1
|
Zhang R, Liu M, Zhang W, Ling J, Dong J, Ruan Y. Short-term association between air pollution and daily genitourinary disorder admissions in Lanzhou, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:74. [PMID: 38367071 DOI: 10.1007/s10653-023-01821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024]
Abstract
The aim of this study was to determine the relationship between short-term exposure to ambient air pollution and the number of daily hospital admissions for genitourinary disorders in Lanzhou. Hospital admission data and air pollutants, including PM2.5, PM10, SO2, NO2, O38h and CO, were obtained from the period 2013 to 2020. A generalized additive model (GAM) combined with distribution lag nonlinear model (DLNM) based on quasi-Poisson distribution was used by the controlling for trends, weather, weekdays and holidays. Short-term exposure to PM2.5, NO2 and CO increased the risk of genitourinary disorder admissions with RR of 1.0096 (95% CI 1.0002-1.0190), 1.0255 (95% CI 1.0123-1.0389) and 1.0686 (95% CI 1.0083-1.1326), respectively. PM10, O38h and SO2 have no significant effect on genitourinary disorders. PM2.5 and NO2 are more strongly correlated in female and ≥ 65 years patients. CO is more strongly correlated in male and < 65 years patients. PM2.5, NO2 and CO are risk factors for genitourinary morbidity, and public health interventions should be strengthened to protect vulnerable populations.
Collapse
Affiliation(s)
- Runping Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Miaoxin Liu
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wancheng Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jianglong Ling
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jiyuan Dong
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Huang K, Feng LF, Liu ZY, Li ZH, Mao YC, Wang XQ, Zhao JW, Zhang KD, Li YQ, Wang J, Yu WJ, Cheng X, Yang XY, Li J, Zhang XJ. The modification of meteorological factors on the relationship between air pollution and periodontal diseases: an exploration based on different interaction strategies. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8187-8202. [PMID: 37552412 DOI: 10.1007/s10653-023-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
We aimed to characterize the association between air pollutants exposure and periodontal diseases outpatient visits and to explore the interactions between ambient air pollutants and meteorological factors. The outpatient visits data of several large stomatological and general hospitals in Hefei during 2015-2020 were collected to explore the relationship between daily air pollutants exposure and periodontal diseases by combining Poisson's generalized linear model (GLMs) and distributed lag nonlinear model (DLNMs). Subgroup analysis was performed to identify the vulnerability of different populations to air pollutants exposure. The interaction between air pollutants and meteorological factors was verified in both multiplicative and additive interaction models. An interquartile range (IQR) increased in nitrogen dioxide (NO2) concentration was associated with the greatest lag-specific relative risk (RR) of gingivitis at lag 3 days (RR = 1.087, 95% CI 1.008-1.173). Fine particulate matter (PM2.5) exposure also increased the risk of periodontitis at the day of exposure (RR = 1.049, 95% CI 1.004-1.096). Elderly patients with gingivitis and periodontitis were both vulnerable to PM2.5 exposure. The interaction analyses showed that exposure to high levels of NO2 at low temperatures was related to an increased risk of gingivitis, while exposure to high levels of NO2 and PM2.5 may also increase the risk of gingivitis and periodontitis in the high-humidity environment, respectively. This study supported that NO2 and PM2.5 exposure increased the risk of gingivitis and periodontitis outpatient visits, respectively. Besides, the adverse effects of air pollutants exposure on periodontal diseases may vary depending on ambient temperature and humidity.
Collapse
Affiliation(s)
- Kai Huang
- The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230032, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Lin-Fei Feng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230032, China
| | - Zhe-Ye Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yi-Cheng Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xin-Qiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jia-Wen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kang-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ying-Qing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Wen-Jie Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xin Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xi-Yao Yang
- The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230032, China
| | - Jiong Li
- College and Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- College and Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Maishan M, Sarma A, Chun LF, Caldera S, Fang X, Abbott J, Christenson SA, Langelier CR, Calfee CS, Gotts JE, Matthay MA. Aerosolized nicotine from e-cigarettes alters gene expression, increases lung protein permeability, and impairs viral clearance in murine influenza infection. Front Immunol 2023; 14:1076772. [PMID: 36999019 PMCID: PMC10043316 DOI: 10.3389/fimmu.2023.1076772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
E-cigarette use has rapidly increased as an alternative means of nicotine delivery by heated aerosolization. Recent studies demonstrate nicotine-containing e-cigarette aerosols can have immunosuppressive and pro-inflammatory effects, but it remains unclear how e-cigarettes and the constituents of e-liquids may impact acute lung injury and the development of acute respiratory distress syndrome caused by viral pneumonia. Therefore, in these studies, mice were exposed one hour per day over nine consecutive days to aerosol generated by the clinically-relevant tank-style Aspire Nautilus aerosolizing e-liquid containing a mixture of vegetable glycerin and propylene glycol (VG/PG) with or without nicotine. Exposure to the nicotine-containing aerosol resulted in clinically-relevant levels of plasma cotinine, a nicotine-derived metabolite, and an increase in the pro-inflammatory cytokines IL-17A, CXCL1, and MCP-1 in the distal airspaces. Following the e-cigarette exposure, mice were intranasally inoculated with influenza A virus (H1N1 PR8 strain). Exposure to aerosols generated from VG/PG with and without nicotine caused greater influenza-induced production in the distal airspaces of the pro-inflammatory cytokines IFN-γ, TNFα, IL-1β, IL-6, IL-17A, and MCP-1 at 7 days post inoculation (dpi). Compared to the aerosolized carrier VG/PG, in mice exposed to aerosolized nicotine there was a significantly lower amount of Mucin 5 subtype AC (MUC5AC) in the distal airspaces and significantly higher lung permeability to protein and viral load in lungs at 7 dpi with influenza. Additionally, nicotine caused relative downregulation of genes associated with ciliary function and fluid clearance and an increased expression of pro-inflammatory pathways at 7 dpi. These results show that (1) the e-liquid carrier VG/PG increases the pro-inflammatory immune responses to viral pneumonia and that (2) nicotine in an e-cigarette aerosol alters the transcriptomic response to pathogens, blunts host defense mechanisms, increases lung barrier permeability, and reduces viral clearance during influenza infection. In conclusion, acute exposure to aerosolized nicotine can impair clearance of viral infection and exacerbate lung injury, findings that have implications for the regulation of e-cigarette products.
Collapse
Affiliation(s)
- Mazharul Maishan
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Aartik Sarma
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Lauren F. Chun
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | | | - Xiaohui Fang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Jason Abbott
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Stephanie A. Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Charles R. Langelier
- Chan Zuckerberg Biohub, San Francisco, CA, United States
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Carolyn S. Calfee
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey E. Gotts
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, United States
| | - Michael A. Matthay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesia, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Wang XQ, Zhang KD, Yu WJ, Zhao JW, Huang K, Hu CY, Zhang XJ, Kan XH. Associations of exposures to air pollution and greenness with mortality in a newly treated tuberculosis cohort. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34229-34242. [PMID: 36504301 PMCID: PMC9742034 DOI: 10.1007/s11356-022-24433-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Some previous studies had linked air pollutants and greenness to the risk of death from tuberculosis (TB). Only a few studies had examined the effect of particulate matter (PM2.5) on the mortality of TB, and few studies had assessed the impact and interaction of multiple air pollutants and greenness on the mortality of newly treated TB patients. The study included 29,519 newly treated TB patients from three cities in Anhui province. We collected meteorological data and five pollutants data from The National Meteorological Science Center and air quality monitoring stations. Greenness data were generated by remote sensing inversion of medium-resolution satellite images. We geocoded each patient based on the residential address to calculate the average exposure to air pollutants and the average greenness exposure for each patient during treatment. The Cox proportional risk regression model was used to evaluate the effects of air pollutants and greenness on mortality in newly treated tuberculosis patients. Our results found that the higher the concentration of air pollutants in the living environment of newly treated TB patients, the greater the risk of death: HR 1.135 (95% CI: 1.123-1.147) and HR 1.333 (95% CI: 1.296-1.370) per 10 μg/m3 of PM2.5 and SO2, respectively. Greenness reduced the mortality among newly treated TB patients: HR for NDVI exposure 0.936 (95% CI: 0.925-0.947), HR for NDVI_250m exposure 0.927 (95% CI: 0.916-0.938), and HR for NDVI_500m exposure 0.919 (95% CI: 0.908-0.931). Stratifying the cohort by median greenness exposure, HRs for air pollutants were lower in the high greenness exposure group. Mortality in newly treated TB patients is influenced by air pollutants and greenness. Higher green exposure can mitigate the effects of air pollution. Improving air quality may help reduce mortality among newly treated TB patients.
Collapse
Affiliation(s)
- Xin-Qiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kang-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Wen-Jie Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jia-Wen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Huang
- The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiao-Hong Kan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Clinical College of Chest, Anhui Chest Hospital, Anhui Medical University, 397 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
5
|
Wang XQ, Zhao JW, Zhang KD, Yu WJ, Wang J, Li YQ, Cheng X, Li ZH, Mao YC, Hu CY, Huang K, Ding K, Yang XJ, Chen SS, Zhang XJ, Kan XH. Short-term effect of sulfur dioxide (SO 2) change on the risk of tuberculosis outpatient visits in 16 cities of Anhui Province, China: the first multi-city study to explore differences in occupational patients. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50304-50316. [PMID: 35224697 PMCID: PMC8882443 DOI: 10.1007/s11356-022-19438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
A growing number of biological studies suggest that exogenous sulfur dioxide (SO2) at a certain concentration may promote human resistance to Mycobacterium tuberculosis. However, the results of most relevant studies are inconsistent, and few studies have explored the relationship between SO2 exposure and tuberculosis risk at provincial level. In addition, occupational exposure has long been considered to have a certain impact on the human body, so for the first time, we discussed the differences between different occupations in the study on the relationship between air pollutant exposure and tuberculosis risk, and evaluated the impact of occupational exposure. This study aimed to explore the association between short-term SO2 exposure and the risk of outpatient visits to tuberculosis in Anhui province and 16 prefecture-level cities from 2015 to 2020. We used several models for multi-stage analysis, including distributed lag nonlinear model (DLNM), Poisson generalized linear regression model, and random-effects model. The association was assessed using the 28-day cumulative lag effect RR and 95%CI for each 10-unit increase in SO2 concentration. We divided all patients into the following six occupations: Worker, Farmer, Retired people, Children and Students, Cadre and Office clerk, and Service staff (catering, business, etc.). Sex, age, and season were analyzed by subgroup. Finally, the robustness of the multi-pollutant model was tested. At provincial level, the overall effect value of SO2 was RR=0.8191 (95%CI: 07702~0.8712); after grouping all patients by occupation, the association found only among Farmers (RR = 0.7150, 95%CI: 0.6699-0.7632, lag 0-28 days) and Workers (RR = 0.8566, 95%CI: 0.7930-0.9930, lag 0-4 days) was still statistically significant. Estimates for individual cities and using random-effects models to estimate average associations showed that SO2 exposure was associated with a reduced risk of outpatient TB visits in 14 municipalities, which remained significant when aggregated (RR = 0.9030, 95%CI: 0.8730-0.9340). Analysis of patients grouped by occupation in each municipality showed that statistical significance was again observed only in the Farmer (RR = 0.8880, 95%CI: 0.8610-0.9160) and Worker (RR = 0.8250, 95%CI: 0.7290-0.9340) groups. Stratified analysis of age, sex, and season showed that the effect of SO2 exposure was greater for middle-aged people (18-64 years old) and males, and less for seasonal changes. In summary, we found that exposure to SO2 reduces the risk of outpatient visits to tuberculosis, with farmers and workers more susceptible to SO2. Gender and age had a greater impact on the risk of TB outpatient visits than seasonal variations.
