1
|
Zeeshan M, Pandey R, Ferguson DJP, Tromer EC, Markus R, Abel S, Brady D, Daniel E, Limenitakis R, Bottrill AR, Le Roch KG, Holder AA, Waller RF, Guttery DS, Tewari R. Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation. J Cell Sci 2020; 134:jcs245753. [PMID: 32501284 PMCID: PMC7340582 DOI: 10.1242/jcs.245753] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic cell proliferation requires chromosome replication and precise segregation to ensure daughter cells have identical genomic copies. Species of the genus Plasmodium, the causative agents of malaria, display remarkable aspects of nuclear division throughout their life cycle to meet some peculiar and unique challenges to DNA replication and chromosome segregation. The parasite undergoes atypical endomitosis and endoreduplication with an intact nuclear membrane and intranuclear mitotic spindle. To understand these diverse modes of Plasmodium cell division, we have studied the behaviour and composition of the outer kinetochore NDC80 complex, a key part of the mitotic apparatus that attaches the centromere of chromosomes to microtubules of the mitotic spindle. Using NDC80-GFP live-cell imaging in Plasmodium berghei, we observe dynamic spatiotemporal changes during proliferation, including highly unusual kinetochore arrangements during sexual stages. We identify a very divergent candidate for the SPC24 subunit of the NDC80 complex, previously thought to be missing in Plasmodium, which completes a canonical, albeit unusual, NDC80 complex structure. Altogether, our studies reveal the kinetochore to be an ideal tool to investigate the non-canonical modes of chromosome segregation and cell division in Plasmodium.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Rajan Pandey
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Robert Markus
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Declan Brady
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Emilie Daniel
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Andrew R Bottrill
- School of Life Sciences, Gibbelt Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - David S Guttery
- Leicester Cancer Research Centre, University of Leicester, Leicester LE2 7LX, UK
| | - Rita Tewari
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
2
|
McLeod B, Miura K, Scally SW, Bosch A, Nguyen N, Shin H, Kim D, Volkmuth W, Rämisch S, Chichester JA, Streatfield S, Woods C, Schief WR, Emerling D, King CR, Julien JP. Potent antibody lineage against malaria transmission elicited by human vaccination with Pfs25. Nat Commun 2019; 10:4328. [PMID: 31551421 PMCID: PMC6760140 DOI: 10.1038/s41467-019-11980-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/14/2019] [Indexed: 01/13/2023] Open
Abstract
Transmission-blocking vaccines have the potential to be key contributors to malaria elimination. Such vaccines elicit antibodies that inhibit parasites during their development in Anopheles mosquitoes, thus breaking the cycle of transmission. To date, characterization of humoral responses to Plasmodium falciparum transmission-blocking vaccine candidate Pfs25 has largely been conducted in pre-clinical models. Here, we present molecular analyses of human antibody responses generated in a clinical trial evaluating Pfs25 vaccination. From a collection of monoclonal antibodies with transmission-blocking activity, we identify the most potent transmission-blocking antibody yet described against Pfs25; 2544. The interactions of 2544 and three other antibodies with Pfs25 are analyzed by crystallography to understand structural requirements for elicitation of human transmission-blocking responses. Our analyses provide insights into Pfs25 immunogenicity and epitope potency, and detail an affinity maturation pathway for a potent transmission-blocking antibody in humans. Our findings can be employed to guide the design of improved malaria transmission-blocking vaccines. Pfs25 is a transmission-blocking vaccine candidate for Plasmodium. Here, McLeod et al. analyze the antibody response to Pfs25 in sera from a clinical trial evaluating a Pfs25 vaccine candidate, identify a potent transmission-blocking antibody and determine recognized epitopes on Pfs25.
Collapse
Affiliation(s)
- Brandon McLeod
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA
| | - Stephen W Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Alexandre Bosch
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Ngan Nguyen
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Hanjun Shin
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Dongkyoon Kim
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Wayne Volkmuth
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - Sebastian Rämisch
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jessica A Chichester
- Gene Therapy Program & Orphan Disease Center, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen Streatfield
- Fraunhofer USA Center for Molecular Biotechnology CMB, 9 Innovation Way, Newark, DE, 19711, USA
| | - Colleen Woods
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue NW Suite 1000, Washington, DC, 20001, USA
| | - William R Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Daniel Emerling
- Atreca, 500 Saginaw Drive, Redwood City, CA, 94063-4750, USA
| | - C Richter King
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue NW Suite 1000, Washington, DC, 20001, USA
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada. .,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Inducing controlled cell cycle arrest and re-entry during asexual proliferation of Plasmodium falciparum malaria parasites. Sci Rep 2018; 8:16581. [PMID: 30409996 PMCID: PMC6224408 DOI: 10.1038/s41598-018-34964-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023] Open
Abstract
The life cycle of the malaria parasite Plasmodium falciparum is tightly regulated, oscillating between stages of intense proliferation and quiescence. Cyclic 48-hour asexual replication of Plasmodium is markedly different from cell division in higher eukaryotes, and mechanistically poorly understood. Here, we report tight synchronisation of malaria parasites during the early phases of the cell cycle by exposure to DL-α-difluoromethylornithine (DFMO), which results in the depletion of polyamines. This induces an inescapable cell cycle arrest in G1 (~15 hours post-invasion) by blocking G1/S transition. Cell cycle-arrested parasites enter a quiescent G0-like state but, upon addition of exogenous polyamines, re-initiate their cell cycle. This ability to halt malaria parasites at a specific point in their cell cycle, and to subsequently trigger re-entry into the cell cycle, provides a valuable framework to investigate cell cycle regulation in these parasites. We subsequently used gene expression analyses to show that re-entry into the cell cycle involves expression of Ca2+-sensitive (cdpk4 and pk2) and mitotic kinases (nima and ark2), with deregulation of the pre-replicative complex associated with expression of pk2. Changes in gene expression could be driven through transcription factors MYB1 and two ApiAP2 family members. This new approach to parasite synchronisation therefore expands our currently limited toolkit to investigate cell cycle regulation in malaria parasites.
Collapse
|
4
|
Viability Screen of LOPAC 1280 Reveals Phosphorylation Inhibitor Auranofin as a Potent Inhibitor of Blastocystis Subtype 1, 4, and 7 Isolates. Antimicrob Agents Chemother 2018; 62:AAC.00208-18. [PMID: 29866860 DOI: 10.1128/aac.00208-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/26/2018] [Indexed: 01/23/2023] Open
Abstract
Blastocystis is an enteric parasite with extensive global prevalence. Studies have linked infection with this protist with a variety of gastrointestinal disorders, including irritable bowel syndrome. Due to the polymorphic nature of Blastocystis, studies on the parasite could be complicated, as results can be easily misinterpreted. Metronidazole is the commonly prescribed drug for Blastocystis infection, although there have been increasing reports of drug resistance. Hence, there is a need to identify alternative drugs to eliminate Blastocystis infection. In this study, LOPAC1280 was screened and drugs that can decrease the viability of three Blastocystis isolates in cultures were identified. Using apoptosis assay and imaging flow cytometry, phenotypic changes in Blastocystis cells after treatment were also analyzed to obtain insights into the possible mechanism of action of these drugs. Three drugs-diphenyleneiodonium chloride, auranofin, and BIX 01294 trihydrochloride hydrate-were effective against all three isolates tested. Repurposing of these drugs for Blastocystis treatment could be a way of combating metronidazole resistance relatively quickly and at a lower cost.
