1
|
Kessler A, Campo JJ, Harawa V, Mandala WL, Rogerson SJ, Mowrey WB, Seydel KB, Kim K. Convalescent Plasmodium falciparum-specific seroreactivity does not correlate with paediatric malaria severity or Plasmodium antigen exposure. Malar J 2018; 17:178. [PMID: 29695240 PMCID: PMC5918990 DOI: 10.1186/s12936-018-2323-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Background Antibody immunity is thought to be essential to prevent severe Plasmodium falciparum infection, but the exact correlates of protection are unknown. Over time, children in endemic areas acquire non-sterile immunity to malaria that correlates with development of antibodies to merozoite invasion proteins and parasite proteins expressed on the surface of infected erythrocytes. Results A 1000 feature P. falciparum 3D7 protein microarray was used to compare P. falciparum-specific seroreactivity during acute infection and 30 days after infection in 23 children with uncomplicated malaria (UM) and 25 children with retinopathy-positive cerebral malaria (CM). All children had broad P. falciparum antibody reactivity during acute disease. IgM reactivity decreased and IgG reactivity increased in convalescence. Antibody reactivity to CIDR domains of “virulent” PfEMP1 proteins was low with robust reactivity to the highly conserved, intracellular ATS domain of PfEMP1 in both groups. Although children with UM and CM differed markedly in parasite burden and PfEMP1 exposure during acute disease, neither acute nor convalescent PfEMP1 seroreactivity differed between groups. Greater seroprevalence to a conserved Group A-associated ICAM binding extracellular domain was observed relative to linked extracellular CIDRα1 domains in both case groups. Pooled immune IgG from Malawian adults revealed greater reactivity to PfEMP1 than observed in children. Conclusions Children with uncomplicated and cerebral malaria have similar breadth and magnitude of P. falciparum antibody reactivity. The utility of protein microarrays to measure serological recognition of polymorphic PfEMP1 antigens needs to be studied further, but the study findings support the hypothesis that conserved domains of PfEMP1 are more prominent targets of cross reactive antibodies than variable domains in children with symptomatic malaria. Protein microarrays represent an additional tool to identify cross-reactive Plasmodium antigens including PfEMP1 domains that can be investigated as strain-transcendent vaccine candidates. Electronic supplementary material The online version of this article (10.1186/s12936-018-2323-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Kessler
- Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Visopo Harawa
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,College of Medicine, Biomedical Department, University of Malawi, Blantyre, Malawi
| | - Wilson L Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,College of Medicine, Biomedical Department, University of Malawi, Blantyre, Malawi.,Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | | | | | - Karl B Seydel
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA. .,Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.
| | - Kami Kim
- Albert Einstein College of Medicine, Bronx, NY, USA. .,Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
2
|
Galinski MR, Lapp SA, Peterson MS, Ay F, Joyner CJ, LE Roch KG, Fonseca LL, Voit EO. Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria. Parasitology 2018; 145:85-100. [PMID: 28712361 PMCID: PMC5798396 DOI: 10.1017/s0031182017001135] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 02/08/2023]
Abstract
Antigenic variation in malaria was discovered in Plasmodium knowlesi studies involving longitudinal infections of rhesus macaques (M. mulatta). The variant proteins, known as the P. knowlesi Schizont Infected Cell Agglutination (SICA) antigens and the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) antigens, expressed by the SICAvar and var multigene families, respectively, have been studied for over 30 years. Expression of the SICA antigens in P. knowlesi requires a splenic component, and specific antibodies are necessary for variant antigen switch events in vivo. Outstanding questions revolve around the role of the spleen and the mechanisms by which the expression of these variant antigen families are regulated. Importantly, the longitudinal dynamics and molecular mechanisms that govern variant antigen expression can be studied with P. knowlesi infection of its mammalian and vector hosts. Synchronous infections can be initiated with established clones and studied at multi-omic levels, with the benefit of computational tools from systems biology that permit the integration of datasets and the design of explanatory, predictive mathematical models. Here we provide an historical account of this topic, while highlighting the potential for maximizing the use of P. knowlesi - macaque model systems and summarizing exciting new progress in this area of research.