Collapse
Affiliation(s)
- Xin-Qiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jia-Wen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kang-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Wen-Jie Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ying-Qing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xin Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yi-Cheng Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Huang
- The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Kun Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiao-Jing Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | | | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Xiao-Hong Kan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Anhui Chest Hospital, 397 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
6
|
Wang XQ, Li YQ, Hu CY, Huang K, Ding K, Yang XJ, Cheng X, Zhang KD, Yu WJ, Wang J, Zhang YZ, Ding ZT, Zhang XJ, Kan XH. Short-term effect of ambient air pollutant change on the risk of tuberculosis outpatient visits: a time-series study in Fuyang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30656-30672. [PMID: 34993790 DOI: 10.1007/s11356-021-17323-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
There is growing evidence that air pollution plays a role in TB, and most studies have been conducted in the core countries with inconsistent results. Few studies have comprehensively included the six common air pollutants, so they cannot consider whether various pollutants interact with each other. Our objectives were to investigate the association between short-term exposure to six common air pollutants and the risk of tuberculosis outpatient visits in Fuyang, China, 2015-2020. We combined the two models to explore the effects of exposure to six air pollutants on the risk of tuberculosis outpatient visits, including the Poisson generalized linear regression model and distributed lag non-linear model (DLNM). We performed stratified analyses for the season, type of cases, gender, and age. We used the lag-specific relative risks and cumulative relative risk obtained by increasing pollutant concentration by per 10 units to evaluate the connection between six air pollutants and TB; PM2.5 (RR = 1.0018, 95% CI: 1.0004-1.0032, delay of 12 days) and SO2 (RR = 1.0169, 95% CI: 1.0007-1.0333, lag 0-16 days) were 0.9549 (95% CI: 0.9389-0.9712, lag 0 day) and 0.8212 (95% CI: 0.7351-0.9173, 0-20-day lag). Stratified analyses showed that seasonal differences had a greater impact on TB, males were more likely to develop TB than females, older people were more likely to develop TB than younger people, and air pollution had a great impact on new cases. Exposure to O3, CO, PM10, PM2.5, and NO2 increases the risk of TB outpatient visits, except SO2 which reduces the risk. The incidence of TB has seasonal fluctuations. It is necessary for the government to establish a sound environmental monitoring and early warning system to strengthen the monitoring and emission management of pollutants in the atmosphere. Management, prevention, and treatment measures should be developed for high-risk groups (males and older people), reducing the risk of TB by reducing their specific behaviors and changing their lifestyle. We need to pay more attention to the impact of seasonal effects on TB to protect TB patients and avoid a shortage of medical resources, and it is necessary for the government to develop some seasonal preventive measures in the future.
Collapse
Affiliation(s)
- Xin-Qiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ying-Qing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kun Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiao-Jing Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xin Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kang-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Wen-Jie Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yong-Zhong Zhang
- Anhui Institute of Tuberculosis Prevention and Control, 397 Jixi Road, Hefei, 230022, China
| | - Zhen-Tao Ding
- Fuyang Provincial Center for Disease Control and Prevention, 19 Zhongnan Avenue, Fuyang, 236030, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Xiao-Hong Kan
- Anhui Medical University Clinical College of Chest, 397 Jixi Road, Hefei, 230022, China.
- Anhui Chest Hospital, 397 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
7
|
Kabbani N, Olds JL. Nicotinic receptor targeting in physiological and environmental vulnerability: A whole of biosphere perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146642. [PMID: 34001335 DOI: 10.1016/j.scitotenv.2021.146642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
We propose a biosphere model of convergent interactions between nicotine and neonicotinoids (neonics) within a related framework of nicotinic receptor targeting agents (NrTA) across the globe. We explore how rising global trends in the use nicotine as well as neonics impacts vulnerability, within and across species, and posit that evolutionary conservation at the nicotinic acetylcholine receptor (nAChR) provides an operational strategy map for pathogens and disease. Furthermore, we examine the effects of NrTA exposure on balance within extant and developing ecological niches, food chains, and human societies. We advocate for a global strategy for biomonitoring across agriculture, wildlife, and human centers. Such a strategy would relate emergent pathogenic and infectious diseases, amongst others, along a tractable biological stress pathway. This new framework aims to better prepare society in the face of emergent pandemics through 1. identifying primary chemical drivers that can impact emergent diseases; 2. outlining data-driven strategy options for health and environmental policy decision makers.
Collapse
Affiliation(s)
- Nadine Kabbani
- School of Systems Biology, George Mason University, USA.
| | - James L Olds
- Schar School for Policy and Government, George Mason University, USA
| |
Collapse
|
8
|
Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun 2021; 12:474. [PMID: 33473115 PMCID: PMC7817836 DOI: 10.1038/s41467-020-20733-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Smoking has a profound impact on tumor immunity, and nicotine, which is the major addictive component of smoke, is known to promote tumor progression despite being a non-carcinogen. In this study, we demonstrate that chronic exposure of nicotine plays a critical role in the formation of pre-metastatic niche within the lungs by recruiting pro-tumor N2-neutrophils. This pre-metastatic niche promotes the release of STAT3-activated lipocalin 2 (LCN2), a secretory glycoprotein from the N2-neutrophils, and induces mesenchymal-epithelial transition of tumor cells thereby facilitating colonization and metastatic outgrowth. Elevated levels of serum and urine LCN2 is elevated in early-stage breast cancer patients and cancer-free females with smoking history, suggesting that LCN2 serve as a promising prognostic biomarker for predicting increased risk of metastatic disease in female smoker(s). Moreover, natural compound, salidroside effectively abrogates nicotine-induced neutrophil polarization and consequently reduced lung metastasis of hormone receptor-negative breast cancer cells. Our findings suggest a pro-metastatic role of nicotine-induced N2-neutrophils for cancer cell colonization in the lungs and illuminate the therapeutic use of salidroside to enhance the anti-tumor activity of neutrophils in breast cancer patients. Smoking is known to impact tumor immunity and promote tumor progression. Here, the authors show that chronic nicotine exposure promotes the lung pre-metastatic niche formation by recruiting pro-tumor N2-neutrophils that release lipocalin-2.
Collapse
|
9
|
Delgado GE, Krämer BK, März W, Hellstern P, Kleber ME, Leipe J. Immune Status and Mortality in Smokers, Ex-smokers, and Never-Smokers: The Ludwigshafen Risk and Cardiovascular Health Study. Nicotine Tob Res 2021; 23:1191-1198. [PMID: 33460442 DOI: 10.1093/ntr/ntab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Elevated leukocyte counts are associated with cardiovascular disease. Smoking induces inflammation and alters levels of leukocyte subtypes. AIMS AND METHODS Our aim was to investigate the effect of smoking on circulating immune cells and their association with mortality. Lymphocyte subtypes were identified by flow cytometry of fluorescent-labeled cells. We analyzed the association of leukocytes with mortality using Cox regression and assessed their effect on risk prediction based on principle components (PCs) using area under the receiver operating characteristic curve and net-reclassification in 2173 participants from the Ludwigshafen Risk and Cardiovascular Health Study, a prospective case-control study in patients who underwent coronary angiography. RESULTS The numbers of T cells, monocytes, and neutrophils were higher and natural killer cells were lower in smokers compared with never-smokers. In never-smokers, lymphocyte counts were inversely associated with mortality while a positive association was observed for neutrophils. The neutrophil-to-lymphocyte ratio (NLR) had the strongest association in never-smokers with a hazard ratio (95% confidence interval) of 1.43 (1.26-1.61). No associations were found in smokers. Adding the first five PCs or the NLR to a risk prediction model based on conventional risk factors did not improve risk prediction in smokers, but significantly increased the area under the curve from 0.777 to 0.801 and 0.791, respectively, in never-smokers. CONCLUSIONS Lymphocyte counts were inversely associated with mortality in never-smokers but not in active smokers. Markers of innate immunity, namely total neutrophils and CD11b+/CD18+ and CD31+/CD40- granulocytes, were directly associated with mortality. Adding markers of immune function like PCs or the NLR to basic risk models improved risk prediction in never-smokers only. IMPLICATIONS Total leukocyte counts were higher in active smokers as compared to never-smokers due to elevated counts of neutrophils and monocytes but declined in ex-smokers with increasing time since quitting. In the never-smokers but not in smokers, lymphocyte counts were inversely associated with mortality while there was a direct association with neutrophils, even after adjustment for conventional cardiovascular risk factors. Adding markers of immune function to basic risk models improved risk prediction in never-smokers only. Our data indicate that smoking status has an important impact on the ability of leukocyte counts to predict long-term cardiovascular outcomes.
Collapse
Affiliation(s)
- Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bernhard K Krämer
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience ECAS, Medical Faculty Mannheim of the University Heidelberg, Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria.,SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Augsburg and Mannheim, Germany
| | - Peter Hellstern
- Center of Hemostasis and Thrombosis Zurich, Zurich, Switzerland
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,SYNLAB MVZ für Humangenetik Mannheim GmbH, Mannheim, Germany
| | - Jan Leipe
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Internal Medicine IV, Division of Rheumatology and Clinical Immunology, University of Munich, Munich, Germany
| |
Collapse
|
10
|
Pavia CS, Plummer MM. Clinical implications of nicotine as an antimicrobial agent and immune modulator. Biomed Pharmacother 2020; 129:110404. [PMID: 32603888 PMCID: PMC7320263 DOI: 10.1016/j.biopha.2020.110404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/21/2020] [Accepted: 06/13/2020] [Indexed: 12/28/2022] Open
Abstract
Nicotine is perhaps the most important and potent, pharmacologically active substance in tobacco products. This commentary examines the possible effects that nicotine has on microbial viability and also on the host's immune system as it responds to the indigenous microflora (the microbiome) due to nicotine-induced changes to the indigenous microbial environment and any associated antigenic stimulation / immunization that may occur. To our knowledge, the analysis of such profound microbiologic changes attributable to a tobacco-related product, such as nicotine, has not been fully explored in the context of its consequences on the viability of the microbiome/microbiota and on some of the host's basic physiologic processes, such as the immune response, and its possible association on the induction and persistence of certain immunologically related diseases. Future studies should be aimed at uncovering the molecular mechanisms involved in such interactions, especially in the context of manipulating them for therapeutic purposes.
Collapse
Affiliation(s)
- Charles S Pavia
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA; Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY, USA.
| | - Maria M Plummer
- Department of Clinical Specialties, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA.
| |
Collapse
|
11
|
Huang K, Ding K, Yang XJ, Hu CY, Jiang W, Hua XG, Liu J, Cao JY, Zhang T, Kan XH, Zhang XJ. Association between short-term exposure to ambient air pollutants and the risk of tuberculosis outpatient visits: A time-series study in Hefei, China. ENVIRONMENTAL RESEARCH 2020; 184:109343. [PMID: 32192989 DOI: 10.1016/j.envres.2020.109343] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The current evidence has presented mixed results between air pollutants exposure and the progression of tuberculosis (TB). The purpose of this study was to explore the association between short-term exposure to air pollutants and the risk of TB outpatient visits in Hefei, China. METHODS Time-series analysis was used to assess the effect of short-term exposure to ambient air pollutants on the risk of TB outpatient visits. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was applied to explore the association. The effects of different gender (male, female), age (≤65 years old, >65 years old) and season (cold season, warm season) on the risk of TB were investigated by stratified analysis. Sensitivity analyses were conducted to test the robustness of our findings. RESULTS A total of 22,749 active TB cases were identified from November 1, 2013 to December 31, 2018 in Hefei. The overall exposure-response curve showed that the concentration of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) and nitrogen dioxide (NO2) exposure were positively correlated with the risk of TB outpatient visits, while ozone (O3) and sulfur dioxide (SO2) exposure were negatively correlated with the risk of TB outpatient visits. The maximum lag-specific and cumulative relative risk (RR) of TB outpatient visits were 1.057 [95%CI: 1.002-1.115, lag 3 day] and 1.559 (95%CI: 1.057-2.300, lag 13 days) for each 10 μg/m³ increase in PM2.5; 1.026 (95% CI: 1.008-1.044, lag 0 day) and 1.559 (95%CI: 1.057-2.300, lag 07 days) for each 10 μg/m³ increase in NO2; 0.866 (95% CI: 0.801-0.935, lag 5 day) and 0.852 (95%CI: 1.01-1.11, lag 0-14 days) for each 10 μg/m³ increase in SO2 in the single-pollutant model. There was only a negative association between O3 exposure and the cumulative risk of TB outpatient visits (RR = 0.960, 95%CI: 0.936-0.984, lag 07 days). Stratified analyses showed that the effects of SO2 and O3 exposure were different between warm and cold seasons. The effect of NO2 exposure remained statistically significant in male, younger, and cold season subgroups. Besides, elderly people are more susceptible to PM2.5 exposure. CONCLUSION This study suggests that exposure to PM2.5, NO2, SO2, and O3 are associated with the risk of TB outpatient visits. Seasonal variation may have a greater impact on the risk of TB outpatient visits compared with gender and age.
Collapse
Affiliation(s)
- Kai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kun Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiao-Jing Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Wen Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiao-Guo Hua
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Jie Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ji-Yu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Zhang
- Anhui Chest Hospital, 397 Jixi Road, Hefei, 230022, China
| | - Xiao-Hong Kan
- Anhui Medical University Clinical College of Chest, 397 Jixi Road, Hefei, 230022, China; Anhui Chest Hospital, 397 Jixi Road, Hefei, 230022, China.