Collapse
|
5
|
Morlon-Guyot J, Francia ME, Dubremetz JF, Daher W. Towards a molecular architecture of the centrosome in Toxoplasma gondii. Cytoskeleton (Hoboken) 2017; 74:55-71. [PMID: 28026138 DOI: 10.1002/cm.21353] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis. The pathogenicity of this unicellular parasite is tightly linked to its ability to efficiently proliferate within its host. Tachyzoites, the fast dividing form of the parasite, divide by endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. The successful completion of endodyogeny relies on the temporal and spatial coordination of a plethora of simultaneous events. It has been shown that the Toxoplasma centrosome serves as signaling hub which nucleates spindle microtubules during mitosis and organizes the scaffolding of daughter cells components during cytokinesis. In addition, the centrosome is essential for inheriting both the apicoplast (a chloroplast-like organelle) and the Golgi apparatus. A growing body of evidence supports the notion that the T. gondii centrosome diverges in protein composition, structure and organization from its counterparts in higher eukaryotes making it an attractive source of potentially druggable targets. Here, we summarize the current knowledge on T. gondii centrosomal proteins and extend the putative centrosomal protein repertoire by in silico identification of mammalian centrosomal protein orthologs. We propose a working model for the organization and architecture of the centrosome in Toxoplasma parasites. Experimental validation of our proposed model will uncover how each predicted protein translates into the biology of centrosome, cytokinesis, karyokinesis, and organelle inheritance in Toxoplasma parasites.
Collapse
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Maria E Francia
- Molecular Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Jean-François Dubremetz
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
6
|
SYBR ® Green I-Based Fluorescence Assay to Assess Cell Viability of Malaria Parasites for Routine Use in Compound Screening. Methods Mol Biol 2017; 1601:97-110. [PMID: 28470521 DOI: 10.1007/978-1-4939-6960-9_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Owing to its fast and reliable assessment of parasite growth, the SYBR® Green I-based fluorescence assay is widely used to monitor drug susceptibility of malaria parasites. Its particular advantages are that it is a simple, one-step procedure and very cost-effective making it especially suited for high through put screening of newly developed drugs and drug combinations. Here we describe a SYBR® Green I-based fluorescence assay protocol to be used for routine screening of compounds and extracts in a research laboratory environment. A variation of the standard protocol is also provided allowing to address stage-specific effects of fast-acting drugs.
Collapse
|
7
|
Gray KA, Gresty KJ, Chen N, Zhang V, Gutteridge CE, Peatey CL, Chavchich M, Waters NC, Cheng Q. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro. PLoS One 2016; 11:e0157906. [PMID: 27326764 PMCID: PMC4915707 DOI: 10.1371/journal.pone.0157906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/07/2016] [Indexed: 12/02/2022] Open
Abstract
Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment.
Collapse
Affiliation(s)
- Karen-Ann Gray
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karryn J. Gresty
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nanhua Chen
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Veronica Zhang
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- School of Biochemistry, University of Queensland, Brisbane, Australia
| | | | - Christopher L. Peatey
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marina Chavchich
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Norman C. Waters
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail: (QC); (NW)
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail: (QC); (NW)
| |
Collapse
|
8
|
Berry L, Chen CT, Reininger L, Carvalho TG, El Hajj H, Morlon-Guyot J, Bordat Y, Lebrun M, Gubbels MJ, Doerig C, Daher W. The conserved apicomplexan Aurora kinase TgArk3 is involved in endodyogeny, duplication rate and parasite virulence. Cell Microbiol 2016; 18:1106-1120. [PMID: 26833682 DOI: 10.1111/cmi.12571] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/25/2022]
Abstract
Aurora kinases are eukaryotic serine/threonine protein kinases that regulate key events associated with chromatin condensation, centrosome and spindle function and cytokinesis. Elucidating the roles of Aurora kinases in apicomplexan parasites is crucial to understand the cell cycle control during Plasmodium schizogony or Toxoplasma endodyogeny. Here, we report on the localization of two previously uncharacterized Toxoplasma Aurora-related kinases (Ark2 and Ark3) in tachyzoites and of the uncharacterized Ark3 orthologue in Plasmodium falciparum erythrocytic stages. In Toxoplasma gondii, we show that TgArk2 and TgArk3 concentrate at specific sub-cellular structures linked to parasite division: the mitotic spindle and intranuclear mitotic structures (TgArk2), and the outer core of the centrosome and the budding daughter cells cytoskeleton (TgArk3). By tagging the endogenous PfArk3 gene with the green fluorescent protein in live parasites, we show that PfArk3 protein expression peaks late in schizogony and localizes at the periphery of budding schizonts. Disruption of the TgArk2 gene reveals no essential function for tachyzoite propagation in vitro, which is surprising giving that the P. falciparum and P. berghei orthologues are essential for erythrocyte schizogony. In contrast, knock-down of TgArk3 protein results in pronounced defects in parasite division and a major growth deficiency. TgArk3-depleted parasites display several defects, such as reduced parasite growth rate, delayed egress and parasite duplication, defect in rosette formation, reduced parasite size and invasion efficiency and lack of virulence in mice. Our study provides new insights into cell cycle control in Toxoplasma and malaria parasites and highlights Aurora kinase 3 as potential drug target.
Collapse
Affiliation(s)
- Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Luc Reininger
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, INSERM U1016, Institut Cochin, Paris, France
| | - Teresa G Carvalho
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia, 3800
| | - Hiba El Hajj
- Department of Internal Medicine and Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Yann Bordat
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Maryse Lebrun
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia, 3800
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
9
|
Iwanaga T, Sugi T, Kobayashi K, Takemae H, Gong H, Ishiwa A, Murakoshi F, Recuenco FC, Horimoto T, Akashi H, Kato K. Characterization of Plasmodium falciparum cdc2-related kinase and the effects of a CDK inhibitor on the parasites in erythrocytic schizogony. Parasitol Int 2013; 62:423-30. [DOI: 10.1016/j.parint.2013.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/27/2013] [Accepted: 05/11/2013] [Indexed: 11/26/2022]
|
10
|
Ansari A, Tuteja R. Genome wide comparative comprehensive analysis of Plasmodium falciparum MCM family with human host. Commun Integr Biol 2013; 5:607-15. [PMID: 23336032 PMCID: PMC3541329 DOI: 10.4161/cib.21759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mini chromosome maintenance (MCM) proteins 2-7, a subgroup of the large AAA ATPase family are critically required for eukaryotic DNA replication. These proteins are most likely responsible for unwinding DNA at the replication forks. Besides this function, some MCMs are also involved in other chromosome transactions such as transcription, chromatin remodeling and genome stability. All the MCMs contain a conserved region of ~200 amino acids responsible for nucleotide binding. The importance of MCM proteins is evident by the fact that deregulation of the activity of MCM family of proteins appears to be directly linked to human carcinogenesis. This article will focus on members of this important family of proteins from the malaria parasite Plasmodium falciparum and their comparison with the human host.
