1
|
Thapa A, Horgan KA, White B, Walls D. Deoxynivalenol and Zearalenone-Synergistic or Antagonistic Agri-Food Chain Co-Contaminants? Toxins (Basel) 2021; 13:toxins13080561. [PMID: 34437432 PMCID: PMC8402399 DOI: 10.3390/toxins13080561] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Deoxynivalenol (DON) and Zearalenone (ZEN) are two commonly co-occurring mycotoxins produced by members of the genus Fusarium. As important food chain contaminants, these can adversely affect both human and animal health. Critically, as they are formed prior to harvesting, their occurrence cannot be eliminated during food production, leading to ongoing contamination challenges. DON is one of the most commonly occurring mycotoxins and is found as a contaminant of cereal grains that are consumed by humans and animals. Consumption of DON-contaminated feed can result in vomiting, diarrhoea, refusal of feed, and reduced weight gain in animals. ZEN is an oestrogenic mycotoxin that has been shown to have a negative effect on the reproductive function of animals. Individually, their mode of action and impacts have been well-studied; however, their co-occurrence is less well understood. This common co-occurrence of DON and ZEN makes it a critical issue for the Agri-Food industry, with a fundamental understanding required to develop mitigation strategies. To address this issue, in this targeted review, we appraise what is known of the mechanisms of action of DON and ZEN with particular attention to studies that have assessed their toxic effects when present together. We demonstrate that parameters that impact toxicity include species and cell type, relative concentration, exposure time and administration methods, and we highlight additional research required to further elucidate mechanisms of action and mitigation strategies.
Collapse
Affiliation(s)
- Asmita Thapa
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland;
| | | | - Blánaid White
- School of Chemical Sciences, National Centre for Sensor Research, DCU Water Institute, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| | - Dermot Walls
- School of Biotechnology, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- Correspondence: (B.W.); (D.W.); Tel.: +353-01-7006731 (B.W.); +353-01-7005600 (D.W.)
| |
Collapse
|
2
|
Role of neurotransmitters 5-hydroxytryptamine and substance P in anorexia induction following oral exposure to the trichothecene T-2 toxin. Food Chem Toxicol 2019; 123:1-8. [DOI: 10.1016/j.fct.2018.10.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/07/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
|
3
|
Ponce-García N, Serna-Saldivar SO, Garcia-Lara S. Fumonisins and their analogues in contaminated corn and its processed foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2183-2203. [PMID: 30028638 DOI: 10.1080/19440049.2018.1502476] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the food security problems faced worldwide is the occurrence of mycotoxins in grains and their foods. Fumonisins (FBs) are mycotoxins which are prevalent in corn (Zea mays L.) and its based foods. Their intake and exposure have been epidemiologically and inconclusively associated with oesophageal cancer and neural tube defects in humans, and other harmful health effects in animals. The toxic effects of FBs can be acute or chronic and these metabolites bioaccumulate mainly in liver and kidney tissues. Among FBs, fumonisin B1 (FB1) is the most relevant moiety although the 'hidden' forms produced after food thermal processes are becoming relevant. Corn is the grain most susceptible to Fusarium and FBs contamination and the mould growth is affected both by abiotic and biotic factors during grain maturation and storage. Mould counts are mainly affected by the grain water activity, the environmental temperature during grain maturation and insect damage. The abiotic factors affected by climatic change patterns have increased their incidence in other regions of the world. Among FBs, the hidden forms are the most difficult to detect and quantify. Single or combined physical, chemical and biological methods are emerging to significantly reduce FBs in processed foods and therefore diminish their toxicological effects.
Collapse
Affiliation(s)
- Nestor Ponce-García
- a Center of Biotechnology FEMSA , School of Engineering and Sciences, Tecnologico de Monterrey , Monterrey , Mexico.,b Faculty of Agricultural Sciences , Autonomous University of Mexico State, UAEM, Campus Universitario "El Cerrillo" , Toluca , Mexico
| | - Sergio O Serna-Saldivar
- a Center of Biotechnology FEMSA , School of Engineering and Sciences, Tecnologico de Monterrey , Monterrey , Mexico
| | - Silverio Garcia-Lara
- a Center of Biotechnology FEMSA , School of Engineering and Sciences, Tecnologico de Monterrey , Monterrey , Mexico
| |
Collapse
|
4
|
Gut satiety hormones cholecystokinin and glucagon-like Peptide-17-36 amide mediate anorexia induction by trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol and neosolaniol. Toxicol Appl Pharmacol 2017; 335:49-55. [DOI: 10.1016/j.taap.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
|
5
|
Wu W, Zhou HR, Bursian SJ, Link JE, Pestka JJ. Emetic responses to T-2 toxin, HT-2 toxin and emetine correspond to plasma elevations of peptide YY3-36 and 5-hydroxytryptamine. Arch Toxicol 2016; 90:997-1007. [PMID: 25855062 PMCID: PMC11331243 DOI: 10.1007/s00204-015-1508-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Trichothecene mycotoxins are a family of potent translational inhibitors that are associated with foodborne outbreaks of human and animal gastroenteritis in which vomiting is a clinical hallmark. Deoxynivalenol (DON, vomitoxin) and other Type B trichothecenes have been previously demonstrated to cause emesis in the mink (Neovison vison), and this response has been directly linked to secretion of both the satiety hormone peptide YY3-36 (PYY3-36) and neurotransmitter 5-hydroxytryptamine (5-HT). Here, we characterized the emetic responses in the mink to T-2 toxin (T-2) and HT-2 toxin (HT-2), two highly toxic Type A trichothecenes that contaminate cereals, and further compared these effects to those of emetine, a natural alkaloid that is used medicinally and also well known to block translation and cause vomiting. Following intraperitoneal (IP) and oral exposure, all three agents caused vomiting with evident dose-dependent increases in both duration and number of emetic events as well as decreases in latency to emesis. T-2 and HT-2 doses causing emesis in 50 % of treated animals (ED50s) were 0.05 and 0.02 mg/kg BW following IP and oral administration, respectively, whereas the ED50s for emetine were 2.0 and 1.0 mg/kg BW for IP and oral exposure, respectively. Importantly, oral administration of all three toxins elicited marked elevations in plasma concentrations of PYY3-36 and 5-HT that corresponded to emesis. Taken together, the results suggest that T-2 and HT-2 were much more potent than emetine and that emesis induction by all three translational inhibitors co-occurred with increases in circulating levels of PYY3-36 and 5-HT.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Department of Food Science and Human Nutrition, Michigan State University, 234 G.M. Trout Building, East Lansing, MI, 48824-1224, USA
| | - Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, 234 G.M. Trout Building, East Lansing, MI, 48824-1224, USA
| | - Steven J Bursian
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Jane E Link
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, 234 G.M. Trout Building, East Lansing, MI, 48824-1224, USA.