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
12
|
Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, Rodríguez Carlos A, Marin-Luévano SP, de Haro-Acosta JP, Enciso-Moreno JA, Rivas-Santiago B. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin Exp Immunol 2019; 199:230-243. [PMID: 31631328 DOI: 10.1111/cei.13388] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 01/12/2023] Open
Abstract
Smoking increases susceptibility to becoming infected with and developing tuberculosis. Among the components of cigarette smoke, nicotine has been identified as the main immunomodulatory molecule; however, its effect on the innate immune system is unknown. In the present study, the effect of nicotine on molecules of the innate immune system was evaluated. Lung epithelial cells and macrophages were infected with Mycobacterium tuberculosis (Mtb) and/or treated with nicotine. The results show that nicotine alone decreases the expression of the Toll-like receptors (TLR)-2, TLR-4 and NOD-2 in all three cell types, as well as the production of the SP-D surfactant protein in type II pneumocytes. Moreover, it was observed that nicotine decreases the production of interleukin (IL)-6 and C-C chemokine ligand (CCL)5 during Mtb infection in epithelial cells (EpCs), whereas in macrophages derived from human monocytes (MDMs) there is a decrease in IL-8, IL-6, tumor necrosis factor (TNF)-α, IL-10, CCL2, C-X-C chemokine ligand (CXCL)9 and CXCL10 only during infection with Mtb. Although modulation of the expression of cytokines and chemokines appears to be partially mediated by the nicotinic acetylcholine receptor α7, blocking this receptor found no effect on the expression of receptors and SP-D. In summary, it was found that nicotine modulates the expression of innate immunity molecules necessary for the defense against tuberculosis.
Collapse
Affiliation(s)
- C E Valdez-Miramontes
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - L A Trejo Martínez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - F Torres-Juárez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - A Rodríguez Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - S P Marin-Luévano
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico.,Research Center in Health Sciences and Biomedicine, San Luis Potosí, México
| | - J P de Haro-Acosta
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - J A Enciso-Moreno
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - B Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| |
Collapse
|
13
|
Xu M, Liao J, Yin P, Hou J, Zhou Y, Huang J, Liu B, Chen R, Ke L, Chen H, Hu P. Association of air pollution with the risk of initial outpatient visits for tuberculosis in Wuhan, China. Occup Environ Med 2019; 76:560-566. [DOI: 10.1136/oemed-2018-105532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/14/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022]
Abstract
ObjectivesPrevious studies suggested the association of air pollution with initial Mycobacterium tuberculosis infection and the disease development. However, few studies have been conducted on air pollution and initial tuberculosis (TB) consults using short-interval data. We investigated the weekly association between air pollution and initial TB outpatient visits.MethodsWe used a Poisson regression model combined with a distributed lag non-linear model to conduct a time-series study with weekly air pollution data and TB cases during 2014–2017 in Wuhan, China.ResultsA 10 µg/m3 increase in NO2 (nitrogen dioxide) was associated with 11.74% (95% CI: 0.70 to 23.98, lag 0–1 weeks), 21.45% (95% CI: 1.44 to 45.41, lag 0–2 weeks) and 12.8% (95% CI: 0.97 to 26.02, lag 0–1 weeks) increase in initial TB consults among all patients with TB, old patients (≥60 years old) and male ones, respectively. A 10 µg/m3 increase in SO2 (sulfur dioxide) was associated with −22.23% (95% CI: −39.23 to −0.49, lag 0–16 weeks), −28.65% (95% CI: −44.3 to −8.58, lag 0–16 weeks), −23.85 (95% CI: −41.79 to −0.37, lag 0–8 weeks) and −23.82% (95% CI: −41.31 to −1.11, lag 0–16 weeks) increase in initial TB consults among the total, young (aged 15–59 years old), old and male patients, respectively. In old patients, a 0.1 mg/m3 increase in CO (carbon monoxide) and a 10 µg/m3 increase in PM2.5 (particulate matter) were separately associated with 42.32% (95% CI: 1.16 to 100.22, lag 0–16 weeks) and 17.38% (95% CI: 0.28 to 37.38, lag 0–16 weeks) increases in TB consults.ConclusionOur study first highlighted the importance of weekly association between air pollution and the risk of initial TB consults, which is helpful for the arrangements of TB screening and medical assistance.
Collapse
|
14
|
Gillott H, Jackson Spence F, Tahir S, Hodson J, Nath J, Sharif A. Deceased-Donor Smoking History Is Associated With Increased Recipient Mortality After Kidney Transplant: A Population-Cohort Study. EXP CLIN TRANSPLANT 2018; 17:183-189. [PMID: 29766775 DOI: 10.6002/ect.2017.0198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Historical data have suggested that donor smoking is associated with detrimental clinical outcomes for recipients of kidneys from deceased donors. However, the effects of smoking status of a kidney donor on the outcomes of the recipient in a contemporary setting of immunosuppression and transplant practice have not yet been ascertained. MATERIALS AND METHODS This retrospective, population-cohort study analyzed data of all deceased-donor kidney-alone transplant procedures performed in the United Kingdom between April 2001 and April 2013. Our study included 11?199 deceased-donor kidney allograft recipients, with median follow-up of 46 months posttransplant. RESULTS In our cohort, 5280 deceased donors (47.1%) had a documented history of smoking. Deceased donors with versus those without smoking history were more likely to be younger (mean age of 48 vs 50 years; P < .001), be of white ethnicity (96.6% vs 95.3%; P < .001), and have brain death before donation (77.1% vs 74.9%; P = .006). On unadjusted survival analyses, overall patient survival was significantly shorter in patients who received kidney allografts from deceased donors with smoking history (hazard ratio of 1.12, 95% confidence interval, 1.00-1.25; P = .044). No significant association was seen for death-censored or overall graft survival. Our multivariate survival analyses showed that, after accounting for confounding factors, the effects of donor smoking status remained significant for patient survival (hazard ratio of 1.16, 95% CI, 1.03-1.29; P =.011) but not graft survival. CONCLUSIONS This population-cohort study suggests that deceased-donor kidneys from smokers contribute to an increased risk of death for kidney allograft recipients. These study findings imply donor smoking history should be factored into the risk stratification decision for recipient selection to optimize decision making; however, further clarification and validation of these data are warranted.
Collapse
Affiliation(s)
- Holly Gillott
- From the University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Vaping is gaining popularity in the USA, particularly among teens and young adults. While e-cigs are commonly represented as safer alternatives to tobacco cigarettes, little is known regarding the health effects of their short- or long-term use, especially in individuals with pre-existing respiratory diseases such as asthma. Flavored e-cig liquids (e-liquids) and e-cig aerosols contain airway irritants and toxicants that have been implicated in the pathogenesis and worsening of lung diseases. In this review, we will summarize existing data on potential health effects of components present in e-cig aerosols, such as propylene glycol, vegetable glycerin, nicotine, and flavorings, and discuss their relevance in the context of asthma. RECENT FINDINGS Recent survey data indicate that adolescents with asthma had a higher prevalence of current e-cig use (12.4%) compared to their non-asthmatics peers (10.2%) and conveyed positive beliefs about tobacco products, especially e-cigs. Similarly, a study conducted among high school students from Ontario, Canada, indicated a greater likelihood of e-cig use in asthmatics as compared to their non-asthmatic peers. Availability of different flavorings is often cited as the main reason among youth/adolescents for trying e-cigs or switching from cigarettes to e-cigs. Occupational inhalation of some common food-safe flavoring agents is reported to cause occupational asthma and worsen asthmatic symptoms. Moreover, workplace inhalation exposures to the flavoring agent diacetyl have caused irreversible obstructive airway disease in healthy workers. Additionally, recent studies report that thermal decomposition of propylene glycol (PG) and vegetable glycerin (VG), the base constituents of e-liquids, produces reactive carbonyls, including acrolein, formaldehyde, and acetaldehyde, which have known respiratory toxicities. Furthermore, recent nicotine studies in rodents reveal that prenatal nicotine exposures lead to epigenetic reprogramming in the offspring, abnormal lung development, and multigenerational transmission of asthmatic-like symptoms. Comparisons of the toxicity and health effects of e-cigs and conventional cigarettes often focus on toxicants known to be present in cigarette smoke (CS) (i.e., formaldehyde, nitrosamines, etc.), as well as smoking-associated clinical endpoints, such as cancer, bronchitis, and chronic obstructive pulmonary disease (COPD). However, this approach disregards potential toxicity of components unique to flavored e-cigs, such as PG, VG, and the many different flavoring chemicals, which likely induce respiratory effects not usually observed in cigarette smokers.
Collapse
Affiliation(s)
- Phillip W Clapp
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ilona Jaspers
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Café-Mendes CC, Garay-Malpartida HM, Malta MB, de Sá Lima L, Scavone C, Ferreira ZS, Markus RP, Marcourakis T. Chronic nicotine treatment decreases LPS signaling through NF-κB and TLR-4 modulation in the hippocampus. Neurosci Lett 2016; 636:218-224. [PMID: 27984197 DOI: 10.1016/j.neulet.2016.10.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/09/2016] [Accepted: 10/20/2016] [Indexed: 01/30/2023]
Abstract
The hippocampus is a brain region that is rich in nicotinic acetylcholine receptors (nAChRs), especially the α7 subtype. The hippocampus is severely affected in disorders that have a neuroinflammatory component, such as Alzheimer's disease, Parkinson's disease, and schizophrenia. Previous studies demonstrated both in vivo and in vitro that nicotine inhibits immunological responses, including those that are triggered by the inflammatory agent lipopolysaccharide (LPS), the endotoxin of Gram-negative bacteria. The present study investigated whether chronically administered nicotine interferes with the nuclear binding of nuclear factor-κB (NF-κB) and the expression of LPS-induced inflammatory response genes. The results indicated that chronic nicotine administration (0.1mg/kg, s.c., 14days) inhibited the LPS-induced nuclear binding of NF-κB and mRNA expression levels of Tnf, Il1b, Nos2, and Tlr4. The presence of both the selective α7 nAChR antagonist methyllycaconitine (MLA; 5.0mg/kg i.p., 14days) and the nonselective nAChR antagonist mecamylamine (Meca; 1.0mg/kg, s.c., 14days) reversed the inhibitory effects of nicotine. These results suggest that the chronic activation of α7- and αxβy-containing nAChRs reduces acute inflammatory responses in the brain.
Collapse
Affiliation(s)
- Cecília Cerqueira Café-Mendes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Marília Brinati Malta
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larrissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristóforo Scavone
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Zulma S Ferreira
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
Harwani SC, Ratcliff J, Sutterwala FS, Ballas ZK, Meyerholz DK, Chapleau MW, Abboud FM. Nicotine Mediates CD161a+ Renal Macrophage Infiltration and Premature Hypertension in the Spontaneously Hypertensive Rat. Circ Res 2016; 119:1101-1115. [PMID: 27660287 PMCID: PMC5085865 DOI: 10.1161/circresaha.116.309402] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/22/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE Renal inflammation contributes to the pathophysiology of hypertension. CD161a+ immune cells are dominant in the (SHR) spontaneously hypertensive rat and expand in response to nicotinic cholinergic activation. OBJECTIVE We aimed to phenotype CD161a+ immune cells in prehypertensive SHR after cholinergic activation with nicotine and determine if these cells are involved in renal inflammation and the development of hypertension. METHODS AND RESULTS Studies used young SHR and WKY (Wistar-Kyoto) rats. Splenocytes and bone marrow cells were exposed to nicotine ex vivo, and nicotine was infused in vivo. Blood pressures, kidney, serum, and urine were obtained. Flow cytometry, Luminex/ELISA, immunohistochemistry, confocal microscopy, and Western blot were used. Nicotinic cholinergic activation induced proliferation of CD161a+/CD68+ macrophages in SHR-derived splenocytes, their renal infiltration, and premature hypertension in SHR. These changes were associated with increased renal expression of MCP-1 (monocyte chemoattractant protein-1) and VLA-4 (very-late antigen-4). LLT1 (lectin-like transcript 1), the ligand for CD161a, was overexpressed in SHR kidney, whereas vascular cellular and intracellular adhesion molecules were similar to those in WKY. Inflammatory cytokines were elevated in SHR kidney and urine after nicotine infusion. Nicotine-mediated renal macrophage infiltration/inflammation was enhanced in denervated kidneys, not explained by angiotensin II levels or expression of angiotensin type-1/2 receptors. Moreover, expression of the anti-inflammatory α7-nAChR (α7-nicotinic acetylcholine receptor) was similar in young SHR and WKY rats. CONCLUSIONS A novel, inherited nicotinic cholinergic inflammatory effect exists in young SHR, measured by expansion of CD161a+/CD68+ macrophages. This leads to renal inflammation and premature hypertension, which may be partially explained by increased renal expression of LLT-1, MCP-1, and VLA-4.