Collapse
Affiliation(s)
- Abulaish Ansari
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg, New Delhi India
| | | |
Collapse
|
11
|
Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Maity P, Bandyopadhyay U. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol 2012; 2:469-89. [PMID: 22112223 DOI: 10.1586/ecp.09.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria is a major global threat, that results in more than 2 million deaths each year. The treatment of malaria is becoming extremely difficult due to the emergence of drug-resistant parasites, the absence of an effective vaccine, and the spread of insecticide-resistant vectors. Thus, malarial therapy needs new chemotherapeutic approaches leading to the search for new drug targets. Here, we discuss different approaches to identifying novel antimalarial drug targets. We have also given due attention to the existing validated targets with a view to develop novel, rationally designed lead molecules. Some of the important parasite proteins are claimed to be the targets; however, further in vitro or in vivo structure-function studies of such proteins are crucial to validate these proteins as suitable targets. The interactome analysis among apicoplast, mitochondrion and genomic DNA will also be useful in identifying vital pathways or proteins regulating critical pathways for parasite growth and survival, and could be attractive targets. Molecules responsible for parasite invasion to host erythrocytes and ion channels of infected erythrocytes, essential for intra-erythrocyte survival and stage progression of parasites are also becoming attractive targets. This review will discuss and highlight the current understanding regarding the potential antimalarial drug targets, which could be utilized to develop novel antimalarials.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Fernández MLS, Engels KK, Bender F, Gassel M, Marhöfer RJ, Mottram JC, Selzer PM. High-throughput screening with the Eimeria tenella CDC2-related kinase2/cyclin complex EtCRK2/EtCYC3a. MICROBIOLOGY-SGM 2012; 158:2262-2271. [PMID: 22723289 PMCID: PMC3542813 DOI: 10.1099/mic.0.059428-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The poultry disease coccidiosis, caused by infection with Eimeria spp. apicomplexan parasites, is responsible for enormous economic losses to the global poultry industry. The rapid increase of resistance to therapeutic agents, as well as the expense of vaccination with live attenuated vaccines, requires the development of new effective treatments for coccidiosis. Because of their key regulatory function in the eukaryotic cell cycle, cyclin-dependent kinases (CDKs) are prominent drug targets. The Eimeria tenella CDC2-related kinase 2 (EtCRK2) is a validated drug target that can be activated in vitro by the CDK activator XlRINGO (Xenopus laevisrapid inducer of G2/M progression in oocytes). Bioinformatics analyses revealed four putative E. tenella cyclins (EtCYCs) that are closely related to cyclins found in the human apicomplexan parasite Plasmodium falciparum. EtCYC3a was cloned, expressed in Escherichia coli and purified in a complex with EtCRK2. Using the non-radioactive time-resolved fluorescence energy transfer (TR-FRET) assay, we demonstrated the ability of EtCYC3a to activate EtCRK2 as shown previously for XlRINGO. The EtCRK2/EtCYC3a complex was used for a combined in vitro and in silico high-throughput screening approach, which resulted in three lead structures, a naphthoquinone, an 8-hydroxyquinoline and a 2-pyrimidinyl-aminopiperidine-propane-2-ol. This constitutes a promising starting point for the subsequent lead optimization phase and the development of novel anticoccidial drugs.
Collapse
Affiliation(s)
- María L Suárez Fernández
- Institute of Microbiology and Wine Research, Johannes-Gutenberg-Universität Mainz, Becherweg 15, 55099 Mainz, Germany.,Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Kristin K Engels
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Frank Bender
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Michael Gassel
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | | | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Paul M Selzer
- Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.,Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.,Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| |
Collapse
|
13
|
Maity AK, Goswami A, Saha P. Identification of substrates of an S-phase cell cycle kinase from Leishmania donovani. FEBS Lett 2011; 585:2635-9. [PMID: 21708149 DOI: 10.1016/j.febslet.2011.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 11/27/2022]
Abstract
Despite the importance of cyclin-Cdk related kinases (CRK) in regulation of cell and life cycle of kinetoplastida parasites, only limited knowledge about their substrates are presently available. Here, the potential substrates were searched for an S-phase LdCyc1-CRK3 complex from Leishmania donovani based on the presence of Cdk target phosphorylation site together with the cyclin interacting Cy-motif in genome-derived putative protein sequences. Three substrates could be identified with one of them being a unique protein with no known homologues. Another identified substrate is similar to MYST family of histone acetyl transferase and the third one contains Ku-70 related conserved domains. All the substrates interact directly with LdCyc1 and are phosphorylated in a Cy-motif dependent manner suggesting the importance of Cy-motif for their functions.
Collapse
Affiliation(s)
- Anup Kumar Maity
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Bidhannagar, Kolkata, India
| | | | | |
Collapse
|
14
|
Drug discovery and the use of computational approaches for infectious diseases. Future Med Chem 2011; 3:1011-25. [DOI: 10.4155/fmc.11.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
For centuries infectious diseases were the scourge of humanity, overcome only by the discovery of vaccination and penicillin. With an armamentarium of effective antibiotics, vaccines and drugs at hand, infectious diseases for many years were considered to be negligible. With the onset of the AIDS pandemic, the return of tuberculosis and influenza (e.g., swine influenza) this notion has changed in recent years. Drug discovery for infectious diseases, therefore, is again gaining increasing interest. This article discusses the drug-discovery process in this area and introduces major computational approaches used to identify suitable drug targets and to discover and optimize chemical lead compounds towards drug candidates using examples from antiparasitic drug discovery.
Collapse
|
15
|
Engels K, Beyer C, Suárez Fernández ML, Bender F, Gassel M, Unden G, Marhöfer RJ, Mottram JC, Selzer PM. Inhibition of Eimeria tenella CDK-related kinase 2: From target identification to lead compounds. ChemMedChem 2010; 5:1259-71. [PMID: 20575139 DOI: 10.1002/cmdc.201000157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Apicomplexan parasites encompass several human- and animal-pathogenic protozoans such as Plasmodium falciparum, Toxoplasma gondii, and Eimeria tenella. E. tenella causes coccidiosis, a disease that afflicts chickens, leading to tremendous economic losses to the global poultry industry. The considerable increase in drug resistance makes it necessary to develop new therapeutic strategies against this parasite. Cyclin-dependent kinases (CDKs) are key molecules in cell-cycle regulation and are therefore prominent target proteins in parasitic diseases. Bioinformatics analysis revealed four potential CDK-like proteins, of which one-E. tenella CDK-related kinase 2 (EtCRK2)-has already been characterized by gene cloning and expression.1 By using the CDK-specific inhibitor flavopiridol in EtCRK2 enzyme assays and schizont maturation assays (SMA), we could chemically validate CDK-like proteins as potential drug targets. An X-ray crystal structure of human CDK2 (HsCDK2) served as a template to build protein models of EtCRK2 by comparative homology modeling. Structural differences in the ATP binding site between EtCRK2 and HsCDK2, as well as chicken CDK3, were addressed for the optimization of selective ATP-competitive inhibitors. Virtual screening and "wet-bench" high-throughput screening campaigns on large compound libraries resulted in an initial set of hit compounds. These compounds were further analyzed and characterized, leading to a set of four promising lead compounds for development as EtCRK2 inhibitors.