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Lv X, Li Y, Yan T, Pang X, Cao W, Du B, Wu D, Wei Q. Electrochemiluminescence modified electrodes based on RuSi@Ru(bpy)32+ loaded with gold functioned nanoporous CO/Co3O4 for detection of mycotoxin deoxynivalenol. Biosens Bioelectron 2015; 70:28-33. [DOI: 10.1016/j.bios.2015.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 11/28/2022]
|
7
|
Modified Fusarium mycotoxins unmasked: From occurrence in cereals to animal and human excretion. Food Chem Toxicol 2015; 80:17-31. [DOI: 10.1016/j.fct.2015.02.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/19/2022]
|
8
|
Guerra M, Almeida I, Bernardo F. 32. Aflatoxin B1 and zearalenone in dairy feeds and its impacts in the food chain. ACTA ACUST UNITED AC 2015. [DOI: 10.3920/978-90-8686-806-3_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- M. Guerra
- Escola Superior de Hotelaria e Turismo do Estoril, CIISA/Faculdade de Medicina Veterinária, Pólo Universitário da Ajuda, Rua Professor Cid dos Santos, Av. Condes de Barcelona, 2769-510 Estoril, Portugal, 1300-417 Lisboa, Portugal
- Direcção Geral de Alimentação e Veterinária, Largo da Academia Nacional de Bela Artes 2, 1249-105 Lisboa, Portugal
- CIISA/Faculdade de Medicina Veterinária, Pólo Universitário da Ajuda, Rua Professor Cid dos Santos, 1300-417 Lisboa, Portugal
| | - I. Almeida
- Escola Superior de Hotelaria e Turismo do Estoril, CIISA/Faculdade de Medicina Veterinária, Pólo Universitário da Ajuda, Rua Professor Cid dos Santos, Av. Condes de Barcelona, 2769-510 Estoril, Portugal, 1300-417 Lisboa, Portugal
- Direcção Geral de Alimentação e Veterinária, Largo da Academia Nacional de Bela Artes 2, 1249-105 Lisboa, Portugal
- CIISA/Faculdade de Medicina Veterinária, Pólo Universitário da Ajuda, Rua Professor Cid dos Santos, 1300-417 Lisboa, Portugal
| | - F. Bernardo
- Escola Superior de Hotelaria e Turismo do Estoril, CIISA/Faculdade de Medicina Veterinária, Pólo Universitário da Ajuda, Rua Professor Cid dos Santos, Av. Condes de Barcelona, 2769-510 Estoril, Portugal, 1300-417 Lisboa, Portugal
- Direcção Geral de Alimentação e Veterinária, Largo da Academia Nacional de Bela Artes 2, 1249-105 Lisboa, Portugal
- CIISA/Faculdade de Medicina Veterinária, Pólo Universitário da Ajuda, Rua Professor Cid dos Santos, 1300-417 Lisboa, Portugal
| |
Collapse
|
9
|
Comparison of Anorectic Potencies of the Trichothecenes T-2 Toxin, HT-2 Toxin and Satratoxin G to the Ipecac Alkaloid Emetine. Toxicol Rep 2015; 2:238-251. [PMID: 25932382 PMCID: PMC4410735 DOI: 10.1016/j.toxrep.2014.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Anorectic effects of natural toxins were compared in the mouse. Parenteral and oral T-2 and HT-2 toxin exposure caused prolonged anorexia. Emetine was more potent when delivered orally as compared to parenterally. Emetine's effects were less than T-2 and HT-2 toxin and more transient. Parental and intranasal delivery satratoxin G caused transient anorectic effects.
Trichothecene mycotoxins, potent translational inhibitors that are associated with human food poisonings and damp-building illnesses, are of considerable concern to animal and human health. Food refusal is a hallmark of exposure of experimental animals to deoxynivalenol (DON) and other Type B trichothecenes but less is known about the anorectic effects of foodborne Type A trichothecenes (e.g., T-2 toxin, HT-2 toxin), airborne Type D trichothecenes (e.g., satratoxin G [SG]) or functionally analogous metabolites that impair protein synthesis. Here, we utilized a well-described mouse model of food intake to compare the anorectic potencies of T-2 toxin, HT-2 toxin, and SG to that of emetine, a medicinal alkaloid derived from ipecac that inhibits translation. Intraperitoneal (IP) administration with T-2 toxin, HT-2 toxin, emetine and SG evoked anorectic responses that occurred within 0.5 h that lasted up to 96, 96, 3 and 96 h, respectively, with lowest observed adverse effect levels (LOAELs) being 0.1, 0.1, 2.5 and 0.25 mg/kg BW, respectively. When delivered via natural routes of exposure, T-2 toxin, HT-2 toxin, emetine (oral) and SG (intranasal) induced anorectic responses that lasted up to 48, 48, 3 and 6 h, respectively with LOAELs being 0.1, 0.1, 0.25, and 0.5 mg/kg BW, respectively. All four compounds were generally much more potent than DON which was previously observed to have LOAELs of 1 and 2.5 mg/kg BW after IP and oral dosing, respectively. Taken together, these anorectic potency data will be valuable in discerning the relative risks from trichothecenes and other translational inhibitors of natural origin.
Collapse
|
10
|
Ren Z, Wang Y, Deng H, Deng Y, Deng J, Zuo Z, Wang Y, Peng X, Cui H, Shen L. Deoxynivalenol induces apoptosis in chicken splenic lymphocytes via the reactive oxygen species-mediated mitochondrial pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:339-46. [PMID: 25553575 DOI: 10.1016/j.etap.2014.11.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/11/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
We investigated the immunotoxicity and cytotoxicity of deoxynivalenol (DON), a mycotoxin, and the mechanism by which it induces apoptosis. Chicken splenic lymphocytes treated with 0-50μg/mL DON for 48h inhibited growth of splenic lymphocytes in a dose-dependent manner, as revealed by the Cell Counting Kit-8 (CCK-8) bioassay. Annexin V-fluorescein isothiocyanate staining indicated that the number of apoptotic and necrotic cells were significantly higher compared with the control (P<0.01). DON treatment induced ROS accumulation, resulting in reduced mitochondrial transmembrane potential, as detected by flow cytometry and 2',7'-dichlorofluorescein acetate and rhodamine 123 labeling, respectively. Enzyme linked immunosorbent assays revealed that the concentrations of p53, Bax, Bak-1, and Caspase-3 increased with increasing DON concentration (P<0.05 or P<0.01), whereas the concentrations of Bcl-2 decreased (P<0.01) compared with the control. These data suggest that DON induces apoptosis in splenic lymphocytes via a ROS-mediated mitochondrial pathway.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Yachao Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Youtian Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Xi Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China; Sichuan Province Key Laboratory of Animal Disease & Human Health, Ya'an 625014, China; Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Ya'an 625014, China.
| |
Collapse
|
11
|
Vin K, Papadopoulos A, Cubadda F, Aureli F, Oktay Basegmez HI, D'Amato M, De Coster S, D'Evoli L, López Esteban MT, Jurkovic M, Lucarini M, Ozer H, Fernández San Juan PM, Sioen I, Sokolic D, Turrini A, Sirot V. TDS exposure project: relevance of the total diet study approach for different groups of substances. Food Chem Toxicol 2014; 73:21-34. [PMID: 25106751 DOI: 10.1016/j.fct.2014.07.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 01/24/2023]
Abstract
A method to validate the relevance of the Total Diet Study (TDS) approach for different types of substances is described. As a first step, a list of >2800 chemicals classified into eight main groups of relevance for food safety (natural components, environmental contaminants, substances intentionally added to foods, residues, naturally occurring contaminants, process contaminants, contaminants from packaging and food contact materials, other substances) has been established. The appropriateness of the TDS approach for the different substance groups has then been considered with regard to the three essential principles of a TDS: representativeness of the whole diet, pooling of foods and food analyzed as consumed. Four criteria were considered for that purpose (i) the substance has to be present in a significant part of the diet or predominantly present in specific food groups, (ii) a robust analytical method has to be available to determine it in potential contributors to the dietary exposure of the population, and (iii) the dilution impact of pooling and (iv) the impact of everyday food preparation methods on the concentration of the substance are assessed. For most of the substances the TDS approach appeared to be relevant and any precautions to be taken are outlined.