Collapse
MESH Headings
- Age of Onset
- Angiotensin II/metabolism
- Animals
- Antigens, CD/analysis
- Antigens, Differentiation, Myelomonocytic/analysis
- Cell Movement/drug effects
- Cells, Cultured
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Cytokines/biosynthesis
- Cytokines/genetics
- Denervation
- Gene Expression Regulation/drug effects
- Hypertension/etiology
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension, Renal/etiology
- Hypertension, Renal/genetics
- Hypertension, Renal/metabolism
- Hypertension, Renal/pathology
- Immunophenotyping
- Integrin alpha4beta1/biosynthesis
- Integrin alpha4beta1/genetics
- Kidney/innervation
- Kidney/pathology
- Lectins/biosynthesis
- Lectins/genetics
- Macrophages/classification
- Macrophages/drug effects
- Macrophages/pathology
- Male
- NK Cell Lectin-Like Receptor Subfamily B/analysis
- Nephritis/chemically induced
- Nephritis/physiopathology
- Nicotine/pharmacology
- Nicotine/toxicity
- Norepinephrine/metabolism
- Prehypertension/etiology
- Prehypertension/genetics
- Prehypertension/pathology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/genetics
- alpha7 Nicotinic Acetylcholine Receptor/biosynthesis
- alpha7 Nicotinic Acetylcholine Receptor/genetics
Collapse
Affiliation(s)
- Sailesh C Harwani
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City.
| | - Jason Ratcliff
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Fayyaz S Sutterwala
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Zuhair K Ballas
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - David K Meyerholz
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Mark W Chapleau
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| | - Francois M Abboud
- From the Department of Internal Medicine (S.C.H., J.R., F.S.S., Z.K.B., M.W.C., F.M.A.), Departments of Molecular Physiology and Biophysics (M.W.C., F.M.A.), and Veterans Affairs Medical Center (F.S.S., Z.K.B., M.W.C.), Iowa City; and Department of Pathology (D.K.M.), Inflammation Program, Department of Internal Medicine (F.S.S.), Center for Immunology and Immune Mediated Diseases (S.C.H., F.S.S., F.M.A.), and Abboud Cardiovascular Research Center (S.C.H., J.R., M.W.C., F.M.A.), University of Iowa Carver College of Medicine, Iowa City
| |
Collapse
|
18
|
Montaño-Velázquez BB, Flores-Rojas EB, García-Vázquez FJ, Jurado-Hernandez S, Venancio Hernández MA, Alanis Flores AK, Jáuregui-Renaud K. Effect of cigarette smoke on counts of immunoreactive cells to eotaxin-1 and eosinophils on the nasal mucosa in young patients with perennial allergic rhinitis. Braz J Otorhinolaryngol 2016; 83:420-425. [PMID: 27287302 PMCID: PMC9442755 DOI: 10.1016/j.bjorl.2016.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/13/2016] [Accepted: 04/27/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction In teenagers with perennial allergic rhinitis, exposure to tobacco cigarette smoke increases the count of eosinophils in the nasal mucosa; the recruitment of eosinophils arises from the combined action of a number of cellular and molecular signals, including eotaxin. Objective To assess the effect of exposure to tobacco cigarette smoke on the count of immunoreactive cells to eotaxin-1 and eosinophils on the nasal mucosa of children and teenagers with perennial allergic rhinitis. Methods In a cross-sectional study, forty-four patients were evaluated (aged 7–19 years old): 22 with and 22 with no exposure to tobacco cigarette smoke. After replying to 2 validated questionnaires, on Asthma and Allergies in Childhood and on the severity of nasal symptoms, nasal mucosal samples were obtained by scraping the middle one-third of the inferior turbinates. Then counts of immunoreactive cells to eotaxin-1 and eosinophils were assessed by immunohistochemistry. Results Patients with exposure to tobacco cigarette smoke showed higher cell counts of both eotaxin-1 and eosinophils than patients with no exposure to the smoke, with no correlation between the two variables. However, both counts, of eotaxin-1 and eosinophils, were related to the cotinine/creatinine ratio. Conclusions Exposure to tobacco cigarette smoke can increase eotaxin-1 and the count of eosinophils in the nasal mucosa of young patients with perennial allergic rhinitis.
Collapse
Affiliation(s)
| | - Eulalia Beatriz Flores-Rojas
- Instituto Mexicano del Seguro Social, Centro Médico Nacional La Raza, Service of Otorhinolaryngology, Mexico City, Mexico
| | | | - Silvio Jurado-Hernandez
- Instituto Mexicano del Seguro Social, Centro Médico Nacional La Raza, Service of Otorhinolaryngology, Mexico City, Mexico
| | - Marco Antonio Venancio Hernández
- Instituto Mexicano del Seguro Social, CMN La Raza, Hospital de Especialidades, Service of Immunology and Allergy, Mexico City, Mexico
| | - Angélica Kathya Alanis Flores
- Instituto Mexicano del Seguro Social, CMN La Raza, Hospital de Especialidades, Service of Immunology and Allergy, Mexico City, Mexico
| | - Kathrine Jáuregui-Renaud
- Instituto Mexicano del Seguro Social, Centro Médico Nacional sXXI, P.B. Edificio C Salud en el Trabajo, Medical Research Unit in Otoneurology, Mexico City, Mexico.
| |
Collapse
|
19
|
Lippiello P, Bencherif M, Hauser T, Jordan K, Letchworth S, Mazurov A. Nicotinic receptors as targets for therapeutic discovery. Expert Opin Drug Discov 2015; 2:1185-203. [PMID: 23496128 DOI: 10.1517/17460441.2.9.1185] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) represent a class of therapeutic targets with the potential to impact numerous diseases and disorders where significant unmet medical needs remain. The latter include cognitive and neurodegenerative diseases; psychotic disorders, such as schizophrenia; acute nociceptive, neuropathic and inflammatory pain; affective disorders, such as depression and inflammation, where nAChR subtypes modulate key cellular pathways involved in anti-inflammatory processes as well as cell survival. Our increased understanding of the heterogeneity of nAChR targets is defining the relationship of biologic effects to specific receptor subtypes, which in turn, will allow further refinement of desired therapeutic activities. Both preclinical and clinical evidence support the notion that novel compounds targeting specific nAChR subtypes will offer increased potency and efficacy, longer lasting effects, fewer side effects and a more rapid onset of action and less dependence, compared with existing therapies. Clinical proof-of-concept is rapidly emerging and will solidify the position of this new therapeutic approach.
Collapse
Affiliation(s)
- Pm Lippiello
- Targacept, Inc., 200 East 1st Street, Suite 300, Winston-Salem, NC 27101, USA +1 336 480 2100 ; +1 336 480 2107 ;
| | | | | | | | | | | |
Collapse
|
20
|
Dhanaraj B, Papanna MK, Adinarayanan S, Vedachalam C, Sundaram V, Shanmugam S, Sekar G, Menon PA, Wares F, Swaminathan S. Prevalence and risk factors for adult pulmonary tuberculosis in a metropolitan city of South India. PLoS One 2015; 10:e0124260. [PMID: 25905900 PMCID: PMC4408069 DOI: 10.1371/journal.pone.0124260] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/11/2015] [Indexed: 11/24/2022] Open
Abstract
Background The present study measured the community prevalence and risk factors of adult pulmonary tuberculosis (PTB) in Chennai city, and also studied geographical distribution and the presence of different M. tuberculosis strains in the survey area. Methods A community-based cross sectional survey was carried out from July 2010 to October 2012 in Chennai city. Prevalence of bacteriologically positive PTB was estimated by direct standardization method. Univariate and multivariate analyses were carried out to identify significant risk factors. Drug susceptibility testing and spoligotyping was performed on isolated M. tuberculosis strains. Mapping of PTB cases was done using geographic positioning systems. Results Of 59,957 eligible people, 55,617 were screened by X-ray and /or TB symptoms and the prevalence of smear, culture, and bacteriologically positive PTB was estimated to be 228 (95% CI 189–265), 259 (95% CI 217–299) and 349 (95% CI 330–428) per 100,000 population, respectively. Prevalence of smear, culture, and bacteriologically positive PTB was highest amongst men aged 55–64 years. Multivariate analysis showed that occurrence of both culture and bacteriologically positive PTB disease was significantly associated with: age >35 years, past history of TB treatment, BMI <18.5 Kgs/m2, solid cooking fuel, and being a male currently consuming alcohol. The most frequent spoligotype family was East African Indian. Spatial distribution showed that a high proportion of patients were clustered in the densely populated north eastern part of the city. Conclusion Our findings demonstrate that TB is a major public health problem in this urban area of south India, and support the use of intensified case finding in high risk groups. Undernutrition, slum dwelling, indoor air pollution and alcohol intake are modifiable risk factors for TB disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gomathi Sekar
- National Institute for Research in Tuberculosis, Chennai, India
| | | | - Fraser Wares
- Global TB Programme, World Health Organization, Geneva, Switzerland
| | - Soumya Swaminathan
- National Institute for Research in Tuberculosis, Chennai, India
- * E-mail:
| |
Collapse
|
21
|
Jukosky J, Gosselin BJ, Foley L, Dechen T, Fiering S, Crane-Godreau MA. In vivo Cigarette Smoke Exposure Decreases CCL20, SLPI, and BD-1 Secretion by Human Primary Nasal Epithelial Cells. Front Psychiatry 2015; 6:185. [PMID: 26793127 PMCID: PMC4710704 DOI: 10.3389/fpsyt.2015.00185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/18/2015] [Indexed: 11/30/2022] Open
Abstract
Smokers and individuals exposed to second-hand cigarette smoke have a higher risk of developing chronic sinus and bronchial infections. This suggests that cigarette smoke (CS) has adverse effects on immune defenses against pathogens. Epithelial cells are important in airway innate immunity and are the first line of defense against infection. Airway epithelial cells not only form a physical barrier but also respond to the presence of microbes by secreting antimicrobials, cytokines, and chemokines. These molecules can lyse infectious microorganisms and/or provide signals critical to the initiation of adaptive immune responses. We examined the effects of CS on antimicrobial secretions of primary human nasal epithelial cells (PHNECs). Compared to non-CS-exposed individuals, PHNEC from in vivo CS-exposed individuals secreted less chemokine ligand (C-C motif) 20 (CCL20), Beta-defensin 1 (BD-1), and SLPI apically, less BD-1 and SLPI basolaterally, and more CCL20 basolaterally. Cigarette smoke extract (CSE) exposure in vitro decreased the apical secretion of CCL20 and beta-defensin 1 by PHNEC from non-CS-exposed individuals. Exposing PHNEC from non-CS exposed to CSE also significantly decreased the levels of many mRNA transcripts that are involved in immune signaling. Our results show that in vivo or in vitro exposure to CS alters the secretion of key antimicrobial peptides from PHNEC, but that in vivo CS exposure is a much more important modifier of antimicrobial peptide secretion. Based on the gene expression data, it appears that CSE disrupts multiple immune signaling pathways in PHNEC. Our results provide mechanistic insight into how CS exposure alters the innate immune response and increases an individual's susceptibility to pathogen infection.