Collapse
Affiliation(s)
- Kristin Engels
- Intervet Innovation GmbH, Drug Discovery, Zur Propstei, Schwabenheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Arnot DE, Ronander E, Bengtsson DC. The progression of the intra-erythrocytic cell cycle of Plasmodium falciparum and the role of the centriolar plaques in asynchronous mitotic division during schizogony. Int J Parasitol 2010; 41:71-80. [PMID: 20816844 DOI: 10.1016/j.ijpara.2010.07.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 12/11/2022]
Abstract
The cell division cycle and mitosis of intra-erythrocytic (IE) Plasmodium falciparum are poorly understood aspects of parasite development which affect malaria molecular pathogenesis. Specifically, the timing of the multiple gap (G), DNA synthesis (S) and chromosome separation (M) phases of parasite mitosis are not well defined, nor whether genome divisions are immediately followed by cleavage of the nuclear envelope. Curiously, daughter merozoite numbers do not follow the geometric expansion expected from equal numbers of binary divisions, an outcome difficult to explain using the standard model of cell cycle regulation. Using controlled synchronisation techniques, confocal microscopy to visualise key organelles and fluorescence in situ hybridization (FISH) to follow the movements and replication of genes and telomeres, we have re-analysed the timing and progression of mitotic events. The asynchronous duplications of the P. falciparum centrosome equivalents, the centriolar plaques, are established and these are correlated with chromosome and nuclear divisions in a new model of P. falciparum schizogony. Our results improve the resolution of the cell cycle and its phases during P. falciparum IE development, showing that asynchronous, independent nuclear division occurs during schizogony, with the centriolar plaques playing a major role in regulating mitotic progression.
Collapse
Affiliation(s)
- David E Arnot
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, 1014 København K, Denmark.
| | | | | |
Collapse
|
17
|
Caridha D, Kathcart AK, Jirage D, Waters NC. Activity of substituted thiophene sulfonamides against malarial and mammalian cyclin dependent protein kinases. Bioorg Med Chem Lett 2010; 20:3863-7. [DOI: 10.1016/j.bmcl.2010.05.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 05/10/2010] [Accepted: 05/12/2010] [Indexed: 01/05/2023]
|
18
|
Ponts N, Yang J, Chung DWD, Prudhomme J, Girke T, Horrocks P, Le Roch KG. Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence. PLoS One 2008; 3:e2386. [PMID: 18545708 PMCID: PMC2408969 DOI: 10.1371/journal.pone.0002386] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 04/24/2008] [Indexed: 11/19/2022] Open
Abstract
Background Reversible modification of proteins through the attachment of ubiquitin or ubiquitin-like modifiers is an essential post-translational regulatory mechanism in eukaryotes. The conjugation of ubiquitin or ubiquitin-like proteins has been demonstrated to play roles in growth, adaptation and homeostasis in all eukaryotes, with perturbation of ubiquitin-mediated systems associated with the pathogenesis of many human diseases, including cancer and neurodegenerative disorders. Methodology/Principal Findings Here we describe the use of an HMM search of functional Pfam domains found in the key components of the ubiquitin-mediated pathway necessary to activate and reversibly modify target proteins in eight apicomplexan parasitic protozoa for which complete or late-stage genome projects exist. In parallel, the same search was conducted on five model organisms, single-celled and metazoans, to generate data to validate both the search parameters employed and aid paralog classification in Apicomplexa. For each of the 13 species investigated, a set of proteins predicted to be involved in the ubiquitylation pathway has been identified and demonstrates increasing component members of the ubiquitylation pathway correlating with organism and genome complexity. Sequence homology and domain architecture analyses facilitated prediction of apicomplexan-specific protein function, particularly those involved in regulating cell division during these parasite's complex life cycles. Conclusions/Significance This study provides a comprehensive analysis of proteins predicted to be involved in the apicomplexan ubiquitin-mediated pathway. Given the importance of such pathway in a wide variety of cellular processes, our data is a key step in elucidating the biological networks that, in part, direct the pathogenicity of these parasites resulting in a massive impact on global health. Moreover, apicomplexan-specific adaptations of the ubiquitylation pathway may represent new therapeutic targets for much needed drugs against apicomplexan parasites.
Collapse
Affiliation(s)
- Nadia Ponts
- Department of Cell Biology and Neurosciences, University of California at Riverside, Riverside, California, United States of America
| | - Jianfeng Yang
- Department of Cell Biology and Neurosciences, University of California at Riverside, Riverside, California, United States of America
| | - Duk-Won Doug Chung
- Department of Cell Biology and Neurosciences, University of California at Riverside, Riverside, California, United States of America
| | - Jacques Prudhomme
- Department of Cell Biology and Neurosciences, University of California at Riverside, Riverside, California, United States of America
| | - Thomas Girke
- Center for Plant Cell Biology (CEPCEB), University of California at Riverside, Riverside, California, United States of America
| | - Paul Horrocks
- Department of Medicine, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Karine G. Le Roch
- Department of Cell Biology and Neurosciences, University of California at Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
The spread of parasitic resistance has necessitated the development of new drugs and drug targets for the treatment of malaria. Microtubules, which have gained outstanding importance as target molecules for the development of anticancer drugs, are likely to be potent antimalarial targets. The clinical implementation of microtubule inhibitors has given rise to a detailed mechanistic understanding of their interaction with tubulin on the molecular level and their effects on the cellular level. By comparison, our knowledge on Plasmodium falciparum, the causative agent of the most severe form of malaria, is rather poor. This article gives an overview on the microtubule inhibitors that have been explored in the parasite, reviews their effects on parasite growth and assesses their potential as novel antimalarials.
Collapse
Affiliation(s)
- Barbara Kappes
- Universitätsklinikum Heidelberg, Abteilung für Parasitologie, Im Neuenheimer Feld 324, Heidelberg, Germany.
| | | |
Collapse
|
20
|
Bhattacharjee AK. In silico three-dimensional pharmacophores for aiding the discovery of the Pfmrk (Plasmodium cyclin-dependent protein kinases) specific inhibitors for the therapeutic treatment of malaria. Expert Opin Drug Discov 2007; 2:1115-27. [PMID: 23484876 DOI: 10.1517/17460441.2.8.1115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The resurgence of malaria and lack of effective antimalarial drugs affect millions of people worldwide every year, causing several million deaths. With the emergence of structure-based drug design methodologies, a major thrust in drug discovery efforts has shifted towards targeting specific proteins in parasites that are involved in their metabolic pathways. Although cyclin-dependent kinases (CDKs), due to their direct role in cell cycle regulations, have been targeted for the development of cancer therapeutics, CDKs for Plasmodium falciparum have only been recently identified to be attractive for the discovery of antimalarials. One of the plasmodium CDK targets is Pfmrk. Being a putative homolog of Cdk7 and, thus, having the possibility of dual functions, both in cell cycle control and gene expression within the parasite, pfrmk has become an interesting antimalarial chemotherapeutic target. This review discusses how in silico methodologies, without the knowledge of the X-ray crystallographic structure of Pfmrk, particularly based on the development of pharmacophores on known inhibitors can aid the discovery and design of Pfmrk-specific inhibitors through virtual screening of compound databases and provides insights into the understanding of the mechanism of binding in the active site of this enzyme.