Collapse
Affiliation(s)
- Karine Vin
- French Agency for Food, Environmental and Occupational Health Safety, ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail), 27 avenue du Général Leclerc, F-94701 Maisons-Alfort, France
| | - Alexandra Papadopoulos
- French Agency for Food, Environmental and Occupational Health Safety, ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail), 27 avenue du Général Leclerc, F-94701 Maisons-Alfort, France
| | - Francesco Cubadda
- Istituto Superiore di Sanità - National Health Institute, Department of Food Safety and Veterinary Public Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Federica Aureli
- Istituto Superiore di Sanità - National Health Institute, Department of Food Safety and Veterinary Public Health, Viale Regina Elena 299, 00161 Rome, Italy
| | | | - Marilena D'Amato
- Istituto Superiore di Sanità - National Health Institute, Department of Food Safety and Veterinary Public Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sam De Coster
- Universiteit Gent - Ghent University, Department of Public Health, UZ 2 Block A, De Pintelaan 185, B-9000 Gent, Belgium
| | | | | | - Martina Jurkovic
- Hrvatska agencija za hranu - Croatian Food Agency, Ivana Gundulića 36b, 31000 Osijek, Croatia
| | | | - Hayrettin Ozer
- TÜBİTAK Marmara Research Center, Food Institute, P.O. Box 21, 41470 Gebze, Kocaeli, Turkey
| | | | - Isabelle Sioen
- Universiteit Gent - Ghent University, Department of Public Health, UZ 2 Block A, De Pintelaan 185, B-9000 Gent, Belgium
| | - Darja Sokolic
- Hrvatska agencija za hranu - Croatian Food Agency, Ivana Gundulića 36b, 31000 Osijek, Croatia
| | | | - Véronique Sirot
- French Agency for Food, Environmental and Occupational Health Safety, ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail), 27 avenue du Général Leclerc, F-94701 Maisons-Alfort, France
| |
Collapse
|
12
|
Majeed S, Iqbal M, Asi MR, Iqbal SZ. Aflatoxins and ochratoxin A contamination in rice, corn and corn products from Punjab, Pakistan. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2013.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Sarkanj B, Warth B, Uhlig S, Abia WA, Sulyok M, Klapec T, Krska R, Banjari I. Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia. Food Chem Toxicol 2013; 62:231-7. [PMID: 23994093 DOI: 10.1016/j.fct.2013.08.043] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/15/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
In this pilot survey the levels of various mycotoxin biomarkers were determined in third trimester pregnant women from eastern Croatia. First void urine samples were collected and analysed using a "dilute and shoot" LC-ESI-MS/MS multi biomarker method. Deoxynivalenol (DON) and its metabolites: deoxynivalenol-15-glucuronide and deoxynivalenol-3-glucuronide were detected in 97.5% of the studied samples, partly at exceptionally high levels, while ochratoxin A was found in 10% of the samples. DON exposure was primarily reflected by the presence of deoxynivalenol-15-glucuronide with a mean concentration of 120 μg L(-1), while free DON was detected with a mean concentration of 18.3 μg L(-1). Several highly contaminated urine samples contained a third DON conjugate, tentatively identified as deoxynivalenol-7-glucuronide by MS/MS scans. The levels of urinary DON and its metabolites measured in this study are the highest ever reported, and 48% of subjects were estimated to exceed the provisional maximum tolerable daily intake (1 μg kg(-1) b.w.).
Collapse
Affiliation(s)
- Bojan Sarkanj
- Subdepartment of Biochemistry and Toxicology, Department of Applied Chemistry and Ecology, Faculty of Food Technology, Josip Juraj Strossmayer University, Osijek, Croatia; Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu W, Bates MA, Bursian SJ, Flannery B, Zhou HR, Link JE, Zhang H, Pestka JJ. Peptide YY3-36 and 5-hydroxytryptamine mediate emesis induction by trichothecene deoxynivalenol (vomitoxin). Toxicol Sci 2013; 133:186-95. [PMID: 23457120 DOI: 10.1093/toxsci/kft033] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deoxynivalenol (DON, vomitoxin), a trichothecene mycotoxin produced by Fusarium sp. that frequently occurs in cereal grains, has been associated with human and animal food poisoning. Although a common hallmark of DON-induced toxicity is the rapid onset of emesis, the mechanisms for this adverse effect are not fully understood. Recently, our laboratory has demonstrated that the mink (Neovison vison) is a suitable small animal model for investigating trichothecene-induced emesis. The goal of this study was to use this model to determine the roles of two gut satiety hormones, peptide YY3-36 (PYY3-36) and cholecystokinin (CCK), and the neurotransmitter 5-hydroxytryptamine (5-HT) in DON-induced emesis. Following ip exposure to DON at 0.1 and 0.25mg/kg bw, emesis induction ensued within 15-30min and then persisted up to 120min. Plasma DON measurement revealed that this emesis period correlated with the rapid distribution and clearance of the toxin. Significant elevations in both plasma PYY3-36 (30-60min) and 5-HT (60min) but not CCK were observed during emesis. Pretreatment with the neuropeptide Y2 receptor antagonist JNJ-31020028 attenuated DON- and PYY-induced emesis, whereas the CCK1 receptor antagonist devezapide did not alter DON's emetic effects. The 5-HT3 receptor antagonist granisetron completely suppressed induction of vomiting by DON and the 5-HT inducer cisplatin. Granisetron pretreatment also partially blocked PYY3-36-induced emesis, suggesting a potential upstream role for this gut satiety hormone in 5-HT release. Taken together, the results suggest that both PYY3-36 and 5-HT play contributory roles in DON-induced emesis.