Collapse
Affiliation(s)
- James Jukosky
- Department of Natural Science, Colby-Sawyer College , New London, NH , USA
| | - Benoit J Gosselin
- Department of Otolaryngology, Dartmouth Hitchcock Medical Center , Lebanon, NH , USA
| | - Leah Foley
- Department of Natural Science, Colby-Sawyer College , New London, NH , USA
| | - Tenzin Dechen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Mardi A Crane-Godreau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| |
Collapse
|
22
|
Xu Y, Zhang Y, Cardell LO. Nicotine exaggerates LPS-induced airway hyperreactivity via JNK-mediated up-regulation of Toll-like receptor 4. Am J Respir Cell Mol Biol 2014; 51:370-9. [PMID: 24669857 DOI: 10.1165/rcmb.2013-0409oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tobacco smokers often display increased airway hyperreactivity (AHR) when faced with bacterial infections. The present study uses a murine organ-culture model to dissect the mechanisms involved in this exaggerated smooth muscle response. Nicotine simulates the effects of smoking, and LPS represents bacterial infection. Contractile responses of isolated murine tracheal segments were analyzed in myographs after organ culture with increasing concentrations of LPS and/or nicotine for 4 days with or without specific MAPK inhibitors. Nicotine's effect on the expression of cell surface Toll-like receptors (TLRs), MCP-1, COX-2, and TNF-α were examined by real-time PCR. Increased protein expression was verified by immunohistochemistry. LPS concentration-dependently increased contractile responses to bradykinin and des-Arg(9)-bradykinin. A combination of nicotine and low-dose LPS caused powerful synergistic contractions along with increased kinin receptor expression. Specific kinin B1 and B2 receptor inhibitors blocked this reaction. Nicotine increased mRNA and protein expression of TLR4 and -6 in the epithelium and smooth muscle layer, with MCP-1 and COX-2 mRNA increasing in parallel. Specific inhibition of JNK attenuated nicotine's effects. In conclusion, long-term exposure to nicotine up-regulated the expression of TLR4 and -6 via a JNK-related pathway, causing an exaggeration of the LPS-induced local airway inflammation and increased AHR. This might offer a mechanistic explanation to the increased AHR seen in tobacco smokers confronted with bacterial infections.
Collapse
Affiliation(s)
- Yuan Xu
- 1 Division of Ear, Nose and Throat Diseases, Department of CLINTEC, Karolinska Institutet, Karolinska University Hospital Stockholm, Sweden; and
| | | | | |
Collapse
|
23
|
Kennedy CA, Zerbo E. HIV-Related Neurocognitive Disorders and Drugs of Abuse: Mired in Confound, Surrounded by Risk. CURRENT ADDICTION REPORTS 2014. [DOI: 10.1007/s40429-014-0028-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Clark RB, Lamppu D, Libertine L, McDonough A, Kumar A, LaRosa G, Rush R, Elbaum D. Discovery of novel 2-((pyridin-3-yloxy)methyl)piperazines as α7 nicotinic acetylcholine receptor modulators for the treatment of inflammatory disorders. J Med Chem 2014; 57:3966-83. [PMID: 24814197 DOI: 10.1021/jm5004599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein we report the design, synthesis, and structure-activity relationships for a new class of α7 nicotinic acetylcholine receptor (nAChR) modulators based on the 2-((pyridin-3-yloxy)methyl)piperazine scaffold. The oxazolo[4,5-b]pyridine, (R)-18, and 4-methoxyphenylurea, (R)-47, were identified as potent and selective modulators of the α7 nAChR with favorable in vitro safety profiles and good oral bioavailability in mouse. Both compounds were shown to significantly inhibit cellular infiltration in a murine model of allergic lung inflammation. Despite the structural and in vivo functional similarities in the compounds, only (R)-18 was shown to be an agonist. Compound (R)-47 demonstrated silent agonist activity. These data support the hypothesis that the anti-inflammatory activity of the α7 nAChR is mediated by a signal transduction pathway that is independent of ion current.
Collapse
Affiliation(s)
- Roger B Clark
- Critical Therapeutics, Inc. , 60 Westview Street, Lexington, Massachusetts 02421, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wilson LE, Pawlita M, Castle PE, Waterboer T, Sahasrabuddhe V, Gravitt PE, Schiffman M, Wentzensen N. Natural immune responses against eight oncogenic human papillomaviruses in the ASCUS-LSIL Triage Study. Int J Cancer 2013; 133:2172-81. [PMID: 23588935 DOI: 10.1002/ijc.28215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/14/2013] [Indexed: 11/10/2022]
Abstract
Only a subset of women with human papillomavirus (HPV) infections will become seropositive, and the factors influencing seroconversion are not well understood. We used a multiplex serology assay in women with mildly abnormal cytology results to examine seroreactivity to oncogenic HPV genotypes. An unbiased subset of women in the atypical squamous cell of undetermined significance /low-grade squamous intraepithelial lesion Triage Study provided blood samples at trial enrollment for serological testing. A Luminex assay based on glutathione s-transferase-L1 fusion proteins as antigens was used to test seroreactivity against eight carcinogenic HPV genotypes (16, 18, 31, 33, 35, 45, 52 and 58). We analyzed the relationship between seroprevalence in women free of precancer (N = 2,464) and HPV DNA status, age, sexual behavior and other HPV-related risk factors. The overall seroprevalence was 24.5% for HPV16 L1 and ∼20% for 18L1 and 31L1. Among women free of precancer, seroprevalence peaked in women less than 29 years and decreased with age. Type-specific seroprevalence was associated with baseline DNA detection for HPV16 (OR = 1.36, 95%CI: 1.04-1.79) and HPV18 (OR = 2.31, 95%CI: 1.61-3.32), as well as for HPV52 and HPV58. Correlates of sexual exposure were associated with increased seroprevalence across most genotypes. Women who were current or former smokers were less likely to be seropositive for all eight of the tested oncogenic genotypes. The multiplex assay showed associations between seroprevalence and known risk factors for HPV infection across nearly all tested HPV genotypes but associations between DNA- and serostatus were weak, suggesting possible misclassification of the participants' HPV serostatus.
Collapse
Affiliation(s)
- Lauren E Wilson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Olayanju AO, Rahamon SK, Arinola OG. Salivary immunoglobulin classes in Nigerian cigarette smokers: Indication for increased risk of oral diseases. Dent Res J (Isfahan) 2013; 9:531-4. [PMID: 23559915 PMCID: PMC3612187 DOI: 10.4103/1735-3327.104869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Cigarette smoking is a worldwide social epidemic and it is one of the main causes of preventable death and disability. Gingivitis, periodontitis, pocket depth, attachment loss, alveolar bone loss, and tooth loss are some of oral pathologies commonly found in cigarette smokers. The aim of this study was to explore, for the first time among Nigerians, the interplay between components of cigarette smoke and salivary levels of immunoglobulin classes so as to provide oral immunological based reasons for oral diseases in cigarette smokers. MATERIALS AND METHODS In this case-control study, 5 mL of unstimulated saliva was collected in plain sample bottles from 24 active smokers who smoke at least 6 sticks of cigarette per day and 21 sex and age-matched non-smokers who were apparently healthy. The samples were spun and supernatant stored at -20°C until assayed. The immunoglobulin levels of the samples were estimated using enzyme-linked immunosorbent assay (ELISA). Student's t-test (unpaired) was used to determine significant differences between the two groups. P values less than 0.05 was considered significant. RESULTS No significant differences were observed in the mean salivary levels of IgG, IgA, and IgE. Only IgM was significantly lower in smokers compared with non-smokers (P = 0.038). The proportion of smokers with detectable level of salivary IgE was lower compared with controls. CONCLUSION Our study showed that there is decreased salivary IgM in smokers. This observation suggests that reduced salivary immunoglobulin level of IgM might be involved in the pathogenesis of oral diseases in cigarette smokers.
Collapse
Affiliation(s)
- Ayodeji Olatunde Olayanju
- Department of Chemical Pathology and Immunology, Immunology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
27
|
Cui WY, Zhao S, Polanowska-Grabowska R, Wang J, Wei J, Dash B, Chang SL, Saucerman JJ, Gu J, Li MD. Identification and characterization of poly(I:C)-induced molecular responses attenuated by nicotine in mouse macrophages. Mol Pharmacol 2012; 83:61-72. [PMID: 23028093 DOI: 10.1124/mol.112.081497] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To further our understanding of the effects of nicotine on the molecular responses of macrophages during virus or virus-like infections, poly(I:C)-stimulated macrophage-like RAW264.2 cells or mouse primary peritoneal macrophages were challenged with nicotine; and their molecular responses were evaluated using a qRT-PCR array, antibody array, ELISA, Western blotting, and Ca(2+) imaging. Of 51 genes expressed in the Toll-like receptor (TLR) and RIG-I-like receptor (RLR) pathways, mRNA expression of 15 genes in RAW264.7 cells was attenuated by nicotine, of which mRNA expression of IL-6, TNF-α, and IL-1β was confirmed to be attenuated in peritoneal macrophages. Concurrently, nicotine treatment attenuated the release of IL-6 and TNF-α from poly(I:C)-stimulated macrophages. However, when poly(I:C)-stimulated macrophages were challenged with nicotine plus α-bungarotoxin (α-BTX), secretion of IL-6 and TNF-α was found to be in a level seen with poly(I:C) stimulation only, indicating that α7-nAChR, a highly Ca(2+) permeable ion channel sensitive to blockade by α-BTX, is involved in this process. Furthermore, results from an antibody array indicated that nicotine treatment attenuated the phosphorylation of 82 sites, including Thr286 on CaMKIIα, from poly(I:C)-stimulated RAW264.7 cells, of which 28 are expressed in the downstream cascade of Ca(2+) signaling. Coincidentally, poly(I:C)-stimulated macrophages showed attenuated expression of phosphorylated CaMKIIα when pretreated with nicotine. In addition, nicotine attenuated intracellular Ca(2+) signal from poly(I:C)-stimulated RAW264.7 cells. Collectively, these results indicate that poly(I:C)-induced molecular responses of macrophages could be significantly attenuated by nicotine.
Collapse
Affiliation(s)
- Wen-Yan Cui
- Department of Psychiatry and Neurobehavioral Sciences University of Virginia 1670 Discovery Drive, Suite 110, Charlottesville, VA 22911, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ande A, Earla R, Jin M, Silverstein PS, Mitra AK, Kumar A, Kumar S. An LC-MS/MS method for concurrent determination of nicotine metabolites and the role of CYP2A6 in nicotine metabolite-mediated oxidative stress in SVGA astrocytes. Drug Alcohol Depend 2012; 125:49-59. [PMID: 22498344 PMCID: PMC3413753 DOI: 10.1016/j.drugalcdep.2012.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nicotine is known to generate oxidative stress through cytochrome P450 2A6 (CYP2A6)-mediated metabolism in the liver and other organs, including macrophages. This study has been designed to examine the role of CYP2A6 in nicotine metabolism and oxidative stress in SVGA cells, an immortalized human astrocyte cell line. METHODS SVGA astrocytes were treated with 1 μM nicotine, followed by determination of mRNA and protein levels of several CYPs using quantitative RT-PCR and western blot analyses, respectively. Quantitation of nicotine and the nicotine metabolites, cotinine and nicotine-derived nitrosamine ketones (NNK), was performed using an LC-MS/MS method. The generation of reactive oxygen species (ROS) was measured using flow cytometry. RESULTS Nicotine significantly upregulated mRNA and protein expression of the most abundantly expressed CYPs in SVGA astrocytes, CYP2A6 and CYP1A1. To characterize the metabolism of nicotine in astrocytes, a highly sensitive LC-MS/MS method was developed which is capable of quantifying very low concentrations of nicotine (0.3 ng/mL), cotinine and NNK (0.11 ng/mL). The LC-MS/MS results showed that nicotine is steadily metabolized to cotinine and NNK from 0.5 to 4h. Finally, we showed that nicotine initially causes an increase in ROS formation which is then gradually decreased, perhaps due to the increase in superoxide dismutase level. Nicotine metabolism and ROS formation by CYP2A6 were further confirmed by using tryptamine, a selective inhibitor of CYP2A6, which significantly lowered the levels of cotinine and NNK and inhibited ROS formation. CONCLUSIONS CYP2A6 plays a key role in nicotine metabolism and oxidative stress in astrocytes, and this has implications in nicotine-associated brain toxicity.