Collapse
Affiliation(s)
- Apurba K Bhattacharjee
- Walter Reed Army Institute of Research, Department of Medicinal Chemistry, Division of Experimental Therapeutics, Silver Spring, MD 20910-7500, USA +1 301 319 9043 ; +1 301 319 9449 ;
| |
Collapse
|
21
|
Banerjee S, Sen A, Das P, Saha P. Leishmania donovani cyclin 1 (LdCyc1) forms a complex with cell cycle kinase subunit CRK3 (LdCRK3) and is possibly involved in S-phase-related activities. FEMS Microbiol Lett 2007; 256:75-82. [PMID: 16487322 DOI: 10.1111/j.1574-6968.2006.00105.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Expression of Leishmania donovani cyclin 1 (LdCyc1) mRNA during the cell cycle of promastigotes is S-phase specific. Here, we show that the LdCyc1 protein is periodically expressed and the activity of its associated kinase varies during the cell cycle in line with its expression pattern. In addition, we have shown that LdCRK3, homologous to CRK3 from L. mexicana, is the cognate Cdk partner of LdCyc1 and that the activity of the complex is inhibited specifically by heat stable factor(s) from the parasite.
Collapse
Affiliation(s)
- Sampali Banerjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | | | | |
Collapse
|
22
|
Briolant S, Parola P, Fusaï T, Madamet-Torrentino M, Baret E, Mosnier J, Delmont JP, Parzy D, Minodier P, Rogier C, Pradines B. Influence of oxygen on asexual blood cycle and susceptibility of Plasmodium falciparum to chloroquine: requirement of a standardized in vitro assay. Malar J 2007; 6:44. [PMID: 17437625 PMCID: PMC1855060 DOI: 10.1186/1475-2875-6-44] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 04/16/2007] [Indexed: 11/18/2022] Open
Abstract
Objective The main objective of this study was to assess the influence of gas mixtures on in vitro Plasmodium falciparum growth and 50% inhibitory concentration (IC50) for chloroquine. Methods The study was performed between February 2004 and December 2005. 136 Plasmodium falciparum isolates were used to evaluate gas mixtures effect on IC50 for chloroquine by isotopic microtest. The oxygen effect on asexual blood cycle of 3D7 and W2 clones was determined by thin blood smears examination and tritiated hypoxanthine uptake. Results From 5% O2 to 21% O2 conditions, no parasiticide effect of O2 concentration was observed in vitro on the clones 3D7 and W2. A parasitostatic effect was observed during the exposure of mature trophozoïtes and schizonts at 21% O2 with an increase in the length of schizogony. The chloroquine IC50 at 10% O2 were significantly higher than those at 21% O2, means of 173.5 nM and 121.5 nM respectively (p < 0.0001). In particular of interest, among the 63 isolates that were in vitro resistant to chloroquine (IC50 > 100 nM) at 10% O2, 17 were sensitive to chloroquine (IC50 < 100 nM) at 21% O2. Conclusion Based on these results, laboratories should use the same gas mixture to realize isotopic microtest. Further studies on comparison of isotopic and non-isotopic assays are needed to establish a standardized in vitro assay protocol to survey malaria drug resistance.
Collapse
Affiliation(s)
- Sébastien Briolant
- Unité de Recherche en Biologie et Epidémiologie Parasitaires, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| | - Philippe Parola
- Unité de Recherche en Biologie et Epidémiologie Parasitaires, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
- Service de Maladies Infectieuses et Tropicales, Hôpital Nord, Marseille, France
| | - Thierry Fusaï
- Unité de Recherche en Biologie et Epidémiologie Parasitaires, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| | - Marilyn Madamet-Torrentino
- Unité de Recherche en Pharmacologie et Physiopathologie Parasitaires, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| | - Eric Baret
- Unité de Recherche en Biologie et Epidémiologie Parasitaires, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| | - Joël Mosnier
- Unité de Recherche en Biologie et Epidémiologie Parasitaires, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| | - Jean P Delmont
- Service de Maladies Infectieuses et Tropicales, Hôpital Nord, Marseille, France
| | - Daniel Parzy
- Unité de Recherche en Pharmacologie et Physiopathologie Parasitaires, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| | | | - Christophe Rogier
- Unité de Recherche en Biologie et Epidémiologie Parasitaires, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| | - Bruno Pradines
- Unité de Recherche en Biologie et Epidémiologie Parasitaires, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
| |
Collapse
|
23
|
Naughton JA, Bell A. Studies on cell-cycle synchronization in the asexual erythrocytic stages of Plasmodium falciparum. Parasitology 2006; 134:331-7. [PMID: 17034650 DOI: 10.1017/s0031182006001466] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/16/2006] [Accepted: 08/17/2006] [Indexed: 11/06/2022]
Abstract
Multiplication of Plasmodium parasites within human erythrocytes is essential to malarial disease. The cell-division cycle of this organism, however, is still poorly understood. In other eukaryotes, various techniques for (apparent) cell-cycle synchronization have been used to shed light on the mechanisms involved in cell division and its control. Thus far there is no technique for cell-cycle synchronization (as opposed to selection of parasites of a limited age-range) in Plasmodium. We therefore investigated the possibility that inhibitors of DNA synthesis, the mitotic spindle, or cell-cycle control elements (such as cyclin-dependent kinases) could be used to synchronize P. falciparum cultures to a particular cell-cycle phase. Surprisingly, most of these compounds did not cause a block at a specific phase. Three compounds, Hoechst 33342, roscovitine and L-mimosine, did block development at the trophozoite-schizont transition (S or G2 phase). The block caused by the latter 2 inhibitors was reversible, suggesting that they might be used as synchronizing agents. However, a consideration of the perturbing effects of inhibitors and problems with 'batch' synchronization techniques in general lead us to believe that any results obtained using roscovitine- or L-mimosine-treated parasites may not be reflective of the normal cell cycle.
Collapse
Affiliation(s)
- J A Naughton
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
24
|
Abstract
Protein kinases are central to regulation of cellular signaling in the eukaryotes. Well-conserved and lineage-specific protein kinases have previously been identified from various completely sequenced genomes of eukaryotes. The current work describes a genome-wide analysis for protein kinases encoded in the Plasmodium falciparum genome. Using a few different profile matching methods, we have identified 99 protein kinases or related proteins in the parasite genome. We have classified these kinases into subfamilies and analyzed them in the context of noncatalytic domains that occur in these catalytic kinase domain-containing proteins. Compared to most eukaryotic protein kinases, these sequences vary significantly in terms of their lengths, inserts in catalytic domains, and co-occurring domains. Catalytic and noncatalytic domains contain long stretches of repeats of positively charged and other polar amino acids. Various components of the cell cycle, including 4 cyclin-dependent kinase (CDK) homologues, 2 cyclins, 1 CDK regulatory subunit, and 1 kinase-associated phosphatase, are identified. Identification of putative mitogen-activated protein (MAP) Kinase and MAP Kinase Kinase of P. falciparum suggests a new paradigm in the highly conserved signaling pathway of eukaryotes. The calcium-dependent kinase family, well represented in P. falciparum, shows varying domain combinations with EF-hands and pleckstrin homology domains. The analysis reveals a new subfamily of protein kinases having limited sequence similarity with previously known subfamilies. A new transmembrane kinase with 6 membrane-spanning regions is identified. Putative apicoplast targeting sequences have been detected in some of these protein kinases, suggesting their export to the apicoplast.