Collapse
Affiliation(s)
- Wenda Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Tóth K, Balogh K, Bócsai A, Mézes M. Reduction of the mycotoxin contamination of forage plants during cultivation, storage and processing. ACTA ALIMENTARIA 2012. [DOI: 10.1556/aalim.41.2012.4.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Comparison of murine anorectic responses to the 8-ketotrichothecenes 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, fusarenon X and nivalenol. Food Chem Toxicol 2012; 50:2056-61. [DOI: 10.1016/j.fct.2012.03.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 11/19/2022]
|
17
|
Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim Feed Sci Technol 2012. [DOI: 10.1016/j.anifeedsci.2011.12.014] [Citation(s) in RCA: 402] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Hepworth S, Hardie L, Fraser L, Burley V, Mijal R, Wild C, Azad R, Mckinney P, Turner P. Deoxynivalenol exposure assessment in a cohort of pregnant women from Bradford, UK. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:269-76. [DOI: 10.1080/19440049.2010.551301] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Park SH, Choi HJ, Do KH, Yang H, Kim J, Moon Y. Chronic Nod2 stimulation potentiates activating transcription factor 3 and paradoxical superinduction of epithelial proinflammatory chemokines by mucoactive ribotoxic stressors via RNA-binding protein human antigen R. Toxicol Sci 2011; 125:116-25. [PMID: 22003189 DOI: 10.1093/toxsci/kfr270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chronic exposure to gut bacteria and bacterial products including Nod2 ligands triggers homeostatic regulation in response to various mucosal insults. Activating transcription factor 3 (ATF3) is a negative regulator of proinflammatory cytokines via bacterial pattern recognition. On the assumption that ATF3 can be a critical modulator of epithelial inflammation, chronic stimulation of Nod2 was assessed for its effects on ATF3 and proinflammatory signals in response to mucosal ribotoxic insult, which is a critical etiological factor of human intestinal inflammatory disease. Muramyl dipeptide, the minimal moiety of bacterial peptidoglycan, is the Nod2 ligand, and pre-exposure to it enhanced ATF3 expression in ribotoxic stress-exposed human enterocytes. In terms of gene regulation, Nod2 preactivation potentiated ATF3 induction by enhancing stability of the ATF3 transcript, which was particularly linked to the regulation of the 3'-untranslated region of the human ATF3 gene. Moreover, chronic stimulation of Nod2 enhanced both the basal and the ribotoxic stress-stimulated cytoplasmic translocation of the HuR protein, which bound to and stabilized ATF3 messenger RNA (mRNA). Functionally, chronic stimulation of Nod2 also led to superinduction of proinflammatory chemokine genes by the mucoactive ribotoxic stress. However, the chemokine superinduction was not affected by ATF3 gene regulation although Nod2-triggered ATF3 had suppressive effects on the proinflammatory nuclear factor kappa B (NF-κB) signal. This paradoxical superinduction of chemokines was also mediated by enhanced mRNA stabilization by HuR protein in spite of ATF3-mediated suppression of NF-κB signal in human intestinal epithelial cells.
Collapse
Affiliation(s)
- Seong Hwan Park
- Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology and Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-813, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Nielsen JK, Vikström AC, Turner P, Knudsen LE. Deoxynivalenol transport across the human placental barrier. Food Chem Toxicol 2011; 49:2046-52. [DOI: 10.1016/j.fct.2011.05.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/28/2011] [Accepted: 05/16/2011] [Indexed: 01/26/2023]
|
21
|
Turner PC, Ji BT, Shu XO, Zheng W, Chow WH, Gao YT, Hardie LJ. A biomarker survey of urinary deoxynivalenol in China: the Shanghai Women's Health Study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:1220-3. [PMID: 21774617 DOI: 10.1080/19440049.2011.584070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Deoxynivalenol (DON) is a trichothecene mycotoxin found on wheat, maize and barley. In ecological surveys in China, DON and other trichothecenes have been implicated in acute poisoning episodes and linked with the incidence of esophageal cancer. In order to better understand exposure patterns, this pilot survey provided a combined measure of urinary un-metabolised or free DON (fD) and its glucuronide metabolite (DG) in a subset of 60 samples taken from the Shanghai Women's Health Study cohort, China. Samples were collected in 1997/1998 from women age 40-70 years. Urinary fD+DG combined was detected in 58/60 (96.7%) samples (mean 5.9 ng DON/mg creatinine; range nd-30.5); a similar frequency, and a mean level approximately half, of that previously observed for women in the UK. Wheat consumption was approximately 25% of that consumed by western diets; thus DON contamination of wheat may be higher in Shanghai than the UK. The de-epoxy metabolite of DON, a detoxification product observed in animals, was not detected, suggesting that humans may be particularly sensitive to DON due to a more restricted detoxification capacity.
Collapse
Affiliation(s)
- P C Turner
- Molecular Epidemiology Unit, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Park SH, Choi HJ, Yang H, Do KH, Kim J, Moon Y. Repression of Peroxisome Proliferator-Activated Receptor γ by Mucosal Ribotoxic Insult-Activated CCAAT/Enhancer-Binding Protein Homologous Protein. THE JOURNAL OF IMMUNOLOGY 2010; 185:5522-30. [DOI: 10.4049/jimmunol.1001315] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Antonios D, Guitton V, Darrozes S, Pallardy M, Azouri H. Monitoring the levels of deoxynivalenol (DON) in cereals in Lebanon and validation of an HPLC/UV detection for the determination of DON in crushed wheat (bulgur). FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2010; 3:45-51. [DOI: 10.1080/19440040903514507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Hopton R, Turner E, Burley V, Turner P, Fisher J. Urine metabolite analysis as a function of deoxynivalenol exposure: an NMR-based metabolomics investigation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:255-61. [DOI: 10.1080/19440040903314015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Visconti A, Pascale M. REVIEW: An Overview onFusariumMycotoxins in the Durum Wheat Pasta Production Chain. Cereal Chem 2010. [DOI: 10.1094/cchem-87-1-0021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Angelo Visconti
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
- Corresponding author. Phone: +39 080 5929333. Fax: +39 080 5929373. E-mail:
| | - Michelangelo Pascale
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
27
|
Waché YJ, Hbabi-Haddioui L, Guzylack-Piriou L, Belkhelfa H, Roques C, Oswald IP. The mycotoxin Deoxynivalenol inhibits the cell surface expression of activation markers in human macrophages. Toxicology 2009; 262:239-44. [DOI: 10.1016/j.tox.2009.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/13/2009] [Accepted: 06/15/2009] [Indexed: 11/16/2022]
|
28
|
Marques M, Martins H, Costa J, Bernardo F. Co-occurrence of deoxynivalenol and zearalenone in crops marketed in Portugal. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2008; 1:130-3. [DOI: 10.1080/02652030802253983] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Yazar S, Omurtag GZ. Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci 2008; 9:2062-2090. [PMID: 19330061 PMCID: PMC2635619 DOI: 10.3390/ijms9112062] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/26/2008] [Accepted: 10/28/2008] [Indexed: 11/30/2022] Open
Abstract
Fumonisins are phytotoxic mycotoxins which are synthesized by various species of the fungal genus Fusarium such as Fusarium verticillioides (Sacc.) Nirenberg (ex F.moniliforme Sheldon) and Fusarium proliferatum. The trichothecene (TC) mycotoxins are secondary metabolites produce by species that belong to several fungal genera, especially Fusarium, Stachybotrys, Trichothecium, Trichoderma, Memnoniella and Myrothecium. Fusarium mycotoxins are widely dispersed in cereals and their products. Zearalenone (ZEA) is an estrogenic compound produced by Fusarium spp. such as F. graminearum and F. culmorum. Fumonisins, the TCs and ZEA are hazardous for human and animal health. Contamination with TCs causes a number of illnesses in human and animal such as decrease in food consumption (anorexia), depression or inhibition on immune system function and haematoxicity. The purpose of this paper is to give a review of the papers published on the field of fumonisin, TC and ZEA mycotoxins in cereals consumed in the world.