Collapse
Affiliation(s)
- Anusha Ande
- Pharmacology and Toxicology, School of Pharmacy, 3253 Health Sciences Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Ravinder Earla
- Pharmaceutical Sciences, School of Pharmacy, 5258 Health Sciences Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Mengyao Jin
- Pharmacology and Toxicology, School of Pharmacy, 3253 Health Sciences Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Peter S Silverstein
- Pharmacology and Toxicology, School of Pharmacy, 3253 Health Sciences Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Ashim K Mitra
- Pharmaceutical Sciences, School of Pharmacy, 5258 Health Sciences Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Anil Kumar
- Pharmacology and Toxicology, School of Pharmacy, 3253 Health Sciences Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Santosh Kumar
- Pharmacology and Toxicology, School of Pharmacy, 3253 Health Sciences Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA,Corresponding author: Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte St. Kansas City, MO 64108, USA Phone: 816-235-5494, Fax: 816-235-1776,
| |
Collapse
|
29
|
Wan F, Dai H, Zhang S, Moore Y, Wan N, Dai Z. Cigarette smoke exposure hinders long-term allograft survival by suppressing indoleamine 2, 3-dioxygenase expression. Am J Transplant 2012; 12:610-9. [PMID: 22050701 DOI: 10.1111/j.1600-6143.2011.03820.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cigarette smoke causes cancer and increases the vulnerability of smokers to infections. Epidemiologic studies have shown that smoking is one of major risk factors for late allograft rejection. Despite statistical data that associate smoking with allograft rejection, no any study has been conducted to prove that cigarette smoke directly causes allograft rejection in a cause-effect manner. In particular, investigation into immunologic mechanisms underlying smoke-related allograft rejection is lacking. Here we found that second hand smoke (SHS) hindered long-term islet allograft survival induced by CD154 costimulatory blockade plus donor-specific splenocyte transfusion (DST), although it failed to alter acute islet allograft rejection. SHS did not directly interfere with vigorously alloreactive T-cell proliferation in vivo and in vitro. Neither naturally occurring nor induced CD4+CD25+ Treg cell numbers were significantly reduced by SHS. However, SHS suppressed mRNA and protein expression of indoleamine 2, 3-dioxygenase (IDO) and its activity upon transplantation while IDO overexpression in islet allografts restored their long-term survival induced by CD154 blockade. Therefore, SHS prevents long-term allograft survival by inhibiting IDO expression and activity. Thus, our study for the first time demonstrates that SHS shortens allograft survival in a cause-effect manner and unveils a novel immunologic mechanism underlying smoking-related allograft rejection.
Collapse
Affiliation(s)
- F Wan
- Department of Immunology and Microbiology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, USA
| | | | | | | | | | | |
Collapse
|
30
|
Nouri-Shirazi M, Guinet E. Exposure to nicotine adversely affects the dendritic cell system and compromises host response to vaccination. THE JOURNAL OF IMMUNOLOGY 2012; 188:2359-70. [PMID: 22279108 DOI: 10.4049/jimmunol.1102552] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The magnitude of Th1 cells response to vaccination is a critical factor in determining protection from clinical disease. Our previous in vitro studies suggested that exposure to the nicotine component of cigarette smoke skews the differentiation of both human and mouse dendritic cell (DC) precursors into atypical DCs (DCs differentiated ex vivo in the presence of nicotine) lacking parameters essential for the development of Th1-mediated immunity. In this study, we determined the causal relationship between nicotine-induced DC alterations and host response to vaccines. We show that animals exposed to nicotine failed to develop and maintain Ag-specific effector memory Th1 cells and Ab production to protein-based vaccine formulated with Th1 adjuvants. Accordingly, both prophylactic and therapeutic vaccines failed to protect and cure the nicotine-exposed mice from disease. More importantly, we demonstrate the nicotine-induced defects in the biological activities of in vivo DCs as an underlying mechanism. Indeed, i.v. administration of DCs differentiated in the presence of nicotine preferentially promoted the development of Ag-specific IL-4-producing effector cells in the challenged mice. In addition, DC subsets isolated from mice exposed to nicotine produced significantly less cytokines in response to Th1 adjuvants and inadequately supported the development of Ag-specific Th1 cells. Collectively, our studies suggest that nicotine-induced defects in the DC system compromises vaccine efficacy in smokers.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Clinical Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|
31
|
Dholakia YN, D'souza DTB, Tolani MP, Chatterjee A, Mistry NF. Chest X-rays and associated clinical parameters in pulmonary tuberculosis cases from the National Tuberculosis Programme, Mumbai. Infect Dis Rep 2012; 4:e10. [PMID: 24470917 PMCID: PMC3892641 DOI: 10.4081/idr.2012.e10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 11/04/2011] [Accepted: 11/14/2011] [Indexed: 11/28/2022] Open
Abstract
The study was carried out in pulmonary tuberculosis (PTB) patients from the local Tuberculosis control programme, Mumbai, India. It examined features of chest X-rays and their correlation with clinical parameters for possible application in suspected multidrug resistant TB (MDRTB) and to predict outcome in new and treatment failure PTB cases. X-ray features (infiltrate, cavitation, miliary shadows, pleural effusion, mediastinal lymphadenopathy and extent of lesions) were analyzed to identify associations with biological/clinical parameters through univariate and multivariate logistic regression. Failures demonstrated associations between extensive lesions and high glycosylated hemoglobin (GHb) levels (P=0.028) and male gender (P=0.03). An association was also detected between cavitation and MDR (P=0.048). In new cases, bilateral cavities were associated with MDR (P=0.018) and male gender (P=0.01), low body mass index with infiltrates (P=0.008), and smoking with cavitation (P=0.0238). Strains belonging to the Manu1 spoligotype were associated with mild lesions (P=0.002). Poor outcome showed borderline significance with extensive lesions at onset (P=0.053). Furthermore, amongst new cases, smoking, the Central Asian Strain (CAS) spoligotype and high GHb were associated with cavitation, whereas only CAS spoligotypes and high GHb were associated with extensive lesions. The study highlighted associations between certain clinical parameters and X-ray evidence which support the potential of X-rays to predict TB, MDRTB and poor outcome. The use of X-rays as an additional tool to shorten diagnostic delay and shortlist MDR suspects amongst nonresponders to TB treatment should be explored in a setting with limited resources coping with a high MDR case load such as Mumbai.
Collapse
|
32
|
Armstrong AW, Armstrong EJ, Fuller EN, Sockolov ME, Voyles SV. Smoking and pathogenesis of psoriasis: a review of oxidative, inflammatory and genetic mechanisms. Br J Dermatol 2011; 165:1162-8. [PMID: 21777217 DOI: 10.1111/j.1365-2133.2011.10526.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent studies suggest that cigarette smoking may trigger the development of psoriasis through oxidative, inflammatory and genetic mechanisms. Smoking initiates formation of free radicals that stimulate cell signalling pathways active in psoriasis including mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB) and Janus kinase/signal transducers and activators of transcription (JAK-STAT). Smoking damages the skin by increasing formation of reactive oxygen species and decreasing the gene expression of antioxidants. Nicotine also stimulates innate immune cells integral to the pathogenesis of psoriasis including dendritic cells, macrophages and keratinocytes. These cells release cytokines that activate T lymphocytes and perpetuate a cycle of chronic inflammation. Smoking also enhances expression of genes known to confer an increased risk of psoriasis, including HLA-Cw6, HLA-DQA1*0201 and CYP1A1. Improved understanding of the possible link between smoking and psoriasis pathogenesis may provide further insight into mechanisms underlying smoking, psoriasis and risk of subsequent cardiovascular disease.
Collapse
Affiliation(s)
- A W Armstrong
- Department of Dermatology, University of California Davis, Sacramento, CA 95816, USA.
| | | | | | | | | |
Collapse
|
33
|
Capitanio B, Sinagra JL, Ottaviani M, Bordignon V, Amantea A, Picardo M. Acne and smoking. DERMATO-ENDOCRINOLOGY 2011; 1:129-35. [PMID: 20436880 DOI: 10.4161/derm.1.3.9638] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 07/28/2009] [Indexed: 01/15/2023]
Abstract
BACKGROUND.: Post-adolescent acne is an inflammatory disorder, whose cause is unknown. Contrasting data are available on correlation between acne and smoking habit. OBJECTIVES.: To verify the frequency of clinically non-inflammatory (atypical) post-adolescent acne (APAA) among women, a possible correlation with cigarette smoking, possible differences in sebum composition in a group of female smokers with acne compared to healthy smokers and non-smokers. METHOD AND RESULTS.: 1046 randomly selected women (25-50-years-old) participated at the study. In 60 selected female subjects we analyzed sebum composition for alpha-tocopherol, squalene and squalene monohydroperoxide. We found a high prevalence of APAA among women (74.6%), a strong correlation with smoking habit (p < 0.0001), as well as an increase in the grade of sebum peroxidation (p < 0.05) with a reduction in vitamin E (p = 0.02), in the subjects with acne compared to the controls. CONCLUSIONS.: Clinical evidence and experimental data showed a straight correlation between smoking habit and post-pubertal acne in which the clinically non-inflammatory type-APAA-is the most frequent. In the more severe cases we could consider APAA as a new entity (smoker's acne).
Collapse
|
34
|
Razani-Boroujerdi S, Langley RJ, Singh SP, Pena-Philippides JC, Rir-sima-ah J, Gundavarapu S, Mishra NC, Sopori ML. The role of IL-1β in nicotine-induced immunosuppression and neuroimmune communication. J Neuroimmune Pharmacol 2011; 6:585-96. [PMID: 21671006 DOI: 10.1007/s11481-011-9284-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/27/2011] [Indexed: 11/27/2022]
Abstract
Although a number of inflammatory cytokines are increased during sepsis, the clinical trials aimed at down-regulating these mediators have not improved the outcome. These paradoxical results are attributed to loss of the "tolerance" phase that normally follows the proinflammatory response. Chronic nicotine (NT) suppresses both adaptive and innate immune responses, and the effects are partly mediated by the nicotinic acetylcholine receptors in the brain; however, the mechanism of neuroimmune communication is not clear. Here, we present evidence that, in rats and mice, NT initially increases IL-1β in the brain, but the expression is downregulated within 1-2 week of chronic exposure, and the animals become resistant to proinflammatory/pyrogenic stimuli. To examine the relationship between NT, IL-1β, and immunosuppression, we hypothesized that NT induces IL-1β in the brain, and its constant presence produces immunological "tolerance". Indeed, unlike wild-type C57BL/6 mice, chronic NT failed to induce immunosuppression or downregulation of IL-1β expression in IL-1β-receptor knockout mice. Moreover, while acute intracerebroventricular administration of IL-1β in Lewis (LEW) rats activated Fyn and protein tyrosine kinase activities in the spleen, chronic administration of low levels of IL-1β progressively diminished the pyrogenic and T cell proliferative responses of treated animals. Thus, IL-1β may play a critical role in the perception of inflammation by the CNS and the induction of an immunologic "tolerant" state. Moreover, the immunosuppressive effects of NT might be at least partly mediated through its effects on the brain IL-1β. This represents a novel mechanism for neuroimmune communication.
Collapse
Affiliation(s)
- Seddigheh Razani-Boroujerdi
- Respiratory Immunology Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr., S.E., Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Decreased serum antibody responses to recombinant pneumocystis antigens in HIV-infected and uninfected current smokers. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:380-6. [PMID: 21191078 DOI: 10.1128/cvi.00421-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serologic studies can provide important insights into the epidemiology and transmission of Pneumocystis jirovecii. Exposure to P. jirovecii can be assessed by serum antibody responses to recombinant antigens from the major surface glycoprotein (MsgC), although factors that influence the magnitude of the antibody response are incompletely understood. We determined the magnitudes of antibody responses to P. jirovecii in comparison to adenovirus and respiratory syncytial virus (RSV) in HIV-infected and uninfected patients and identified predictors associated with the magnitude of the response. We performed a cross-sectional analysis using serum samples and data from 153 HIV-positive and 92 HIV-negative subjects enrolled in a feasibility study of the Veterans Aging Cohort 5 Site Study (VACS 5). Antibodies were measured using an enzyme-linked immunosorbent assay (ELISA). Independent predictors of antibody responses were determined using multivariate Tobit regression models. The results showed that serum antibody responses to P. jirovecii MsgC fragments were significantly and independently decreased in current smokers. Antibodies to P. jirovecii also tended to be lower with chronic obstructive pulmonary disease (COPD), hazardous alcohol use, injection drug use, and HIV infection, although these results were not statistically significant. These results were specific to P. jirovecii and did not correlate with adenovirus. Antibody responses to RSV were in the inverse direction. Thus, current smoking was independently associated with decreased P. jirovecii antibody responses. Whether smoking exerts an immunosuppressive effect that affects the P. jirovecii antibody response, colonization, or subsequent risk for disease is unclear; prospective, longitudinal studies are needed to evaluate these findings further.
Collapse
|
36
|
Jafari N, Hoppenbrouwers IA, Hop WCJ, Breteler MMB, Hintzen RQ. Cigarette smoking and risk of MS in multiplex families. Mult Scler 2009; 15:1363-7. [PMID: 19825892 DOI: 10.1177/1352458509345907] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent studies suggest that a history of cigarette smoking is a risk factor for multiple sclerosis (MS). We aimed to test the smoking effect in multiplex families, matching for both environmental and genetic factors. In a matched case-control study, 136 MS patients from 106 multiplex MS families were compared with their 204 healthy siblings as controls. Participants completed self-report questionnaires. Conditional logistic regression was used to analyse smoking and MS risk association while controlling for confounding by age and sex. Smoking history was classified in different variables. Within our survey the smoking history of MS patients and the controls did not differ. The odds of MS were comparable for different smoking levels. However, more intense exposure and women showed higher odds ratios, although non-significant. Association studies in families with relatively high genetic loading are unlikely to be confounded by smoking history.