Collapse
Affiliation(s)
- M R Galinski
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - S A Lapp
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - M S Peterson
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - F Ay
- La Jolla Institute for Allergy and Immunology,La Jolla,CA 92037,USA
| | - C J Joyner
- Emory Vaccine Center,Yerkes National Primate Research Center,Emory University,Atlanta,GA,USA
| | - K G LE Roch
- Department of Cell Biology & Neuroscience,Center for Disease and Vector Research,Institute for Integrative Genome Biology,University of California Riverside,CA 92521,USA
| | - L L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering,Georgia Institute of Technology and Emory University,Atlanta,Georgia,30332-2000,USA
| | - E O Voit
- The Wallace H. Coulter Department of Biomedical Engineering,Georgia Institute of Technology and Emory University,Atlanta,Georgia,30332-2000,USA
| |
Collapse
|
3
|
Ullah M, Hira J, Ghosh T, Ishaque N, Absar N. A Bioinformatics Approach for Homology Modeling and Binding Site Identification of Triosephosphate Isomerase from Plasmodium falciparum 3D7. J Young Pharm 2013; 4:261-6. [PMID: 23492818 PMCID: PMC3573378 DOI: 10.4103/0975-1483.104370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Malaria is a major public health concern, and malarial parasites have developed resistance against the commonly available drugs. So now a days it is a major concern to find out a new target for drug therapy. Plasmodium falciparum 3D7, one of the strains of plasmodium species also lacks in a functional tricarboxylic acid cycle and solely dependent on glycolysis for its energy supply like other plasmodium species. Although enzymes of malarial parasite have been considered as potential antimalarial drug targets, a little is known about their structural biology. The tertiary structure of triose phosphate isomerase of P. falciparum 3D7 was determined by means of homology modeling through multiple alignment followed by intensive optimization and validation. The modeling was done by Swiss-Model Workspace. The obtained model was verified with the structure validation programs such as, PROCHECK, Verify3D, and QMEAN for reliability. The verify3D value of 0.69 indicates that the environment profile of the model is good. A self-optimized prediction method with alignment or SOPMA is employed for calculation of the secondary structural features of triose phosphate isomerase. The secondary structure indicates that the predicted 3D structure of triosephosphate isomerase of P. falciparum 3D7 contains 48.37% α-helix, 29.27% random coil, and 16.67% extended strand. Active site determination through CASTp suggests that this protein can be utilized as a potential drug target. However, these will further be tested by wet lab studies for a targeted vaccine design against P. falciparum 3D7.
Collapse
Affiliation(s)
- M Ullah
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Bangladesh
| | | | | | | | | |
Collapse
|
4
|
Waller KL, Stubberfield LM, Dubljevic V, Buckingham DW, Mohandas N, Coppel RL, Cooke BM. Interaction of the exported malaria protein Pf332 with the red blood cell membrane skeleton. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:861-71. [PMID: 20132790 DOI: 10.1016/j.bbamem.2010.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
Intra-erythrocytic Plasmodium falciparum malaria parasites synthesize and export numerous proteins into the red blood cell (RBC) cytosol, where some bind to the RBC membrane skeleton. These interactions are responsible for the altered antigenic, morphological and functional properties of parasite-infected red blood cells (IRBCs). Plasmodium falciparum protein 332 (Pf332) is a large parasite protein that associates with the membrane skeleton and who's function has recently been elucidated. Using recombinant fragments of Pf332 in in vitro interaction assays, we have localised the specific domain within Pf332 that binds to the RBC membrane skeleton to an 86 residue sequence proximal to the C-terminus of Pf332. We have shown that this region partakes in a specific and saturable interaction with actin (K(d)=0.60 microM) but has no detectable affinity for spectrin. The only exported malaria protein previously known to bind to actin is PfEMP3 but here we demonstrate that there is no competition for actin-binding between PfEMP3 and Pf332, suggesting that they bind to different target sequences in actin.
