/7 and F19H6.1 harbor their catalytic domain in the C-terminus of the protein. Immunofluorescence suggests that Nek6 and Nek7 are cytoplasmic. Linkage analysis, using the murine BXD recombinant inbred strain panel, localized nek6 to chromosome 2 at 28 cM. Using a mouse/hamster radiation hybrid panel, we assigned the nek7 gene to chromosome 1 at approximately 73 cM.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cell Cycle Proteins
- Chromosome Mapping
- Conserved Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Embryo, Mammalian/enzymology
- Evolution, Molecular
- Female
- Fungal Proteins/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- HeLa Cells
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Molecular Sequence Data
- NIMA-Related Kinase 1
- NIMA-Related Kinases
- Phylogeny
- Protein Serine-Threonine Kinases/genetics
- RNA/genetics
- RNA/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- M Kandli
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | | | | | | | |
Collapse
|
23
|
Helps NR, Luo X, Barker HM, Cohen PT. NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J 2000; 349:509-18. [PMID: 10880350 PMCID: PMC1221174 DOI: 10.1042/0264-6021:3490509] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cell cycle-regulated protein serine/threonine NIMA-related kinase 2 (Nek2), which shows a predominant localization at centrosomes, is identified as a protein which interacts with protein phosphatase 1 (PP1) using the yeast two-hybrid system. Complex formation between Nek2 and PP1 is supported by co-precipitation of the two proteins using transfected expression constructs of Nek2 and the endogenous Nek2/PP1 proteins. The sequence KVHF in the C-terminal region of Nek2, which conforms to the consensus PP1-binding motif, is shown to be essential for the interaction of Nek2 with PP1. Nek2 activity increases with autophosphorylation and addition of phosphatase inhibitors and decreases in the presence of PP1. PP1 is a substrate for Nek2 and phosphorylation of PP1gamma(1) on two C-terminal sites reduces its phosphatase activity. The presence of a ternary complex containing centrosomal Nek2-associated protein (C-Nap1), Nek2 and PP1 has also been demonstrated, and C-Nap1 is shown to be a substrate for both Nek2 and PP1 in vitro and in cell extracts. The implications of kinase-phosphatase complex formation involving Nek2 and PP1 are discussed in terms of the coordination of centrosome separation with cell cycle progression.
Collapse
Affiliation(s)
- N R Helps
- Medical Research Council Protein Phosphorylation Unit, Department of Biochemistry, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | | | |
Collapse
|
24
|
Lu KP. Phosphorylation-dependent prolyl isomerization: a novel cell cycle regulatory mechanism. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:83-96. [PMID: 10740817 DOI: 10.1007/978-1-4615-4253-7_8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein phosphorylation by proline-directed protein kinases plays an essential role in triggering a programmed set of cell cycle events. We have recently isolated an essential and conserved mitotic regulator, Pin1. Pin1 is a phosphorylation-dependent prolyl isomerase that specifically isomerizes the phosphorylated serine/threonine-proline bond. Pin1 also binds and regulates the function of a conserved set of mitosis-specific phosphoproteins. These results suggest phosphorylation-dependent prolyl isomerization to be a novel cell cycle regulatory mechanism. This new post-translational regulation may allow the general increase in protein phosphorylation to be converted into the organised and programmed set of structural modifications that occur during mitosis. In addition, since inhibition of Pin1 induces mitotic arrest and apoptosis, Pin1 may be a potential new drug target.
Collapse
Affiliation(s)
- K P Lu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
25
|
Nishiyama Y, Hirota T, Morisaki T, Hara T, Marumoto T, Iida S, Makino K, Yamamoto H, Hiraoka T, Kitamura N, Saya H. A human homolog of Drosophila warts tumor suppressor, h-warts, localized to mitotic apparatus and specifically phosphorylated during mitosis. FEBS Lett 1999; 459:159-65. [PMID: 10518011 DOI: 10.1016/s0014-5793(99)01224-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We identified a human homolog of Drosophila warts tumor suppressor gene, termed h-warts, which was mapped at chromosome 6q24-25.1. The h-warts protein has a serine/threonine kinase domain and is localized to centrosomes in interphase cells. However, it becomes localized to the mitotic apparatus, including spindle pole bodies, mitotic spindle, and midbody, in a highly dynamic manner during mitosis. Furthermore, h-warts is specifically phosphorylated in cells at mitotic phase, most likely by Cdc2 kinase. These findings suggest that h-warts functions as a component of the mitotic apparatus and is involved in proper progression of mitosis.