Collapse
Affiliation(s)
- Naghmeh Jafari
- Department of Neurology, MS Centre ErasMS, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Osborne-Hereford AV, Rogers SW, Gahring LC. Neuronal nicotinic alpha7 receptors modulate inflammatory cytokine production in the skin following ultraviolet radiation. J Neuroimmunol 2008; 193:130-9. [PMID: 18077004 DOI: 10.1016/j.jneuroim.2007.10.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 10/26/2007] [Accepted: 10/29/2007] [Indexed: 12/31/2022]
Abstract
The anti-inflammatory effects of the neuronal nicotinic receptor alpha7 (nAChRalpha7) are proposed to require acetylcholine release from vagal efferents. The necessity for vagal innervation in this anti-inflammatory pathway was tested in the skin, which lacks parasympathetic innervation, using ultraviolet radiation (UVB) to induce a local pro-inflammatory response. Cytokine responses to UV in mice administered chronic oral nicotine, a nAChR agonist, were reduced. Conversely, nAChRalpha7 knock-out mice exposed to UVB elicit an enhanced pro-inflammatory cytokine response in the skin. Altered pro-inflammatory responses correlated with changes in SOCS3 protein. These results demonstrate that nAChRalpha7 can participate in modulating a local pro-inflammatory response in the absence of parasympathetic innervation.
Collapse
Affiliation(s)
- Amber V Osborne-Hereford
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84132, United States
| | | | | |
Collapse
|
38
|
Murdoch DM, Napravnik S, Eron JJ, Van Rie A. Smoking and predictors of pneumonia among HIV-infected patients receiving care in the HAART era. Open Respir Med J 2008; 2:22-8. [PMID: 19340321 PMCID: PMC2606650 DOI: 10.2174/1874306400802010022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Revised: 02/04/2008] [Accepted: 02/11/2008] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Smoking tobacco is disproportionably common among HIV-infected patients in the highly active antiretroviral therapy (HAART) era. METHODS An observational cohort study of 300 HIV-positive patients receiving care between 1996 and 2005 examined the effect of smoking on pneumonia risk. Multivariable analyses assessed the association between smoking and pneumonia risk and identified independent predictors of pneumonia during the HAART era. RESULTS Current smoking was common (67%). Eighty-two patients (27%) experienced 119 pneumonia episodes during 2151 patient-years of follow-up, with 7.2 episodes/100 person-years among smokers and 2.9 episodes/100 person-years among non-smokers (unadjusted incidence rate ratio (IRR): 2.50 (95% CI: 1.58, 4.09). Adjustment for age and HIV RNA level resulted in an IRR of 1.77 (95% CI: 0.98, 3.21). No prior antiretroviral therapy use (P-value <0.001), higher HIV RNA level (P-value = 0.01), lower CD4 count (P-value = 0.01), younger age (P-value = 0.01), and alcohol use (P-value = 0.04) were independent predictors of pneumonia. HAART use decreased pneumonia risk (IRR 0.28, 95% CI: 0.18, 0.44). CONCLUSIONS While HIV-positive smokers had over a 2-fold increase in the rate of pneumonia, the trend did not reach statistical significance in multivariable models. Clinical factors such as HAART, alcohol use and immunological status are important in pneumonia risk.
Collapse
Affiliation(s)
- David M Murdoch
- Division of Pulmonary & Critical Care Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | | | |
Collapse
|
39
|
Cheng PY, Lee YM, Law KK, Lin CW, Yen MH. The involvement of AMP-activated protein kinases in the anti-inflammatory effect of nicotine in vivo and in vitro. Biochem Pharmacol 2007; 74:1758-65. [PMID: 17869227 DOI: 10.1016/j.bcp.2007.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 12/31/2022]
Abstract
AMP-activated protein kinase (AMPK) is the downstream component of a kinase cascade that plays a pivotal role in energy homeostasis. AMPK has recently emerged as an attractive and novel target for inflammatory disorders. Thus, the aim of this study was to assess the role of AMPKalpha in the anti-inflammatory effect of nicotine in carrageenan-induced rat paw edema model and to evaluate the mechanism of nicotine-induced AMPKalpha phosphorylation in RAW 264.7 cells. The results indicate that nicotine alleviated paw edema and the activation of AMPKalpha involved in the anti-inflammatory effect of nicotine in vivo. In addition, nicotine was able to activate AMPKalpha phosphorylation in macrophages and this effect was mediated through nicotinic acetylcholine receptors. Furthermore, nicotine significantly induced the phosphorylation of Akt and the Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) protein expression in macrophages. Wortmannin, a specific inhibitor of phosphotidylinositol 3-kinase (PI3K), suppressed nicotine-induced Akt and AMPKalpha phosphorylation. STO-609, a CaMKK inhibitor, not only inhibited the activation of AMPKalpha but also suppressed the phosphorylation of Akt induced by nicotine. In conclusion, both of CaMKK and PI3K/Akt pathways are involved in the nicotine-induced AMPKalpha phosphorylation in macrophages, and the interaction of CaMKK and Akt may exist. AMPKalpha is a novel and critical component of anti-inflammatory effect of nicotine.
Collapse
Affiliation(s)
- Pao-Yun Cheng
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Razani-Boroujerdi S, Boyd RT, Dávila-García MI, Nandi JS, Mishra NC, Singh SP, Pena-Philippides JC, Langley R, Sopori ML. T cells express alpha7-nicotinic acetylcholine receptor subunits that require a functional TCR and leukocyte-specific protein tyrosine kinase for nicotine-induced Ca2+ response. THE JOURNAL OF IMMUNOLOGY 2007; 179:2889-98. [PMID: 17709503 DOI: 10.4049/jimmunol.179.5.2889] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute and chronic effects of nicotine on the immune system are usually opposite; acute treatment stimulates while chronic nicotine suppresses immune and inflammatory responses. Nicotine acutely raises intracellular calcium ([Ca(2+)](i)) in T cells, but the mechanism of this response is unclear. Nicotinic acetylcholine receptors (nAChRs) are present on neuronal and non-neuronal cells, but while in neurons, nAChRs are cation channels that participate in neurotransmission; their structure and function in nonexcitable cells are not well-defined. In this communication, we present evidence that T cells express alpha7-nAChRs that are critical in increasing [Ca(2+)](i) in response to nicotine. Cloning and sequencing of the receptor from human T cells showed a full-length transcript essentially identical to the neuronal alpha7-nAChR subunit (>99.6% homology). These receptors are up-regulated and tyrosine phosphorylated by treatment with nicotine, anti-TCR Abs, or Con A. Furthermore, knockdown of the alpha7-nAChR subunit mRNA by RNA interference reduced the nicotine-induced Ca(2+) response, but unlike the neuronal receptor, alpha-bungarotoxin and methyllycaconitine not only failed to block, but also actually raised [Ca(2+)](i) in T cells. The nicotine-induced release of Ca(2+) from intracellular stores in T cells did not require extracellular Ca(2+), but, similar to the TCR-mediated Ca(2+) response, required activation of protein tyrosine kinases, a functional TCR/CD3 complex, and leukocyte-specific tyrosine kinase. Moreover, CD3zeta and alpha7-nAChR co-immunoprecipitated with anti-CD3zeta or anti-alpha7-nAChR Abs. These results suggest that in T cells, alpha7-nAChR, despite its close sequence homology with neuronal alpha7-nAChR, fails to form a ligand-gated Ca(2+) channel, and that the nicotine-induced rise in [Ca(2+)](i) in T cells requires functional TCR/CD3 and leukocyte-specific tyrosine kinase.
Collapse
MESH Headings
- Aconitine/analogs & derivatives
- Aconitine/pharmacology
- Animals
- Bridged Bicyclo Compounds, Heterocyclic/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bungarotoxins/pharmacology
- CD3 Complex/metabolism
- Calcium/metabolism
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Humans
- Immunoprecipitation
- Jurkat Cells
- Leukocytes/enzymology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Neurons/metabolism
- Nicotine/pharmacology
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-fyn/metabolism
- Pyridines/metabolism
- Pyridines/pharmacology
- RNA, Small Interfering/pharmacology
- Rats
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
- Seddigheh Razani-Boroujerdi
- Immunology Division, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nowicki MJ, Karim R, Mack WJ, Minkoff H, Anastos K, Cohen M, Greenblatt RM, Young MA, Gange SJ, Levine AM. Correlates of CD4+ and CD8+ lymphocyte counts in high-risk immunodeficiency virus (HIV)-seronegative women enrolled in the women's interagency HIV study (WIHS). Hum Immunol 2007; 68:342-9. [PMID: 17462501 DOI: 10.1016/j.humimm.2007.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 12/22/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
Studies of human immunodeficiency virus (HIV) infection often compare values from HIV-uninfected controls, including CD4 and CD8 lymphocyte counts. Nonetheless, little is known regarding factors associated with CD4 and CD8 cell numbers in HIV-uninfected individuals. To ascertain potential factors associated with differences in CD4 and CD8 cells among HIV negative women, we studied these cells in a group of 953 women, enrolled as HIV-negative comparators in the Women's Interagency HIV Study. Using standard techniques, we measured CD4 and CD8 cells obtained during study-related visits every six months through visit 20 (maximum of 9.5 years). Results were correlated with demographic and behavioral factors, and data were analyzed using a multiple linear regression approach with generalized estimating equations. At baseline, the median age was 32.4 years, body mass index (BMI) was 26.4 kg/m(2), CD4 cell count was 1010 (range 214-2705)/microL, and CD8 cell count was 542 (range 72-2448)/microL. African-Americans comprised 54%, 24% were Hispanic, and 19% were Caucasian. In multivariate analysis, increasing age (p = 0.0006), increasing BMI (p = 0.001), and current smoking status (p = 0.03) were independent predictors of higher CD4 counts. Multivariate analyses of CD8 cells revealed that lower age (p = 0.001), higher BMI (p = 0.03), Hispanic race/ethnicity (p = 0.01); current smoking (p = 0.006), injection drug use (p = 0.02), and Hepatitis C infection (p = 0.01) were independent predictors of higher CD8 cell counts. Multiple demographic and behavioral factors may influence CD4 and CD8 counts in HIV negative women. These factors must be considered in future analyses comparing lymphocyte subsets in HIV positive and negative women.
Collapse
Affiliation(s)
- Marek J Nowicki
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ruixing Y, Qi B, Tangwei L, Jiaquan L. Effects of Nicotine on Angiogenesis and Restenosis in a Rabbit Model. Cardiology 2006; 107:122-31. [PMID: 16864991 DOI: 10.1159/000094658] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 05/15/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Nicotine is a major component of cigarette smoke and has been found to play an important role in angiogenesis. However, whether nicotine plays a role in restenosis has not been determined. Therefore, the aim of the present study was to determine the effects of nicotine on angiogenesis and restenosis in a rabbit model. METHODS Forty male New Zealand White rabbits were randomly divided into control and low-, middle-, and high-dose (0.005, 0.05 or 5 microg/kg, respectively) nicotine-treated groups. Balloon catheter denuding injury iliac artery and ligation of left anterior descending coronary artery were performed in all animals fed with a high-cholesterol diet (HCD) beginning 2 weeks before operation. Nicotine was administered daily by intramuscular injection in the ischemic hindlimb for 3 weeks. Control rabbits received an equal volume of phosphate-buffered saline alone. Collateral vessels of the ischemic hindlimb were observed by angiography of abdominal aorta, and the density of intramyocardial microvessels and proliferative activity of balloon-injured arteries were examined by immunohistochemistry. Serum levels of lipids and the indexes of hepatic or renal functions were also determined before HCD and after nicotine treatment. RESULTS One rabbit in control, two in low-, one in middle- and two in high-dose groups died during the experiment. The remaining 34 rabbits were included in the study. Two or five weeks after HCD, the levels of serum lipids were significantly increased in all groups, but there was no significant difference of the levels between control and nicotine-treated groups 3 weeks after treatment; the indexes of hepatic or renal functions showed no significant changes 3 weeks after nicotine treatment; there were no significant differences on collateral vessels shown by angiography in all four groups; the density of intramyocardial microvessels in three nicotine-treated groups was significantly higher than that in control group; but the intimal area and proliferative activity in the balloon-injured arteries in three nicotine-treated groups were also higher than those in control group. CONCLUSIONS The present study shows that intramuscular administration of nicotine for 3 weeks could not increase arteriogenesis in ischemic hindlimb of rabbits, but is capable of significantly promoting intramyocardial angiogenesis. Nicotine can also accelerate intimal proliferation and thickening of balloon catheter denuding injury iliac artery, so it may contribute to the development of restenosis.