Collapse
|
25
|
Patterson S, Robert C, Whittle C, Chakrabarti R, Doerig C, Chakrabarti D. Pre-replication complex organization in the atypical DNA replication cycle of Plasmodium falciparum: Characterization of the mini-chromosome maintenance (MCM) complex formation. Mol Biochem Parasitol 2006; 145:50-9. [PMID: 16257456 DOI: 10.1016/j.molbiopara.2005.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 09/09/2005] [Accepted: 09/15/2005] [Indexed: 10/25/2022]
Abstract
The overall organization of cell division in Plasmodium is unique compared to that observed in model organisms because DNA replicates more than once per cell cycle at several points of its life cycle. The sequencing of the Plasmodium genome has also revealed the apparent absence of many key components (e.g. Cdt1, DDK and Cdc45) of the eukaryotic cell cycle machinery that are responsible for the formation of the pre-replication complex (pre-RC). We have characterized the Plasmodium falciparum minichromosome maintenance complex (MCM) that plays a key role in the transition of pre-RC to the RC. Similar to other eukaryotes, the Plasmodium genome encodes six MCM subunits. Here, we show that expression levels of at least three of the PfMCM subunits, the homologues of MCM2, MCM6 and MCM7, change during the intraerythrocytic development cycle, peaking in schizont and decreasing in the ring and trophozoite stages. PfMCM2, 6 and 7 subunits interact with each other to form a developmentally regulated complex: these interactions are detectable in rings and schizonts, but not in trophozoites. PfMCM2, 6 and 7 subunits are localized in both cytosolic and nucleosolic fractions during all intraerythrocytic stages of P. falciparum development, with increased nuclear localization in schizonts. Only PfMCM6 is associated with the chromatin fraction at all stages of growth. No phosphorylation of PfMCM2, 6 and 7 was detected, but two as yet unidentified threonine-phosphosphorylated proteins were present in the complex, whose pattern of phosphorylation varied during parasite development.
Collapse
Affiliation(s)
- Shelley Patterson
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | | | |
Collapse
|
26
|
Kuhn D, Wiese M. LmxPK4, a mitogen-activated protein kinase kinase homologue of Leishmania mexicana with a potential role in parasite differentiation. Mol Microbiol 2005; 56:1169-82. [PMID: 15882412 DOI: 10.1111/j.1365-2958.2005.04614.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of the mitogen-activated protein (MAP) kinase cascade are important for the establishment of a Leishmania mexicana infection and are involved in flagellar length control, although the underlying molecular mechanisms remain to be elucidated. This study reports the cloning and characterization of LmxPK4, a MAP kinase kinase homologue of L. mexicana displaying putative plant-like regulatory phosphorylation sites. The recombinant protein has autophosphorylating activity and phosphorylates myelin basic protein. An LmxPK4 gene deletion mutant showed a proliferation defect after infection of macrophages and no or delayed lesion development in mice. Irrespective of the onset of lesion development parasites showed an early and homogeneous lesion development in re-infection experiments. This is indicative for a compensation of the null mutant phenotype. Additionally, this phenotype could be reverted by reintroduction of the wild-type gene into the deletion background. Mutants expressing loss-of-function or N-terminally truncated versions of LmxPK4 retained the null mutant phenotype. LmxPK4 is stage-specifically expressed in promastigotes and during differentiation to amastigotes, but is not detectable in amastigotes isolated from the mammalian host. Moreover, its in vitro kinase activity increases with temperature rise up to 40 degrees C. Our results suggest that LmxPK4 is involved in the differentiation process and affects virulence of Leishmania mexicana.
Collapse
Affiliation(s)
- Daniela Kuhn
- Bernhard Nocht Institute for Tropical Medicine, Parasitology Section, Bernhard-Nocht-Strasse 74, D-20359 Hamburg, Germany
| | | |
Collapse
|
27
|
Geyer JA, Prigge ST, Waters NC. Targeting malaria with specific CDK inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:160-70. [PMID: 16185941 DOI: 10.1016/j.bbapap.2005.07.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 01/02/2023]
Abstract
Cyclin-dependent protein kinases (CDKs) are attractive targets for drug discovery and efforts have led to the identification of novel CDK selective inhibitors in the development of treatments for cancers, neurological disorders, and infectious diseases. More recently, they have become the focus of rational drug design programs for the development of new antimalarial agents. CDKs are valid targets as they function as essential regulators of cell growth and differentiation. To date, several CDKs have been characterized from the genome of the malaria-causing protozoan Plasmodium falciparum. Our approach employs experimental and virtual screening methodologies to identify and refine chemical inhibitors of the parasite CDK Pfmrk, a sequence homologue of human CDK7. Chemotypes of Pfmrk inhibitors include the purines, quinolinones, oxindoles, and chalcones, which have sub-micromolar IC50 values against the parasite enzyme, but not the human CDKs. Additionally, we have developed and validated a pharmacophore, based on Pfmrk inhibitors, which contains two hydrogen bond acceptor functions and two hydrophobic sites, including one aromatic ring hydrophobic site. This pharmacophore has been exploited to identify additional compounds that demonstrate significant inhibitory activity against Pfmrk. A molecular model of Pfmrk designed using the crystal structure of human CDK7 highlights key amino acid substitutions in the ATP binding pocket. Molecular modeling and docking of the active site pocket with selective inhibitors has identified possible receptor-ligand interactions that may be responsible for inhibitor specificity. Overall, the unique biochemical characteristics associated with this protein, to include distinctive active site amino acid residues and variable inhibitor profiles, distinguishes the Pfmrk drug screen as a paradigm for CDK inhibitor analysis in the parasite.
Collapse
Affiliation(s)
- Jeanne A Geyer
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Ft. Detrick, MD 20910, USA.
| | | | | |
Collapse
|
28
|
Doerig C. Protein kinases as targets for anti-parasitic chemotherapy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:155-68. [PMID: 15023358 DOI: 10.1016/j.bbapap.2003.11.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Accepted: 11/12/2003] [Indexed: 11/19/2022]
Abstract
Parasitic protozoa infecting humans have a staggering impact on public health, especially in the developing world. Furthermore, several protozoan species are major pathogens of domestic animals and have a considerable impact on food production. In many instances, the parasites have developed resistance against available chemotherapeutic agents, making the search for alternative drugs a priority. In line with the current interest in protein kinases inhibitors as potential drugs against a variety of diseases, the possibility that protein kinases may represent targets for novel anti-parasitic agents is being explored. Research into parasite protein kinases has benefited greatly from genome and EST sequencing projects, with the genomes of a few species fully sequenced (notably that of the human malaria parasite Plasmodium falciparum) and several more under way. The overall picture that emerged from research in this area shows that the phylogenetic isolation of parasitic protozoa is reflected by atypical structural and functional properties of many of their protein kinase homologues. Likewise, evidence is emerging, which suggests that the organisation of some otherwise well-conserved signal transduction pathways is divergent in some parasitic species. The differences between protein kinases of a parasite and their homologues in its host cell suggest that specific inhibition of the former can be achieved. The development of anti-parasitic drugs based on protein kinase inhibition is being pursued following two avenues: one consists of screening chemical libraries on recombinant enzymes; several protein kinases from parasitic protozoa are now available for this approach. The second approach relies on the identification of the molecular targets of kinase inhibitors which display anti-parasitic properties. This has led to promising developments in a few instances, in particular regarding PKG as a drug target against Eimeria and Toxoplasma, and purvalanol B, a purine-based CDK inhibitor which appears to affect unexpected targets in several protozoan parasites. The recent resolution of the structure of a Plasmodium protein kinase complexed with small inhibitory molecules opens the way to a rational approach towards the design of anti-parasitic drugs based on kinase inhibition.