Collapse
Affiliation(s)
- Karena L Waller
- Department of Microbiology, Monash University, VIC 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
5
|
Dahlbäck M, Lavstsen T, Salanti A, Hviid L, Arnot DE, Theander TG, Nielsen MA. Changes in var gene mRNA levels during erythrocytic development in two phenotypically distinct Plasmodium falciparum parasites. Malar J 2007; 6:78. [PMID: 17565661 PMCID: PMC1904452 DOI: 10.1186/1475-2875-6-78] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 06/12/2007] [Indexed: 11/27/2022] Open
Abstract
Background The var multigene family encodes PfEMP1, which are expressed on the surface of infected erythrocytes and bind to various host endothelial receptors. Antigenic variation of PfEMP1 plays a key role in malaria pathogenesis, a process partially controlled at the level of var gene transcription. Transcriptional levels, throughout the intra-erythrocytic cycle, of 59 var genes of the NF54 clone were measured simultaneously by quantitative real-time PCR. The timing of var transcript abundance, the number of genes transcribed and whether transcripts were correctly spliced for protein expression were determined. Two parasite populations were studied; an unselected population of NF54 and a selected population, NF54VAR2CSA, to compare both the transcription of var2csa and the expression pattern of the corresponding protein. Methods Synchronized parasites were harvested at different time points along the 48 hours intra-erythrocytic cycle for extraction of RNA and for analysis of expression of variant surface antigens by flow cytometry. Total RNA from each parasite sample was extracted and cDNA synthesized. Quantitative real-time PCR was performed using gene-specific primers for all var genes. Samples for flow cytometry were labelled with rabbit IgG targeting DBL5ε of VAR2CSA and serum IgG from malaria-exposed men and pregnant women. Results var transcripts were detected at all time points of the intra-erythrocytic cycle by quantitative real-time PCR, although transcription peaked in ring-stage parasites. There was no difference in the timing of appearance of group A, B or C transcripts, and dominant and subdominant var transcripts appeared to be correctly spliced at all time points. VAR2CSA appeared on the surface of infected erythrocytes 16 hours after invasion, consistent with previous studies of other PfEMP1. Transcription of the pseudogene var1csa could not be detected in NF54VAR2CSA cells. Conclusion The optimal sampling point for analysis of var transcripts using quantitative real-time PCR is the ring-stage, which is encouraging for the analysis of fresh clinical isolates. The data presented here indicate that there is no promiscuous transcription of var genes at the individual cell level and that it is possible to correlate dominant transcripts with adhesion phenotype and clinical markers of malaria severity.
Collapse
Affiliation(s)
- Madeleine Dahlbäck
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - David E Arnot
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Scotland, UK
| | - Thor G Theander
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
6
|
Rottmann M, Lavstsen T, Mugasa JP, Kaestli M, Jensen ATR, Müller D, Theander T, Beck HP. Differential expression of var gene groups is associated with morbidity caused by Plasmodium falciparum infection in Tanzanian children. Infect Immun 2006; 74:3904-11. [PMID: 16790763 PMCID: PMC1489729 DOI: 10.1128/iai.02073-05] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The var gene family of Plasmodium falciparum encodes the variant surface antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 is considered an important pathogenicity factor in P. falciparum infection because it mediates cytoadherence to host cell endothelial receptors. var genes can be grouped into three major groups, A, B, and C, and the conserved var genes, var1-4, according to sequence similarities in coding and noncoding upstream regions. Using real-time quantitative PCR in a study conducted in Tanzania, the var transcript abundances of the different var gene groups were compared among patients with severe, uncomplicated, and asymptomatic malaria. Transcripts of var group A and B genes were more abundant in patients with severe malaria than in patients with uncomplicated malaria. In general, the transcript abundances of var group A and B genes were higher for children with clinical malaria than for children with asymptomatic infections. The var group C and var1-like transcript abundances were similar between the three sample groups. A transcript abundance pattern similar to that for var group A was observed for var2csa and var3-like genes. These results suggest that substantial and systematic differences in var gene expression exist between different clinical presentations.