Collapse
Affiliation(s)
- Selma Yazar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Marmara University, 34668, Haydarpaşa - İstanbul, Turkey
| | - Gülden Z Omurtag
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Marmara University, 34668, Haydarpaşa - İstanbul, Turkey
| |
Collapse
|
30
|
Döll S, Dänicke S, Valenta H. Residues of deoxynivalenol (DON) in pig tissue after feeding mash or pellet diets containing low concentrations. Mol Nutr Food Res 2008; 52:727-34. [PMID: 18465777 DOI: 10.1002/mnfr.200700308] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Residues of deoxynivalenol (DON) and its metabolite de-epoxy-DON (DOM) were analyzed in specimens of pigs fed diets containing 0, 25, and 50% contaminated wheat (2.5 mg DON/kg) fed as mash or pellets over the final growing period of 11 wk. Median DON concentrations decreased from bile > kidney > serum > liver = muscle, while DOM was only detected in bile and kidney. Maximum carry over rates were 0.0319 for kidney, 0.0064 for liver, and 0.0043 for muscle, demonstrating that the contribution of animal derived food to the consumers' exposure is very low. The high interindividual variation of DON concentrations in all analyzed specimen of pigs fed diets containing similar concentrations of DON does not allow a diagnostic differentiation of animals fed diets containing DON concentrations of approximately 61% of the guidance level of 0.9 mg DON/kg, and those fed diets containing 137% of this concentration. The different feed forms did not affect residue concentrations in any of the investigated specimens.
Collapse
Affiliation(s)
- Susanne Döll
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Braunschweig, Germany.
| | | | | |
Collapse
|
31
|
Turner PC, Burley VJ, Rothwell JA, White KL, Cade JE, Wild CP. Deoxynivalenol: Rationale for development and application of a urinary biomarker. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25:864-71. [DOI: 10.1080/02652030801895040] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Paul C. Turner
- a Molecular Epidemiology Unit, Centre for Epidemiology and Biostatistics, Leeds Institute of Genetics, Health and Therapeutics, Faculty of Medicine and Health, University of Leeds , Leeds LS2 9JJ, UK
| | - Victoria J. Burley
- b Nutritional Epidemiology Group, Centre for Epidemiology and Biostatistics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds , Leeds LS2 9JJ, UK
| | - Joseph A. Rothwell
- a Molecular Epidemiology Unit, Centre for Epidemiology and Biostatistics, Leeds Institute of Genetics, Health and Therapeutics, Faculty of Medicine and Health, University of Leeds , Leeds LS2 9JJ, UK
| | - Kay L.M. White
- a Molecular Epidemiology Unit, Centre for Epidemiology and Biostatistics, Leeds Institute of Genetics, Health and Therapeutics, Faculty of Medicine and Health, University of Leeds , Leeds LS2 9JJ, UK
| | - Janet E. Cade
- b Nutritional Epidemiology Group, Centre for Epidemiology and Biostatistics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds , Leeds LS2 9JJ, UK
| | - Christopher P. Wild
- a Molecular Epidemiology Unit, Centre for Epidemiology and Biostatistics, Leeds Institute of Genetics, Health and Therapeutics, Faculty of Medicine and Health, University of Leeds , Leeds LS2 9JJ, UK
| |
Collapse
|
32
|
Basaran P, Basaran-Akgul N, Oksuz L. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment. Food Microbiol 2008; 25:626-32. [DOI: 10.1016/j.fm.2007.12.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 12/07/2007] [Accepted: 12/30/2007] [Indexed: 11/29/2022]
|
33
|
Van De Walle J, Romier B, Larondelle Y, Schneider YJ. Influence of deoxynivalenol on NF-kappaB activation and IL-8 secretion in human intestinal Caco-2 cells. Toxicol Lett 2008; 177:205-14. [PMID: 18343055 DOI: 10.1016/j.toxlet.2008.01.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/18/2008] [Accepted: 01/21/2008] [Indexed: 01/24/2023]
Abstract
Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. In human intestinal Caco-2 cells, DON activates the mitogen-activated protein kinases (MAPKs). We hypothesized a link between DON ingestion and intestinal inflammation, and used Caco-2 cells to assess the effects of DON, at plausible intestinal concentrations (250-10,000 ng/ml), on inflammatory mediators acting downstream the MAPKs cascade i.e. activation of nuclear factor-kappaB (NF-kappaB) and interleukin-8 (IL-8) secretion. In addition, Caco-2 cells were co-exposed to pro-inflammatory stimuli in order to mimic an inflamed intestinal epithelium. Dose-dependent increases in NF-kappaB activity and IL-8 secretion were observed, reaching 1.4- and 7.6-fold, respectively using DON at 10 microg/ml. Phosphorylation of inhibitor-kappaB (IkappaB) increased (1.6-fold) at DON levels <0.5 microg/ml. Exposure of Caco-2 cells to pro-inflammatory agents, i.e. 25 ng/ml interleukin-1beta, 100 ng/ml tumor necrosis factor-alpha or 10 microg/ml lipopolysaccharides, activated NF-kappaB and increased IL-8 secretion. Synergistic interactions between these stimuli and DON were observed. These data show that DON induces NF-kappaB activation and IL-8 secretion dose-dependently in Caco-2 cells, and this effect was accentuated upon pro-inflammatory stimulation, suggesting DON exposure could cause or exacerbate intestinal inflammation.
Collapse
Affiliation(s)
- Jacqueline Van De Walle
- Biochimie Cellulaire, Nutritionnelle & Toxicologique, Institut des Sciences de la Vie & Université catholique de Louvain, B 1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
34
|
Turner PC, Rothwell JA, White KL, Gong Y, Cade JE, Wild CP. Urinary deoxynivalenol is correlated with cereal intake in individuals from the United kingdom. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:21-5. [PMID: 18197294 PMCID: PMC2199283 DOI: 10.1289/ehp.10663] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 10/15/2007] [Indexed: 05/16/2023]
Abstract
BACKGROUND Deoxynivalenol (DON) is a toxic fungal metabolite that frequently contaminates cereal crops. DON is toxic to animals, but the effects on humans are poorly understood, in part because exposure estimates are of limited precision. OBJECTIVES In this study we used the U.K. adult National Diet and Nutrition Survey to compare 24-hr urinary DON excretion with cereal intake. METHODS One hundred subjects were identified for each of the following cereal consumption groups: low (mean, 107 g cereal/day; range, 88-125), medium (mean, 179 g/day; range, 162-195) and high (mean, 300 g/day; range, 276-325). DON was analyzed in 24-hr urine samples by liquid chromatography-mass spectrometry after purification on immunoaffinity columns. RESULTS DON was detected in 296 of 300 (98.7%) urine samples. Cereal intake was significantly associated with urinary DON (p < 0.0005), with the geometric mean urinary levels being 6.55 microg DON/day [95% confidence interval (CI), 5.71-7.53]; 9.63 microg/day (95% CI, 8.39-11.05); and 13.24 microg/day (95% CI, 11.54-15.19) for low-, medium-, and high-intake groups, respectively. In multivariable analysis, wholemeal bread (p < 0.0005), white bread (p < 0.0005), "other" bread (p < 0.0005), buns/cakes (p = 0.003), high-fiber breakfast cereal (p = 0.016), and pasta (p = 0.017) were significantly associated with urinary DON. Wholemeal bread was associated with the greatest percent increase in urinary DON per unit of consumption, but white bread contributed approximately twice as much as wholemeal bread to the urinary DON levels because it was consumed in higher amounts. CONCLUSION The majority of adults in the United Kingdom appear to be exposed to DON, and on the basis of the urinary levels, we estimate that some individuals may exceed the European Union (EU) recommended maximum tolerable daily intake of 1,000 ng DON/kg (bw). This exposure biomarker will be a valuable tool for biomonitoring as part of surveillance strategies and in etiologic studies of DON and human disease risk.