Collapse
Affiliation(s)
- Christian Doerig
- Wellcome Centre for Molecular Parasitology, University of Glasgow, INSERM, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK.
| |
Collapse
|
29
|
Banerjee S, Banerjee R, Das R, Duttagupta S, Saha P. Isolation, characterization and expression of a cyclin from Leishmania donovani. FEMS Microbiol Lett 2003; 226:285-9. [PMID: 14553924 DOI: 10.1016/s0378-1097(03)00606-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We have cloned and sequenced a DNA fragment (approximately 1 kb) containing a complete open reading frame from a cDNA library of Leishmania donovani promastigotes. The alignment of the derived polypeptide sequence and the modeling studies revealed that the protein is highly homologous to the mammalian cyclins having conserved cyclin box and substrate-docking motif. Northern blot analysis of the RNA isolated from synchronized L. donovani promastigotes showed periodic expression of the message with maximum abundance at S-phase suggesting its involvement in the events related to the regulation of DNA replication. The results confirm that we have isolated a cyclin molecule from L. donovani (LdCyc1) which may play an important role in the regulation of the parasite cell cycle.
Collapse
Affiliation(s)
- Sampali Banerjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, I/AF Bidhannagar, Kolkata 700064, India
| | | | | | | | | |
Collapse
|
30
|
Merckx A, Le Roch K, Nivez MP, Dorin D, Alano P, Gutierrez GJ, Nebreda AR, Goldring D, Whittle C, Patterson S, Chakrabarti D, Doerig C. Identification and initial characterization of three novel cyclin-related proteins of the human malaria parasite Plasmodium falciparum. J Biol Chem 2003; 278:39839-50. [PMID: 12869562 DOI: 10.1074/jbc.m301625200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms regulating cell proliferation and development during the life cycle of malaria parasites remain to be elucidated. The peculiarities of the cell cycle organization during Plasmodium falciparum schizogony suggest that the modalities of cell cycle control in this organism may differ from those in other eukaryotes. Indeed, existing data concerning Plasmodium cell cycle regulators such as cyclin-dependent kinases reveal structural and functional properties that are divergent from those of their homologues in other systems. The work presented here lies in the context of the exploitation of the recently available P. falciparum genome sequence toward the characterization of putative cell cycle regulators. We describe the in silico identification of three open reading frames encoding proteins with maximal homology to various members of the cyclin family and demonstrate that the corresponding polypeptides are expressed in the erythrocytic stages of the infection. We present evidence that these proteins possess cyclin activity by demonstrating either their association with histone H1 kinase activity in parasite extracts or their ability to activate PfPK5, a P. falciparum cyclin-dependent kinase homologue, in vitro. Furthermore, we show that RINGO, a protein with no sequence homology to cyclins but that is nevertheless a strong activator of mammalian CDK1/2, is also a strong activator of PfPK5 in vitro. This raises the possibility that "cryptic" cell cycle regulators may be found among the 50% of the open reading frames in the P. falciparum genome that display no homology to any known proteins.
Collapse
Affiliation(s)
- Anaïs Merckx
- INSERM U511 team, Wellcome Centre for Molecular Parasitology, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Barbier M, Leighfield TA, Soyer-Gobillard MO, Van Dolah FM. Permanent expression of a cyclin B homologue in the cell cycle of the dinoflagellate Karenia brevis. J Eukaryot Microbiol 2003; 50:123-31. [PMID: 12744525 DOI: 10.1111/j.1550-7408.2003.tb00246.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The eukaryotic cell cycle is driven by a set of cyclin-dependent kinases associated with their regulatory partners, the cyclins, which confer activity, substrate specificities and proper localization of the kinase activity. We describe the cell cycle of Karenia brevis and provide evidence for the presence of a cyclin B homologue in this dinoflagellate using two antibodies with different specificities. This cyclin B homologue has an unusual behavior, since its expression is permanent and it has a cytoplasmic location throughout the cell cycle. There is no evidence for translocation to the nucleus during mitosis. However, it appears also to be specifically bound to the nucleolus throughout the cell cycle. The permanent expression and the cytoplasmic localization during mitosis of this cyclin B homologue is similar to p56, a cyclin B homologue previously described in a different species of dinoflagellate, Crypthecodinium cohnii. Here we discuss this unusual behavior of the cyclin B homologue in dinoflagellates, its relationship to the unusual characteristics of dinomitosis, and its potential implications regarding the evolution of cell cycle regulation among eukaryotes.
Collapse
Affiliation(s)
- Michele Barbier
- Marine Biotoxins Program, Center for Coastal Environmental Health and Biomolecular Research, NOAA, National Ocean Service, Charleston, South Carolina 29412, USA.
| | | | | | | |
Collapse
|
32
|
Waters NC, Geyer JA. Cyclin-dependent protein kinases as therapeutic drug targets for antimalarial drug development. Expert Opin Ther Targets 2003; 7:7-17. [PMID: 12556199 DOI: 10.1517/14728222.7.1.7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cyclin-dependent protein kinases (CDKs) have been attractive drug targets for the development of anticancer therapies due to their direct and crucial role in the regulation of cellular proliferation. Following this trend, CDKs have been pursued as potential drug targets for several other diseases. Structure-based drug design programmes have focused on the plasmodial CDKs to develop new candidate antimalarial compounds. This review discusses the most recent advances relating to three Plasmodium falciparum CDKs (PfPK5, PfPK6 and Pfmrk) as they are developed as antimalarial drug targets. CDKs are highly conserved, and focus must be placed upon the amino acid differences between human and plasmodial CDKs in order to develop specific inhibitors. Comparisons of the active sites of human and parasite CDKs reveal sequence and potential structural variations. Using sequence analysis, molecular modelling and in vitro drug screening, it is possible to identify and develop inhibitors that specifically target the plasmodial CDKs. These efforts are aimed at identifying new classes of CDK inhibitors that may be exploited for antimalarial drug development.
Collapse
Affiliation(s)
- Norman C Waters
- United States Army Medical Research Unit-Kenya, MRU 64109 APO, AE 09831-4109, Kenya.
| | | |
Collapse
|
33
|
Abstract
The intraerythrocytic asexual cycle of the malarial parasite is complex and atypical: during schizogony the parasite undergoes multiple rounds of DNA replication and asynchronous nuclear division without cytokinesis. This cell cycle deviates from the classical eukaryotic cell cycle model where, 'DNA replicates only once per cell cycle'. A clear understanding of the molecular switches that control this unusual developmental cycle would be of great interest, both in terms of fundamental Plasmodium biology and in terms of novel potential drug target identification. In recent years considerable effort has been made to identify the malarial orthologues of the cyclin-dependent kinases, which are key regulators of the orderly progression of the eukaryotic cell cycle. This review focuses on the current state-of-knowledge of Plasmodium falciparum cyclin-dependent kinase-like kinases and their regulators.