Collapse
Affiliation(s)
- Matthias Rottmann
- Swiss Tropical Institute, Socinstrasse 57, CH 4002 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lavstsen T, Magistrado P, Hermsen CC, Salanti A, Jensen ATR, Sauerwein R, Hviid L, Theander TG, Staalsoe T. Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans. Malar J 2005; 4:21. [PMID: 15857512 PMCID: PMC1112614 DOI: 10.1186/1475-2875-4-21] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 04/27/2005] [Indexed: 11/10/2022] Open
Abstract
Background Parasites causing severe malaria in non-immune patients express a restricted subset of variant surface antigens (VSA), which are better recognized by immune sera than VSA expressed during non-severe disease in semi-immune individuals. The most prominent VSA are the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration in immunologically naïve individuals and high effective multiplication rates. Methods var gene transcription was analysed using real time PCR and PfEMP1 expression by western blots as well as immune plasma recognition of parasite cultures established from non-immune volunteers shortly after infection with NF54 sporozoites. Results In cultures representing the first generation of parasites after hepatic release, all var genes were transcribed, but GroupA var genes were transcribed at the lowest levels. In cultures established from second or third generation blood stage parasites of volunteers with high in vivo parasite multiplication rates, the var gene transcription pattern differed markedly from the transcription pattern of the cultures representing first generation parasites. This indicated that parasites expressing specific var genes, mainly belonging to group A and B, had expanded more effectively in vivo compared to parasites expressing other var genes. The differential expression of PfEMP1 was confirmed at the protein level by immunoblot analysis. In addition, serological typing showed that immune sera more often recognized second and third generation parasites than first generation parasites. Conclusion In conclusion, the results presented here support the hypothesis that parasites causing severe malaria express a subset of PfEMP1, which bestows high parasite growth rates in individuals with limited pre-existing immunity.
Collapse
Affiliation(s)
- Thomas Lavstsen
- Centre for Medical Parasitology at Institute for Medical Microbiology and Immunology, University of Copenhagen, Panum Institute 24-2, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Pamela Magistrado
- Centre for Medical Parasitology at Institute for Medical Microbiology and Immunology, University of Copenhagen, Panum Institute 24-2, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | - Ali Salanti
- Centre for Medical Parasitology at Institute for Medical Microbiology and Immunology, University of Copenhagen, Panum Institute 24-2, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Anja TR Jensen
- Centre for Medical Parasitology at Institute for Medical Microbiology and Immunology, University of Copenhagen, Panum Institute 24-2, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Robert Sauerwein
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology at Institute for Medical Microbiology and Immunology, University of Copenhagen, Panum Institute 24-2, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Trine Staalsoe
- Centre for Medical Parasitology at Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
8
|
Lavstsen T, Salanti A, Jensen ATR, Arnot DE, Theander TG. Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions. Malar J 2003; 2:27. [PMID: 14565852 PMCID: PMC222925 DOI: 10.1186/1475-2875-2-27] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 09/10/2003] [Indexed: 11/10/2022] Open
Abstract
Background The variant surface antigen family Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) is an important target for protective immunity and is implicated in the pathology of malaria through its ability to adhere to host endothelial receptors. The sequence diversity and organization of the 3D7 PfEMP1 repertoire was investigated on the basis of the complete genome sequence. Methods Using two tree-building methods we analysed the coding and non-coding sequences of 3D7 var and rif genes as well as var genes of other parasite strains. Results var genes can be sub-grouped into three major groups (group A, B and C) and two intermediate groups B/A and B/C representing transitions between the three major groups. The best defined var group, group A, comprises telomeric genes transcribed towards the telomere encoding PfEMP1s with complex domain structures different from the 4-domain type dominant of groups B and C. Two sequences belonging to the var1 and var2 subfamilies formed independent groups. A rif subgroup transcribed towards the centromere was found neighbouring var genes of group A such that the rif and var 5' regions merged. This organization appeared to be unique for the group A var genes Conclusion The grouping of var genes implies that var gene recombination preferentially occurs within var gene groups and it is speculated that the groups reflect a functional diversification evolved to cope with the varying conditions of transmission and host immune response met by the parasite.