Collapse
Affiliation(s)
| | | | | | | | - Janet E. Cade
- Nutritional Epidemiology Group, Centre for Epidemiology and Biostatistics, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
35
|
|
36
|
Atanda O, Akpan I, Oluwafemi F. The potential of some spice essential oils in the control of A. parasiticus CFR 223 and aflatoxin production. Food Control 2007. [DOI: 10.1016/j.foodcont.2006.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Cetin Y, Bullerman LB. Confirmation of reduced toxicity of deoxynivalenol in extrusion-processed corn grits by the MTT bioassay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:1949-55. [PMID: 16506858 DOI: 10.1021/jf052443y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The objective of this study was to determine the loss of toxicity of deoxynivalenol in extruded cereal-based products by the tetrazolium salt (MTT) bioassay using a sensitive Chinese hamster ovary (CHO-K1) cell line and to compare the results to chemical (high-performance liquid chromatography, HPLC) and biochemical (enzyme-linked immunosorbant assay, ELISA) methods of analysis. A split-split plot design was used for the extrusion process experiments at temperatures of 150, 175, and 200 degrees C and screw speeds of 70 and 140 rpm. The initial mean deoxynivalenol concentration in the corn grits artificially contaminated with Fusarium graminearum was found to be 23.5 mug/g as measured by HPLC. The percent reductions of deoxynivalenol in the contaminated corn grits upon extrusion processing ranged from 22 to 35%, from 21 to 34%, and from 21 to 37% as measured by HPLC, ELISA, and MTT bioassay, respectively. The MTT bioassay results were more closely correlated with HPLC (r = 0.90) results than with ELISA results (r = 0.78). The MTT bioassay, using a sensitive mammalian cell line, was demonstrated to be a useful method for quantification of deoxynivalenol as well as a potential toxicity screening method for contaminated extruded cereal-based products.
Collapse
Affiliation(s)
- Yuksel Cetin
- Department of Food Science and Technology, 143 Filley Hall, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0919, USA
| | | |
Collapse
|
38
|
Leibetseder J. Chapter 15 Decontamination and detoxification of mycotoxins. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1877-1823(09)70102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
39
|
Cetin Y, Bullerman LB. Evaluation of reduced toxicity of zearalenone by extrusion processing as measured by the MTT cell proliferation assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:6558-63. [PMID: 16076149 DOI: 10.1021/jf051120z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The objective of this study was to determine loss of toxicity of zearalenone in extruded cereal-based products by the MTT (tetrazolium salt) cell proliferation assay using a sensitive MCF-7 human breast cancer cell line and to compare the results to chemical (high-performance liquid chromatography, HPLC) and biochemical (enzyme-linked immunosorbent assay, ELISA) methods of analysis. A split-split plot design was used for the extrusion process experiments at temperatures of 150, 175, and 200 degrees C and screw speeds of 70 and 140 rpm. The initial zearalenone concentration in the artificially contaminated corn grits with Fusarium graminearum was found at a mean concentration of 37.88 microg/g as measured by HPLC. The percent reductions of zearalenone in the contaminated corn grits upon extrusion processing were in the ranges of 67-81, 60-72, and 66-78% as measured by HPLC, ELISA, and the MTT cell proliferation assay, respectively. The MTT cell proliferation assay results were more closely correlated with HPLC results (r = 0.96) than ELISA results (r = 0.83). The MTT cell proliferation assay was demonstrated to be a useful method for quantification of zearalenone as well as a potential toxicity screening method for contaminated extruded cereal-based products.
Collapse
Affiliation(s)
- Yuksel Cetin
- Department of Food Science and Technology, University of Nebraska-Lincoln, 143 Filley Hall, Lincoln, Nebraska 68583-0919, USA
| | | |
Collapse
|
40
|
Kinser S, Li M, Jia Q, Pestka JJ. Truncated deoxynivalenol-induced splenic immediate early gene response in mice consuming (n-3) polyunsaturated fatty acids. J Nutr Biochem 2005; 16:88-95. [PMID: 15681167 DOI: 10.1016/j.jnutbio.2004.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 09/06/2004] [Accepted: 10/05/2004] [Indexed: 10/25/2022]
Abstract
Expression profiling has previously revealed that acute exposure to the common foodborne mycotoxin deoxynivalenol (DON) induces a large number of immediate early genes in murine lymphoid tissues that potentially affect immune function. The purpose of this study was to test the hypothesis that consumption of (n-3) polyunsaturated fatty acids (PUFAs) found in fish oil interferes with DON-induced immediate early gene expression. Mice were fed AIN-93G diet containing 1% corn oil (CO) plus 6% oleic acid (control) or a diet containing 1% CO, 2% fish oil enriched in the (n-3)-PUFAs docosahexaenoic and eicosapentaenoic acid and 4% oleic acid. After 12 weeks, the mice were gavaged orally with 25 mg/kg DON and the kinetics of immediate early gene expression in spleen monitored over 8 h by real-time polymerase chain reaction (PCR). Deoxynivalenol was found to readily induce expression of cytokines (IL-1alpha, IL-1beta, and IL-6 and IL-11), chemokines (MCP-1, MCP-3, CINC-1 and MIP-2), components of the activator protein-1 (AP-1) transcription factor complex (c-Fos, Fra-2, c-Jun and JunB), as well as two hydrolases (MKP1, CnAbeta). Expression of these genes was transient, peaking within 2-4 h and declining thereafter, with the single exception being IL-11 that was elevated at 8 h. (n-3)-PUFA consumption significantly suppressed DON-induced expression of IL-1alpha, IL-6, IL-11, MCP-1, MCP-3, MIP-2 and Fra-2 at 8 h. In contrast, mice fed (n-3)-PUFA exhibited significant increases in MKP1 and CnAbeta expression. Taken together, these data suggest that dietary supplementation with (n-3)-PUFAs prematurely truncated cytokine, chemokine and transcription factor expression responses to DON that may impact its previously described capacity to disrupt immune function including immunoglobulin A (IgA) production. Since expression of many of these genes has been linked to mitogen-activated protein kinase (MAPK) activation, enhanced expression of MKP1, a negative MAPK regulator in (n-3)-PUFA-fed mice might contribute to this suppression.