Collapse
Affiliation(s)
- Y Nishiyama
- Department of Tumor Genetics and Biology, Kumamoto University School of Medicine, 2-2-1 Honjo, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
This review traces the principal advances in the study of mitosis in filamentous fungi from its beginnings near the end of the 19(th) century to the present day. Meiosis and mitosis had been accurately described and illustrated by the second decade of the present century and were known to closely resemble nuclear divisions in higher eukaryotes. This information was effectively lost in the mid-1950s, and the essential features of mitosis were then rediscovered from about the mid-1960s to the mid-1970s. Interest in the forces that separate chromatids and spindle poles during fungal mitosis followed closely on the heels of detailed descriptions of the mitotic apparatus in vivo and ultrastructurally during this and the following decade. About the same time, fundamental studies of the structure of fungal chromatin and biochemical characterization of fungal tubulin were being carried out. These cytological and biochemical studies set the stage for a surge of renewed interest in fungal mitosis that was issued in by the age of molecular biology. Filamentous fungi have provided model studies of the cytology and genetics of mitosis, including important advances in the study of mitotic forces, microtubule-associated motor proteins, and mitotic regulatory mechanisms.
Collapse
Affiliation(s)
- J R Aist
- Department of Plant Pathology, College of Agriculture and Life Sciences, Ithaca, New York 14853, USA
| | | |
Collapse
|
27
|
Tanaka K, Nigg EA. Cloning and characterization of the murine Nek3 protein kinase, a novel member of the NIMA family of putative cell cycle regulators. J Biol Chem 1999; 274:13491-7. [PMID: 10224116 DOI: 10.1074/jbc.274.19.13491] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have cloned and characterized murine Nek3 (NIMA-related kinase 3), a novel mammalian gene product structurally related to the cell cycle-regulatory kinase NIMA of Aspergillus nidulans. By RNase protection, low levels of Nek3 expression could be detected in all organs examined, regardless of proliferative index. In contrast to Nek1 and Nek2, Nek3 levels were not particularly elevated in either the male or the female germ line. Nek3 levels showed at most marginal variations through the cell cycle, but they were elevated in G0-arrested, quiescent fibroblasts. Furthermore, no cell cycle-dependent changes in Nek3 activity could be detected, and no effects upon cell cycle progression could be observed upon antibody microinjection or overexpression of either wild-type or catalytically inactive Nek3. Finally, Nek3 was found to be a predominantly cytoplasmic enzyme. These data indicate that Nek3 differs from previously characterized Neks with regard to all parameters investigated, including organ specificity of expression, cell cycle dependence of expression and activity, and subcellular localization. Hence, the structural similarity between mammalian Neks may not necessarily be indicative of a common function, and it is possible that some members of this kinase family may perform functions that are not directly related to cell cycle control.
Collapse
Affiliation(s)
- K Tanaka
- Department of Molecular Biology, Sciences II, University of Geneva 30, Quai Ernest-Ansermet, 1211 Geneve 4, Switzerland
| | | |
Collapse
|
28
|
Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 1998; 141:1563-74. [PMID: 9647649 PMCID: PMC2133000 DOI: 10.1083/jcb.141.7.1563] [Citation(s) in RCA: 359] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nek2 (for NIMA-related kinase 2) is a mammalian cell cycle-regulated kinase structurally related to the mitotic regulator NIMA of Aspergillus nidulans. In human cells, Nek2 associates with centrosomes, and overexpression of active Nek2 has drastic consequences for centrosome structure. Here, we describe the molecular characterization of a novel human centrosomal protein, C-Nap1 (for centrosomal Nek2-associated protein 1), first identified as a Nek2-interacting protein in a yeast two-hybrid screen. Antibodies raised against recombinant C-Nap1 produced strong labeling of centrosomes by immunofluorescence, and immunoelectron microscopy revealed that C-Nap1 is associated specifically with the proximal ends of both mother and daughter centrioles. On Western blots, anti-C-Nap1 antibodies recognized a large protein (>250 kD) that was highly enriched in centrosome preparations. Sequencing of overlapping cDNAs showed that C-Nap1 has a calculated molecular mass of 281 kD and comprises extended domains of predicted coiled-coil structure. Whereas C-Nap1 was concentrated at centrosomes in all interphase cells, immunoreactivity at mitotic spindle poles was strongly diminished. Finally, the COOH-terminal domain of C-Nap1 could readily be phosphorylated by Nek2 in vitro, as well as after coexpression of the two proteins in vivo. Based on these findings, we propose a model implicating both Nek2 and C-Nap1 in the regulation of centriole-centriole cohesion during the cell cycle.