Collapse
Affiliation(s)
- Yin Ruixing
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University, Guangxi, China.
| | | | | | | |
Collapse
|
43
|
Kwon JY, Kim YH, Kim SH, Kang MH, Maeng YS, Lee KY, Park YW. Difference in the expression of alpha 7 nicotinic receptors in the placenta in normal versus severe preeclampsia pregnancies. Eur J Obstet Gynecol Reprod Biol 2006; 132:35-9. [PMID: 16837119 DOI: 10.1016/j.ejogrb.2006.05.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/16/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The prevalence of preeclampsia is low in smokers, suggesting a possible role of nicotinic receptor in the pathophysiology of the disease. Alpha 7 nicotinic acetylcholine receptor (alpha7 nAChR) was recently found in non-neuronal tissue with various mediating functions. Therefore, we investigated the difference in the placental expression of the alpha7 nAChR in normal versus severe preeclampsia placentas. STUDY DESIGN Central portions of placenta were obtained from 9 severe preeclampsia women and 11 gestational-age-matched normal pregnant women delivered between the gestational ages of 33 and 40 weeks following elective or emergency cesarean section. RT-PCR, western blotting, and immunohistochemical staining were performed to evaluate the alpha7 nAChR expression difference. RESULTS In all the placentas, the alpha7 nAChR was expressed in endothelial cells, vascular smooth muscle cells, and stromal cells, but not in trophoblasts. The vascular staining was more intense in the severe preeclampsia placenta (p=0.02). Although the gene expression did not differ between the two groups, protein expression was greater in 7 of 9 placenta samples from the severe preeclampsia group. CONCLUSION Placental expression of alpha7 nAChR differs between normal and severe preeclampsia placentas, suggesting that it may be involved in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Ja-Young Kwon
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul 120-752, South Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Davies PDO, Yew WW, Ganguly D, Davidow AL, Reichman LB, Dheda K, Rook GA. Smoking and tuberculosis: the epidemiological association and immunopathogenesis. Trans R Soc Trop Med Hyg 2006; 100:291-8. [PMID: 16325875 DOI: 10.1016/j.trstmh.2005.06.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/10/2005] [Accepted: 06/10/2005] [Indexed: 11/26/2022] Open
Abstract
There is increasing evidence of a link between tuberculosis and smoking. This paper reviews the epidemiological evidence from the UK, China, India and the USA, summarizing some of the main papers which indicate an association. Where an association has been found there seems to be an increase in tuberculosis case rates of between two- and four-fold for those smoking in excess of 20 cigarettes a day, but it may be difficult to control for other factors, particularly alcohol consumption. The final part of the paper reviews possible mechanisms. A likely possibility is that nicotine turns off the production of TNF-alpha by the macrophages in the lungs, rendering the patient more susceptible to the development of progressive disease from latent Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- P D O Davies
- Tuberculosis Research and Resources Unit, Cardiothoracic Centre, Thomas Drive, Liverpool L14 3PE, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Gahring LC, Rogers SW. Neuronal nicotinic acetylcholine receptor expression and function on nonneuronal cells. AAPS JOURNAL 2006; 7:E885-94. [PMID: 16594641 PMCID: PMC2750958 DOI: 10.1208/aapsj070486] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Of the thousands of proven carcinogens and toxic agents contained within a cigarette, nicotine, while being the addictive agent, is often viewed as the least harmful of these compounds. Nicotine is a lipophilic molecule whose effects on neuronal nicotinic acetylcholine receptors (nAChR) have been primarily focused on its physiologic impact within the confines of the brain and peripheral nervous system. However, recently, many studies have found neuronal nAChRs to be expressed on many different nonneuronal cell types throughout the body, where increasing evidence suggests they have important roles in determining the consequences of nicotine use on multiple organs systems and diseases as diverse as ulcerative colitis, chronic pulmonary obstructive disease, and diabetes, as well as the neurologic disorders of Parkinson's and Alzheimer's disease. This review highlights current evidence for the expression of peripheral nAChRs in cells other than neurons and how they participate in fundamental processes, such as inflammation. Understanding these processes may offer novel therapeutic strategies to approach inflammatory diseases, as well as precautions in the design of interventional drugs.
Collapse
Affiliation(s)
- Lorise C Gahring
- Geriatric Research Education and Clinical Center, Salt Lake City VAMC, Salt Lake City, Utah 84132, USA.
| | | |
Collapse
|
46
|
Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, Tracey KJ, Al-Abed Y, Metz CN. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. ACTA ACUST UNITED AC 2005; 201:1113-23. [PMID: 15809354 PMCID: PMC2213139 DOI: 10.1084/jem.20040463] [Citation(s) in RCA: 376] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endothelial cell activation plays a critical role in regulating leukocyte recruitment during inflammation and infection. Based on recent studies showing that acetylcholine and other cholinergic mediators suppress the production of proinflammatory cytokines via the α7 nicotinic acetylcholine receptor (α7 nAChR) expressed by macrophages and our observations that human microvascular endothelial cells express the α7 nAChR, we examined the effect of cholinergic stimulation on endothelial cell activation in vitro and in vivo. Using the Shwartzman reaction, we observed that nicotine (2 mg/kg) and the novel cholinergic agent CAP55 (12 mg/kg) inhibit endothelial cell adhesion molecule expression. Using endothelial cell cultures, we observed the direct inhibitory effects of acetylcholine and cholinergic agents on tumor necrosis factor (TNF)-induced endothelial cell activation. Mecamylamine, an nAChR antagonist, reversed the inhibition of endothelial cell activation by both cholinergic agonists, confirming the antiinflammatory role of the nAChR cholinergic pathway. In vitro mechanistic studies revealed that nicotine blocked TNF-induced nuclear factor–κB nuclear entry in an inhibitor κB (IκB)α- and IκBɛ-dependent manner. Finally, with the carrageenan air pouch model, both vagus nerve stimulation and cholinergic agonists significantly blocked leukocyte migration in vivo. These findings identify the endothelium, a key regulator of leukocyte trafficking during inflammation, as a target of anti-inflammatory cholinergic mediators.
Collapse
Affiliation(s)
- Rubina W Saeed
- Laboratory of Medicinal Biochemistry, Institute for Medical Research at North Shore-LIJ, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Piubelli C, Cecconi D, Astner H, Caldara F, Tessari M, Carboni L, Hamdan M, Righetti PG, Domenici E. Proteomic changes in rat serum, polymorphonuclear and mononuclear leukocytes after chronic nicotine administration. Proteomics 2005; 5:1382-94. [PMID: 15751003 DOI: 10.1002/pmic.200401008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In order to gain information about the effect triggered at the molecular level by nicotine, its neuroimmunomodulatory properties and its impact on the pathogenesis of inflammatory diseases, peripheral blood serum and leukocytes of rat submitted to passive nicotine administration were subjected to proteomic investigation. Serum, polymorphonuclear (PMN) and mononuclear (MN) leukocytes from chronically treated animals and from control animals were analysed by a two-dimensional (2-D) gel electrophoresis/mass spectrometry approach to detect differentially expressed proteins. The nicotine regimen selected is known to have a stimulatory effect on locomotor activity and to produce a sensitisation of the mesolimbic dopamine system mechanism involved in addiction development. After 2-D gel analysis and matching, 36 spots in serum, seven in PMN and five in MN were found to display a statistical difference in their expression and were subjected to matrix-assisted laser desorption/ionization-time of flight-mass spectrometry peptide fingerprinting for protein identification. Fifteen different proteins were identified. The results indicate an overall impact of nicotine on proteins involved in a variety of cellular and metabolic pathways, including acute phase response (suggesting the effect on inflammatory cascades and more in general on the immune system), oxidative stress metabolism and assembly and regulation of cytoskeleton. In particular, the observed changes imply a general reduction in the inflammatory response with a concomitant increased unbalance of the oxidative stress metabolism in the periphery and point to a number of potential noninvasive markers for the central nervous system (CNS) and non-CNS mediated activities of nicotine.
Collapse
Affiliation(s)
- Chiara Piubelli
- Department of Agricultural and Industrial Biotechnologies, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The 'cytokine theory of disease' states that an overproduction of cytokines can cause the clinical manifestations of disease. Much effort has been expended to determine how cytokines are regulated in normal health. Transcriptional, translational and other molecular control mechanisms protect the host from excessive cytokine production. A recent discovery revealed an unexpected pathway that inhibits macrophage cytokine production. The inflammatory reflex is a physiological pathway in which the autonomic nervous system detects the presence of inflammatory stimuli and modulates cytokine production. Afferent signals to the brain are transmitted via the vagus nerve, which activates a reflex response that culminates in efferent vagus nerve signalling. Termed the 'cholinergic anti-inflammatory pathway', efferent activity in the vagus nerve releases acetylcholine (ACh) in the vicinity of macrophages within the reticuloendothelial system. ACh can interact specifically with macrophage alpha7 subunits of nicotinic ACh receptors, leading to cellular deactivation and inhibition of cytokine release. This 'hard-wired' connection between the nervous and immune systems can be harnessed therapeutically in animal models of inflammatory disease, via direct electrical stimulation of the vagus nerve, or through the use of cholinergic agonists that specifically activate the macrophage alpha7 subunit of the ACh receptor. Autonomic dysfunction has been associated with human inflammatory diseases including rheumatoid arthritis, diabetes and sepsis; whether this dysfunction results from the inflammatory component of these diseases, or is actually an underlying cause, is now less clear. The description of the cholinergic anti-inflammatory now brings to the fore several new therapeutic strategies for inflammatory disease, and suggests that many of these diseases may actually be diseases of autonomic dysfunction.
Collapse
Affiliation(s)
- C J Czura
- North Shore-LIJ Research Institute, Center for Patient Oriented Research, Manhasset, NY, USA.
| | | |
Collapse
|
49
|
Role of Alcohol and Substances of Abuse in the Immunomodulation of Human Immunodeficiency Virus Disease. ADDICTIVE DISORDERS & THEIR TREATMENT 2004. [DOI: 10.1097/01.adt.0000137432.11895.ee] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Frazer-Abel AA, Baksh S, Fosmire SP, Willis D, Pierce AM, Meylemans H, Linthicum DS, Burakoff SJ, Coons T, Bellgrau D, Modiano JF. Nicotine activates nuclear factor of activated T cells c2 (NFATc2) and prevents cell cycle entry in T cells. J Pharmacol Exp Ther 2004; 311:758-69. [PMID: 15231866 DOI: 10.1124/jpet.104.070060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We used primary peripheral blood T cells, a population that exists in G(0) and can be stimulated to enter the cell cycle synchronously, to define more precisely the effects of nicotine on pathways that control cell cycle entry and progression. Our data show that nicotine decreased the ability of T cells to transit through the G(0)/G(1) boundary (acquire competence) and respond to progression signals. These effects were due to nuclear factor of activated T cells c2 (NFATc2)-dependent repression of cyclin-dependent kinase 4 (CDK4) expression. Growth arrest at the G(0)/G(1) boundary was further enforced by inhibition of cyclin D2 expression and by increased expression and stabilization of p27Kip1. Intriguingly, T cells from habitual users of tobacco products and from NFATc2-deficient mice constitutively expressed CDK4 and were resistant to the antiproliferative effects of nicotine. These results indicate that nicotine impairs T cell cycle entry through NFATc2-dependent mechanisms and suggest that, in the face of chronic nicotine exposure, selection may favor cells that can evade these effects. We postulate that cross talk between nicotinic acetylcholine receptors and growth factor receptor-activated pathways offers a novel mechanism by which nicotine may directly impinge on cell cycle progression. This offers insight into possible reasons that underlie the unique effects of nicotine on distinct cell types and identifies new targets that may be useful control tobacco-related diseases.
Collapse
Affiliation(s)
- Ashley A Frazer-Abel
- Integrated Department of Immunology, University of Colorado Health Sciences Center, AMC Cancer Center, 2-Diamond Building, 1600 Pierce Street, Denver, CO 80214, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|