Collapse
Affiliation(s)
- Shawn Kinser
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824-1224, USA
| | | | | | | |
Collapse
|
41
|
Li M, Cuff CF, Pestka J. Modulation of Murine Host Response to Enteric Reovirus Infection by the Trichothecene Deoxynivalenol. Toxicol Sci 2005; 87:134-45. [PMID: 15958657 DOI: 10.1093/toxsci/kfi225] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Based on the known capacity of deoxynivalenol (DON) to target gut lymphoid tissue and IgA production, it was hypothesized that this mycotoxin interferes with the immune response to enteric reovirus infection. When mice were orally gavaged, first with 25 mg/kg bw DON, and then with reovirus serotype 1, strain Lang (T1/L) 2 or 12 h later, viral titers in the GI tract were 10-fold higher than control mice after 5 days. Virus was almost completely cleared in both treatment and control groups from intestinal tissue after 10 days. Real-time PCR indicated that, in infected control mice, reovirus lambda2 core spike (L2 gene) RNA per g feces in infected mice that were pretreated with DON was significantly higher at 1, 3, and 5 days than in infected mice only. In reovirus-infected mice, DON at doses of 10 and 25 mg/kg bw but not 2 and 5 mg/kg bw increased fecal L2 RNA, whereas DON doses as low as 2 mg/kg potentiated L2 RNA levels in Peyer's patches (PP). Reovirus-specific IgA levels in feces of mice treated with DON were significantly elevated, as were specific IgA responses in lamina propria and PP fragment cultures. Similar effects were observed for serum IgA and IgG. DON suppressed IFN-gamma responses in PP to reovirus at 3 and 5 days as compared to infected controls, while IL-2 mRNA concentrations were unaffected. Although reovirus alone did not induce Th2 cytokine mRNAs in PP, DON exposure significantly elevated IL-4, IL-6, and IL-10 mRNA expression at various times during the infection. ELISPOT revealed that mRNA expression data corresponded to suppression of IFN-gamma- and enhancement of IL-4-producing cell responses in PP cultures from DON-treated mice. Taken together, these data suggest that DON transiently increased both severity of the reovirus infection and shedding in feces as well as elevated reovirus IgA responses. These effects corresponded to suppressed Th1 and enhanced Th2 cytokine expression.
Collapse
Affiliation(s)
- Maoxiang Li
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
42
|
Pestka JJ, Smolinski AT. Deoxynivalenol: toxicology and potential effects on humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2005; 8:39-69. [PMID: 15762554 DOI: 10.1080/10937400590889458] [Citation(s) in RCA: 649] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereal-based foods worldwide. At the molecular level, DON disrupts normal cell function by inhibiting protein synthesis via binding to the ribosome and by activating critical cellular kinases involved in signal transduction related to proliferation, differentiation, and apoptosis. Relative to toxicity, there are marked species differences, with the pig being most sensitive to DON, followed by rodent > dog > cat > poultry > ruminants. The physiologic parameter that is most sensitive to low-level DON exposure is the emetic response, with as little as 0.05 to 0.1 mg/kg body weight (bw) inducing vomiting in swine and dogs. Chinese epidemiological studies suggest that DON may also produce emetic effects in humans. With respect to chronic effects, growth (anorexia and decreased nutritional efficiency), immune function, (enhancement and suppression), and reproduction (reduced litter size) are also adversely affected by DON in animals, whereas incidence of neoplasia is not affected. When hazard evaluations were conducted using existing chronic toxicity data and standard safety factors employed for anthropogenic additives/contaminants in foods, tolerable daily intakes (TDIs) ranging from 1 to 5 microg/kg bw have been generated. Given that critical data gaps still exist regarding the potential health effects of DON, additional research is needed to improve capacity for assessing adverse health effects of this mycotoxin. Critical areas for future DON research include molecular mechanisms underlying toxicity, sensitivity of human cells/tissues relative to other species, emetic effects in primates, epidemiological association with gastroenteritis and chronic disease in humans, and surveillance in cereal crops worldwide.
Collapse
Affiliation(s)
- James J Pestka
- Department of Food Science and Human Nutrition, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1224, USA.
| | | |
Collapse
|
43
|
Kinser S, Jia Q, Li M, Laughter A, Cornwell P, Corton JC, Pestka J. Gene expression profiling in spleens of deoxynivalenol-exposed mice: immediate early genes as primary targets. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:1423-1441. [PMID: 15371230 DOI: 10.1080/15287390490483827] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Exposure to the trichothecene mycotoxin deoxynivalenol (DON) alters immune functions in vitro and in vivo. To gain further insight into DON's immunotoxic effects, microarrays were used to determine how acute exposure to this mycotoxin modulates gene expression profiles in murine spleen. B6C3F1 mice were treated orally with 25mg/kg body weight DON, and 2h later spleens were collected for macroarray analysis. Following normalization using a local linear regression model, expression of 116 out of 1176 genes was significantly altered compared to average expression levels in all treatment groups. When genes were arranged into an ontology tree to facilitate comparison of expression profiles between treatment groups, DON was found primarily to modulate genes associated with immunity, inflammation, and chemotaxis. Real-time polymerase chain reaction was used to confirm modulation for selected genes. DON was found to induce the cytokines interleukin (IL)-1alpha, IL-1beta, IL-6 and IL-11. In analogous fashion, DON upregulated expression of the chemokines macrophage inhibitory protein-2 (MIP-2), cytokine-induced chemoattractant protein-1 (CINC-1), monocyte chemoattractant protein (MCP)-1, MCP-3, and cytokine-responsive gene-2 (CRG-2). c-Fos, Fra-, c-Jun, and JunB, components of the activator protein-1 (AP-1) transcription factor complex, were induced by DON as well as another transcription factor, NR4A1. Four hydrolases were found to be upregulated by DON, including mitogen-activated protein kinase phosphatase 1 (MKP1), catalytic subunit beta isoform (CnAbeta), protein tyrosine phosphatase receptor type J (Ptprj), and protein tyrosine phosphatase nonreceptor type 8 (Ptpn8), whereas three other hydrolases, microsomal epoxide hydrolase (Eph) 1, histidine triad nucleotide binding protein (Hint), and proteosome subunit beta type 8 (Psmb8) were significantly decreased by the toxin. Finally, cysteine-rich protein 61 (CRP61) and heat-shock protein 40 (Hsp40), genes associated with signaling, were increased, while Jun kinase 2 (JNK2) was decreased. Taken together, data suggest that DON upregulated the expression of multiple immediate early genes, many of which are likely to contribute to the complex immunological effects reported for this and other trichothecenes.
Collapse
Affiliation(s)
- Shawn Kinser
- Department of Food Science and Human Nutrition, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Chung YJ, Zhou HR, Pestka JJ. Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-alpha expression by deoxynivalenol (vomitoxin). Toxicol Appl Pharmacol 2004; 193:188-201. [PMID: 14644621 DOI: 10.1016/s0041-008x(03)00299-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deoxynivalenol (DON, vomitoxin) is a trichothecene mycotoxin that potentially mediates toxicity by upregulating proinflammatory cytokine gene expression in vitro and in vivo. The purpose of this study was to test the hypothesis that DON-induced activation of mitogen-activated protein kinases (MAPKs) mediates transcriptional and posttranscriptional upregulation of TNF-alpha gene expression. RNAse protection assay revealed that DON at 100 to 500 ng/ml induced mRNA expression of TNF-alpha as well as IL-6, IFN-gamma, TGFbeta-1, and TGFbeta-3 and that these effects were potentiated by 100 ng/ml lipopolysaccharide (LPS). DON was found to induce phosphorylation of p38 kinase, extracellular signal-regulated kinases (ERKs), and c-Jun amino terminal kinases (JNKs) in a dose-dependent manner in the RAW 264.7 murine macrophage model. A luciferase reporter gene driven by the murine TNF-alpha promoter was used to assess the role of various MAPKs on DON upregulation of TNF-alpha gene transcription. The p38 inhibitor SB203580 reduced induction of luciferase activity by DON, LPS, and DON + LPS. In addition, the ERK inhibitor PD 98059 blocked DON- and DON + LPS-induced luciferase activity whereas the JNK inhibitor impaired LPS- and DON + LPS-induced luciferase activity. To study the effects of MAPKs on DON-induced TNF-alpha mRNA stability, an asynchronous model was used whereby cells were pretreated with LPS for 4 h and the medium was removed. Following incubation with medium containing a transcription inhibitor, 5,6-dichloro-beta-D-ribofuranosyl-benzimidazole, MAPK inhibitors and/or DON (250 ng/ml) cultures were monitored for TNF-alpha mRNA expression. DON-induced TNF-alpha mRNA stabilization was abrogated in the presence of SB 203580, whereas the stabilization by DON was not affected by PD 98059 or SP 600125. To verify the role of MAPKs in DON + LPS-induced TNF-alpha production, cells were incubated with LPS, DON, or LPS + DON for 18 h in the presence of inhibitors. ELISA of supernatant indicated that induction of TNF-alpha production by DON alone was significantly reduced by SB 203580 and PD 98059, whereas all three inhibitors blocked LPS- and DON + LPS-induced TNF-alpha production. Taken together, these results suggest that relative to DON-induced TNF-alpha mRNA expression, p38 and ERK activation contribute to DON-induced transcriptional upregulation whereas p38 plays a role in increasing mRNA stability.