Collapse
Affiliation(s)
- A M Fry
- Department of Molecular Biology, Sciences II, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Fry AM, Meraldi P, Nigg EA. A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J 1998; 17:470-81. [PMID: 9430639 PMCID: PMC1170398 DOI: 10.1093/emboj/17.2.470] [Citation(s) in RCA: 344] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nek2, a mammalian protein kinase of unknown function, is closely related to the mitotic regulator NIMA of Aspergillus nidulans. Here we show by both immunofluorescence microscopy and biochemical fractionation that human Nek2 localizes to the centrosome. Centrosome association occurs throughout the cell cycle, including all stages of mitosis, and is independent of microtubules. Overexpression of active Nek2 induces a striking splitting of centrosomes, whereas prolonged expression of either active or inactive Nek2 leads to dispersal of centrosomal material and loss of a focused microtubule-nucleating activity. Surprisingly, this does not prevent entry into mitosis, as judged by the accumulation of mitotically arrested cells induced by co-expression of a non-destructible B-type cyclin. These results bear on the dynamic function of centrosomes at the onset of mitosis. Moreover, they indicate that one function of mammalian Nek2 relates to the centrosome cycle and thus provide a new perspective on the role of NIMA-related kinases.
Collapse
Affiliation(s)
- A M Fry
- Department of Molecular Biology, Sciences II, University of Geneva, Switzerland
| | | | | |
Collapse
|
30
|
Ye XS, Fincher RR, Tang A, McNeal KK, Gygax SE, Wexler AN, Ryan KB, James SW, Osmani SA. Proteolysis and tyrosine phosphorylation of p34cdc2/cyclin B. The role of MCM2 and initiation of DNA replication to allow tyrosine phosphorylation of p34cdc2. J Biol Chem 1997; 272:33384-93. [PMID: 9407133 DOI: 10.1074/jbc.272.52.33384] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously, it has been shown that Aspergillus cells lacking the function of nimQ and the anaphase-promoting complex (APC) component bimEAPC1 enter mitosis without replicating DNA. Here nimQ is shown to encode an MCM2 homologue. Although mutation of nimQMCM2 inhibits initiation of DNA replication, a few cells do enter mitosis. Cells arrested at G1/S by lack of nimQMCM2 contain p34(cdc2)/cyclin B, but p34(cdc2) remains tyrosine dephosphorylated, even after DNA damage. However, arrest of DNA replication using hydroxyurea followed by inactivation of nimQMCM2 and bimEAPC1 does not abrogate the S phase arrest checkpoint over mitosis. nimQMCM2, likely via initiation of DNA replication, is therefore required to trigger tyrosine phosphorylation of p34(cdc2) during the G1 to S transition, which may occur by inactivation of nimTcdc25. Cells lacking both nimQMCM2 and bimEAPC1 are deficient in the S phase arrest checkpoint over mitosis because they lack both tyrosine phosphorylation of p34(cdc2) and the function of bimEAPC1. Initiation of DNA replication, which requires nimQMCM2, is apparently critical to switch mitotic regulation from the APC to include tyrosine phosphorylation of p34(cdc2) at G1/S. We also show that cells arrested at G1/S due to lack of nimQMCM2 continue to replicate spindle pole bodies in the absence of DNA replication and can undergo anaphase in the absence of APC function.
Collapse
Affiliation(s)
- X S Ye
- Henry Hood Research Program, Weis Center for Research, Pennsylvania State University College of Medicine, Danville, Pennsylvania 17822, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- A M Fry
- Department of Molecular Biology, University of Geneva, Switzerland
| | | |
Collapse
|