Collapse
Affiliation(s)
- Christian Doerig
- INSERM U511 team, Wellcome Centre for Molecular Parasitology, The Anderson College, Glasgow, Scotland, UK
| | | | | |
Collapse
|
34
|
Patterson S, Whittle C, Robert C, Chakrabarti D. Molecular characterization and expression of an alternate proliferating cell nuclear antigen homologue, PfPCNA2, in Plasmodium falciparum. Biochem Biophys Res Commun 2002; 298:371-6. [PMID: 12413950 DOI: 10.1016/s0006-291x(02)02436-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The malaria parasite Plasmodium falciparum genome sequencing has revealed the existence of a second gene for proliferating cell nuclear antigen (PCNA), a key factor in a variety of DNA metabolic events. The alternate copy of PCNA (PfPCNA2) shows only 23% identity to an earlier reported P. falciparum PCNA homologue (PfPCNA1). Our analysis indicated structural conservation of PfPCNA2 compared to eukaryotic PCNAs. PfPCNA1 and 2 polypeptides showed differential expression in the intraerythrocytic cell cycle of the malaria parasite. PfPCNA1 expression slowly increases about threefold from the ring to the late schizont stage. In contrast PfPCNA2 showed robust expression in trophozoites and early schizonts with a sudden drop in expression in the late schizont stage, suggesting that the two PfPCNAs may function under different physiological conditions. Chemical cross-linking indicated the presence of a trimeric PfPCNA2 protein, indicating the possible existence of a functional ring-like PfPCNA2 structure.
Collapse
Affiliation(s)
- Shelley Patterson
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | |
Collapse
|
35
|
Amara MO, Franetich JF, Bouladoux N, Mazier D, Eisenbrand G, Marko D, Meijer L, Doerig C, Desportes-Livage I. In vitro activity of antimitotic compounds against the microsporidium Encephalitozoon intestinalis. J Eukaryot Microbiol 2002; Suppl:99S-100S. [PMID: 11906097 DOI: 10.1111/j.1550-7408.2001.tb00469.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M O Amara
- Inserm U 511, Immunobiologie cellulaire et Moléculaire des Infections Parasitaires, CHU Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dorin D, Doerig C. [Plasmodium protein-kinases and control of cellular proliferation: molecular targets for new antimalarial drugs]. PATHOLOGIE-BIOLOGIE 2002; 50:223-6. [PMID: 12085666 DOI: 10.1016/s0369-8114(02)00292-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Li Z, Le Roch K, Geyer JA, Woodard CL, Prigge ST, Koh J, Doerig C, Waters NC. Influence of human p16(INK4) and p21(CIP1) on the in vitro activity of recombinant Plasmodium falciparum cyclin-dependent protein kinases. Biochem Biophys Res Commun 2001; 288:1207-11. [PMID: 11700040 DOI: 10.1006/bbrc.2001.5920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulatory mechanisms of most cyclin dependent protein kinases (CDKs) are well understood and are highly conserved in eukaryotes. CDKs from the malaria parasite, Plasmodium falciparum, appear to be regulated in a similar manner with regard to cyclin binding and phosphorylation. In order to further understand their regulatory mechanisms, we examined two classes of cyclin dependent kinase inhibitors (CDIs) to inhibit a panel of plasmodial CDKs. We find that Pfmrk and PfPK5 are inhibited by heterologous p21(CIP1) with varying degrees of inhibition. In contrast, PfPK6, a kinase with sequence features characteristic of both a CDK and MAP kinase, is unaffected by this CDI. Furthermore, the CDK4/6 specific CDI, p16(INK4), fails to inhibit these plasmodial CDKs. Taken together, these results suggest that plasmodial CDKs may be regulated by the binding of inhibitory proteins in vivo.
Collapse
Affiliation(s)
- Z Li
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910-5100, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dorin D, Le Roch K, Sallicandro P, Alano P, Parzy D, Poullet P, Meijer L, Doerig C. Pfnek-1, a NIMA-related kinase from the human malaria parasite Plasmodium falciparum Biochemical properties and possible involvement in MAPK regulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2600-8. [PMID: 11322879 DOI: 10.1046/j.1432-1327.2001.02151.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have cloned Pfnek-1, a gene encoding a novel protein kinase from the human malaria parasite Plasmodium falciparum. This enzyme displays maximal homology to the never-in-mitosis/Aspergillus (NIMA)/NIMA-like kinase (Nek) family of protein kinases, whose members are involved in eukaryotic cell division processes. Similar to other P. falciparum protein kinases and many enzymes of the NIMA/Nek family, Pfnek-1 possesses a large C-terminal extension in addition to the catalytic domain. Bacterially expressed recombinant Pfnek-1 protein is able to autophosphorylate and phosphorylate a panel of protein substrates with a specificity that is similar to that displayed by other members of the NIMA/Nek family. However, the FXXT motif usually found in NIMA/Nek protein kinases is substituted in Pfnek-1 by a SMAHS motif, which is reminiscent of a MAP/ERK kinase (MEK) activation site. Mutational analysis indicates that only one of the serine residues in this motif is essential for Pfnek-1 kinase activity in vitro. We show (a) that recombinant Pfnek-1 is able to specifically phosphorylate Pfmap-2, an atypical P. falciparum MAPK homologue, in vitro, and (b) that coincubation of Pfnek-1 and Pfmap-2 results in a synergistic increase in exogenous substrate labelling. This suggests that Pfnek-1 may be involved in the modulation of MAPK pathway output in malaria parasites. Finally, we demonstrate that recombinant Pfnek-1 can be used in inhibition assays to monitor the effect of kinase inhibitors, which opens the way to the screening of chemical libraries aimed at identifying potential new antimalarials.
Collapse
Affiliation(s)
- D Dorin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ben Mamoun C, Gluzman IY, Hott C, MacMillan SK, Amarakone AS, Anderson DL, Carlton JM, Dame JB, Chakrabarti D, Martin RK, Brownstein BH, Goldberg DE. Co-ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis. Mol Microbiol 2001; 39:26-36. [PMID: 11123685 DOI: 10.1046/j.1365-2958.2001.02222.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plasmodium falciparum is a protozoan parasite responsible for the most severe forms of human malaria. All the clinical symptoms and pathological changes seen during human infection are caused by the asexual blood stages of Plasmodium. Within host red blood cells, the parasite undergoes enormous developmental changes during its maturation. In order to analyse the expression of genes during intraerythrocytic development, DNA microarrays were constructed and probed with stage-specific cDNA. Developmental upregulation of specific mRNAs was found to cluster into functional groups and revealed a co-ordinated programme of gene expression. Those involved in protein synthesis (ribosomal proteins, translation factors) peaked early in development, followed by those involved in metabolism, most dramatically glycolysis genes. Adhesion/invasion genes were turned on later in the maturation process. At the end of intraerythrocytic development (late schizogony), there was a general shut-off of gene expression, although a small set of genes, including a number of protein kinases, were turned on at this stage. Nearly all genes showed some regulation over the course of development. A handful of genes remained constant and should be useful for normalizing mRNA levels between stages. These data will facilitate functional analysis of the P. falciparum genome and will help to identify genes with a critical role in parasite progression and multiplication in the human host.
Collapse
Affiliation(s)
- C Ben Mamoun
- Washington University School of Medicine, 660 S. Euclid Avenue, Box 8230, St Louis, MO 63110. USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|