Collapse
Affiliation(s)
- Yong-Joo Chung
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824-1224, USA
| | | | | |
Collapse
|
45
|
Moon Y, Uzarski R, Pestka JJ. Relationship of trichothecene structure to COX-2 induction in the macrophage: selective action of type B (8-keto) trichothecenes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2003; 66:1967-1983. [PMID: 14514436 DOI: 10.1080/713853950] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The trichothecene mycotoxin deoxynivalenol (DON, vomitoxin), when at partially cytotoxic concentrations, induces cyclooxygenase-2 (COX-2) expression by promoting transcriptional activity and mRNA stability via mitogen-activated protein kinase (MAPK) signaling pathways. The purpose of this study was to test the hypothesis that trichothecenes differentially affect COX-2 gene expression and that these effects were related to MAPK activation. Representative members of the three major trichothecene families (A, B, and D) were compared for their capacity to induce COX-2 in the RAW 264.7 murine macrophage cell line. When cells were treated with concentrations that inhibited the 3-(4,5-di-methylthizol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) viability response by 20% (IC20), Type B trichothecenes including DON, 15-acetyl-DON, 3-acetyl-DON, and fusarenon-X were found to be effective inducers of COX-2 mRNA expression, whereas equitoxic Type A and Type D trichothecenes had markedly less effects. To compare effects of COX-2 gene transactivation and mRNA stabilization, luciferase reporter vectors containing 5'-promoter or 3'-untranslated regions of the gene, respectively, were transfected into RAW 264.7 cells and the effects of various trichothecenes on luciferase activities were measured. Type B but not Type A or D toxins at concentrations up to the MTT IC50 enhanced luciferase activities, indicating preferential COX-2 transcriptional activation and mRNA stabilization by this trichothecene subset. At their respective IC20s, Type B trichothecenes also significantly activated the three major MAPK families, whereas Type A and D did not. Blocking ERK and p38 with chemical inhibitors significantly suppressed Type B-induced COX-2 expression. Although JNK reportedly contributes to COX-2 expression in the other signaling models, transfection with the dominant negative JNK vector did not diminish the COX-2 expression. Taken together, Type B trichothecenes selectively enhanced transcription and stabilization of the COX-2 gene, and this was mediated by the ERK 1/2 and p38 signaling pathways. Selective action on COX-2 might contribute to unique pathologic manifestations associated with Type B trichothecene-mediated immunotoxicity.
Collapse
Affiliation(s)
- Yuseok Moon
- Department of Food Science and Human Nutrition and Institute for Environmental Toxicology, Michigan State University, East Lansing 48824, USA
| | | | | |
Collapse
|
46
|
Abstract
The effect of nine different oils was evaluated on the growth of Aspergillus parasiticus and Fusarium moniliforme. The experimental design to examine the inhibition of mycotoxins involved the incorporation of each of seven oils into broth and patty cultures. The fungal mycotoxin was identified by high-pressure liquid chromatography. Clove oil (eugenol) was the most inhibitory to the growth of A. parasiticus and F. moniliforme, followed by cinnamon (cinnamic aldehyde), oregano (thymol and carvacol) and mace oils (myristin). Neem and eucalyptus oil (cineole) did not affect fungal growth. The feasibility of implementing the results of this study to control mycotoxin toxicity was examined by costoring whole and ground cloves with mycotoxin-infected grain. Addition of both whole and ground cloves markedly reduced the aflatoxin contamination of the grain. These results clearly suggest that commonly occurring mycotoxigenic fungi can be controlled with clove oil (eugenol), thus spice oil successfully inhibited the growth of A. parasiticus and F. moniliforme, regulated the production of fumonisins. and prevented the formation of aflatoxins. The social implication of this finding is that rural communities can prevent the formation of fungal toxins in contaminated grain by simple measures.
Collapse
Affiliation(s)
- S Juglal
- Department of Biological Sciences, M. L. Sultan Technikon, Durham, South Africa
| | | | | |
Collapse
|
47
|
Sugita-Konishi Y, Pestka JJ. Differential upregulation of TNF-alpha, IL-6, and IL-8 production by deoxynivalenol (vomitoxin) and other 8-ketotrichothecenes in a human macrophage model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2001; 64:619-636. [PMID: 11766169 DOI: 10.1080/152873901753246223] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of deoxynivalenol (DON or vomitoxin) and four closely related 8-ketotrichothecenes on proinflammatory cytokine and chemokine production were evaluated in a clonal human macrophage model. U-937 cells, which represent a human monocytelike histocytic lymphoma, were differentiated into macrophages by preincubation with phorbol 12-myristate 13-acetate (PMA). Differentiated macrophages were incubated with DON in the absence or presence of lipopolysaccharide (LPS), and supernatant was analyzed by enzyme-linked immunosorbent assay (ELISA) for the proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), and for the chemokine interleukin-8 (IL-8). In the absence of LPS, DON at 500 or 1,000 ng/ml upregulated TNF-alpha production as early as 3 h and up to 6 h, whereas 100 to 1,000 ng/ml of DON significantly increased production of IL-6 from 3 to 24 h and IL-8 from 6 to 48 h. In cells costimulated with 0.2 microg/ml LPS, DON at 500 or 1000 ng/ml markedly superinduced TNF-alpha and IL-8 production. Although 100 ng/ml of DON also potentiated LPS-induced IL-6 production, 500 or 1,000 ng/ ml of the toxin suppressed the LPS-induced IL-6 response. Four other 8-ketotrichothecenes, fusarenon X, nivalenol, 3-acetyl DON, and 15-acetyl DON, were also capable of upregulating or suppressing TNF-alpha, IL-6, and IL-8 production at concentrations similar to that of DON. In total, the results suggest that DON and other 8-ketotrichothecenes have the potential to both directly induce and superinduce proinflammatory cytokine and chemokine expression in human macrophages, even at toxin concentrations that are cytotoxic.
Collapse
Affiliation(s)
- Y Sugita-Konishi
- Department of Biomedical Food Research, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|