Collapse
Affiliation(s)
- Thomas Lavstsen
- Centre for Medical Parasitology at Institute for Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Institute for Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | - Anja TR Jensen
- Centre for Medical Parasitology at Institute for Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | - David E Arnot
- Institute for Cell, Animal, and Population Biology, University of Edinburgh, Scotland, United Kingdom
| | - Thor G Theander
- Centre for Medical Parasitology at Institute for Medical Microbiology and Immunology, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Ofori MF, Dodoo D, Staalsoe T, Kurtzhals JAL, Koram K, Theander TG, Akanmori BD, Hviid L. Malaria-induced acquisition of antibodies to Plasmodium falciparum variant surface antigens. Infect Immun 2002; 70:2982-8. [PMID: 12010988 PMCID: PMC127986 DOI: 10.1128/iai.70.6.2982-2988.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In areas of intense Plasmodium falciparum transmission, protective immunity is acquired during childhood in parallel with acquisition of agglutinating antibodies to parasite-encoded variant surface antigens (VSA) expressed on parasitized red blood cells. In a semi-immune child in such an area, clinical disease is caused mainly by parasites expressing VSA not recognized by preexisting VSA-specific antibodies in that child. Such malaria episodes are known to cause an increase in agglutinating antibodies specifically recognizing VSA expressed by the parasite isolate causing the illness, whereas antibody responses to other parasite isolates are relatively unaffected. However, the detailed kinetics of this VSA antibody acquisition are unknown and hence were the aim of this study. We show that P. falciparum malaria in Ghanaian children generally caused a rapid and sustained increase in variant-specific VSA antibody levels, while more transient and limited increases in levels of antibodies to VSA expressed by other parasite isolates were also seen. Plasma VSA antibody levels were positively correlated with the age of the healthy plasma donors but negatively correlated with the age of the parasite donors (the malaria patient). The data from this first detailed longitudinal study of acquisition of VSA antibodies support the hypothesis that naturally acquired protective immunity to P. falciparum malaria is mediated, at least in part, by VSA-specific antibodies.
Collapse
Affiliation(s)
- Michael F Ofori
- Immunology and Epidemiology Units, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Huang MM, Bolen JB, Barnwell JW, Shattil SJ, Brugge JS. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci U S A 1991; 88:7844-8. [PMID: 1715582 PMCID: PMC52400 DOI: 10.1073/pnas.88.17.7844] [Citation(s) in RCA: 313] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Activation of platelets with thrombin and other agonists causes a rapid increase in the phosphorylation of multiple proteins on tyrosine. To identify candidate protein-tyrosine kinases (PTKs; EC 2.7.1.112) that may be responsible for these phosphorylation events, we analyzed the expression of seven Src-family PTKs and examined the association of these kinases with known platelet membrane glycoproteins. Five Src-related PTKs were detected in platelets: pp60SRC, pp60FYN, pp62YES, pp61HCK, and two LYN products of Mr 54,000 and 58,000. The Fgr and Lck PTKs were not detected. Although strict comparative quantification of protein levels was not possible, pp60SRC was detected at higher levels than any of the other kinases. In addition, glycoprotein IV (GPIV, CD36), one of the major platelet membrane glycoproteins, was associated in a complex with the Fyn, Yes, and Lyn proteins in platelet lysates. Similar complexes were also found in two GPIV-expressing cell lines, C32 melanoma cells and HEL cells. Since PTKs appear to be involved in stimulus-response coupling at the plasma membrane, these results suggest that ligand interaction with GPIV may activate signaling pathways that are triggered by tyrosine phosphorylation.
Collapse
Affiliation(s)
- M M Huang
- Howard Hughes Medical Institute, University of Pennsylvania, School of Medicine, Philadelphia 19104
| | | | | | | | | |
Collapse
|
11
|
Winograd E, Sherman IW. Characterization of a modified red cell membrane protein expressed on erythrocytes infected with the human malaria parasite Plasmodium falciparum: possible role as a cytoadherent mediating protein. J Biophys Biochem Cytol 1989; 108:23-30. [PMID: 2642911 PMCID: PMC2115358 DOI: 10.1083/jcb.108.1.23] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Infections with the human malaria Plasmodium falciparum are characterized by the retention of parasitized erythrocytes in tissue capillaries and venules. Erythrocytes containing trophozoites and schizonts attach to the endothelial cells that line these vessels by means of structurally identifiable excrescences present on the surface of the infected cell. Such excrescences, commonly called knobs, are visible by means of scanning or transmission electron microscopy. The biochemical mechanisms responsible for erythrocyte adherence to the endothelial cell are still undefined. In an attempt to identify the cytoadhesive molecule on the surface of the infected cell, we have prepared monoclonal antibodies to knob-bearing erythrocytes infected with the FCR-3 strain of P. falciparum. One of these monoclonal antibodies, designed 4A3, is an IgM that reacts (by means of immunofluorescence) with the surface of unfixed erythrocytes bearing mature parasites of the knobby line; it does not react with knobless lines or uninfected erythrocytes. By immunoelectron microscopy the monoclonal antibody 4A3 was localized to the knob region. In an in vitro cytoadherence assay, the monoclonal antibody partially blocked the binding of knob-bearing cells (FCR-3 strain) to formalin-fixed amelanotic melanoma cells. The monoclonal antibody was used to immunoprecipitate a protein from extracts of knobby erythrocytes that had been previously surface iodinated. By a two-dimensional peptide mapping technique, the antigen recognized by the monoclonal antibody was found to be structurally related to band 3 protein, the human erythrocyte anion transporter.
Collapse
Affiliation(s)
- E Winograd
- Department of Biology, University of California, Riverside 92521
| | | |
Collapse
|
12
|
Abstract
Zymosan-activated and non-activated human polymorphonuclear neutrophils (PMN) were added to in-vitro cultures of the human malaria parasite Plasmodium falciparum in microtitre wells. Microscopic counting of parasites in Giemsa-stained smears showed that at a PMN:RBC ratio of 1:150, the same as occurs in human malaria, parasites in wells with zymosan-activated neutrophils were suppressed 65%. Determination of parasite nucleic acid synthesis by 3H-hypoxanthine incorporation showed that in wells with PMN:RBC ratio of 1:150 parasite viability was only 22% of control. Various oxygen scavengers were tested for ability to reverse the effects of activated neutrophils on parasite development. Superoxide dismutase (20 mg/ml) and catalase (50 mg/ml) had no effect; tryptophan protected the parasites to a moderate degree while histidine alleviated suppression of parasite development to the greatest extent. This suggests that singlet oxygen is the most effective neutrophil product in killing or suppressing the growth of parasites. We also observed that non-activated neutrophils were activated by parasites and/or their products resulting in killing of newly-released parasites.
Collapse
Affiliation(s)
- N A Nnalue
- Department of Medical Microbiology, Stanford University of Medicine, California 94305
| | | |
Collapse
|
13
|
Howard RJ, Lyon JA, Uni S, Saul AJ, Aley SB, Klotz F, Panton LJ, Sherwood JA, Marsh K, Aikawa M. Transport of an Mr approximately 300,000 Plasmodium falciparum protein (Pf EMP 2) from the intraerythrocytic asexual parasite to the cytoplasmic face of the host cell membrane. J Biophys Biochem Cytol 1987; 104:1269-80. [PMID: 2437128 PMCID: PMC2114467 DOI: 10.1083/jcb.104.5.1269] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The profound changes in the morphology, antigenicity, and functional properties of the host erythrocyte membrane induced by intraerythrocytic parasites of the human malaria Plasmodium falciparum are poorly understood at the molecular level. We have used mouse mAbs to identify a very large malarial protein (Mr approximately 300,000) that is exported from the parasite and deposited on the cytoplasmic face of the erythrocyte membrane. This protein is denoted P. falciparum erythrocyte membrane protein 2 (Pf EMP 2). The mAbs did not react with the surface of intact infected erythrocytes, nor was Pf EMP 2 accessible to exogenous proteases or lactoperoxidase-catalyzed radioiodination of intact cells. The mAbs also had no effect on in vitro cytoadherence of infected cells to the C32 amelanotic melanoma cell line. These properties distinguish Pf EMP 2 from Pf EMP 1, the cell surface malarial protein of similar size that is associated with the cytoadherent property of P. falciparum-infected erythrocytes. The mAbs did not react with Pf EMP 1. In one strain of parasite there was a significant difference in relative mobility of the 125I-surface-labeled Pf EMP 1 and the biosynthetically labeled Pf EMP 2, further distinguishing these proteins. By cryo-thin-section immunoelectron microscopy we identified organelles involved in the transit of Pf EMP through the erythrocyte cytoplasm to the internal face of the erythrocyte membrane where the protein is associated with electron-dense material under knobs. These results show that the intraerythrocytic malaria parasite has evolved a novel system for transporting malarial proteins beyond its own plasma membrane, through a vacuolar membrane and the host erythrocyte cytoplasm to the erythrocyte membrane, where they become membrane bound and presumably alter the properties of this membrane to the parasite's advantage.
Collapse
|
14
|
Ravetch JV, Young J, Poste G. Molecular Genetic Strategies for the Development of Anti-Malarial Vaccines. ACTA ACUST UNITED AC 1985. [DOI: 10.1038/nbt0885-729] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|