1
|
Meng C, Zou Y, Hong W, Bao C, Jia X. Estrogen-regulated PTTG1 promotes breast cancer progression by regulating cyclin kinase expression. Mol Med 2020; 26:33. [PMID: 32272902 PMCID: PMC7146910 DOI: 10.1186/s10020-020-00161-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The present study aims to investigate the effects of pituitary tumor transforming gene (PTTG) 1 on breast cancer and its underlying mechanism. METHODS GEO data set was applied to analyze the relationship between PTTG1 and survival status and the TCGA breast cancer dataset was used to explore its possible targets. The stable cell lines including PTTG1 knockdown cells, estrogen receptor (ESR) 1 knockdown cells, and PTTG1 overexpression cells were constructed. MTT was used to determine cell viabilities. Propidium iodide (PI) staining and flow cytometry were used to analyze the cell cycle. Quantitative polymerase chain reaction (qPCR) was employed to determine the mRNA expressions. Points mutations and luciferase reporter assays were used to determine the binding sites of estrogen. RESULTS PTTG1 was associated with poor survival rates in breast cancer. In vitro study demonstrated that PTTG1 affected cell viabilities of MCF7 and T47D cells. Besides, PTTG1 affected cell cycle arrest of breast cancer cells. Overexpression of PTTG1 led to more breast cancer cells distributed in S phase. The levels of PTTG1 were associated with estrogen and further results showed that the levels of PTTG1 were positively correlated to tamoxifen resistance. Two genes including CCNA2 and CCNB2 were identified to be possible targets of PTTG1. CONCLUSION Estrogen-regulated PTTG1 promotes the development of breast cancer cells by the regulation of the cell cycle.
Collapse
Affiliation(s)
- Chunhui Meng
- Department of General Surgery, Heze Municipal Hospital, Caozhou Road, Heze, 274000, Shandong, China
| | - Yan Zou
- Department of General Surgery, Heze Municipal Hospital, Caozhou Road, Heze, 274000, Shandong, China
| | - Weiwei Hong
- Department of General Surgery, Heze Municipal Hospital, Caozhou Road, Heze, 274000, Shandong, China
| | - Chunhua Bao
- Department of Oncology, Heze Municipal Hospital, Caozhou Road, Heze, 274000, Shandong, China
| | - Xiaofeng Jia
- Department of Oncology, Heze Municipal Hospital, Caozhou Road, Heze, 274000, Shandong, China.
| |
Collapse
|
2
|
Baskin L, Cao M, Sinclair A, Li Y, Overland M, Isaacson D, Cunha GR. Androgen and estrogen receptor expression in the developing human penis and clitoris. Differentiation 2020; 111:41-59. [PMID: 31655443 PMCID: PMC6926156 DOI: 10.1016/j.diff.2019.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
To better understand how the human fetal penis and clitoris grows and remodels, we undertook an investigation to define active areas of cellular proliferation and programmed cell death spatially and temporally during development of human fetal external genitalia from the indifferent stage (8 weeks) to 18 weeks of gestation. Fifty normal human fetal penile and clitoral specimens were examined using macroscopic imaging, scanning electron microscopy and immunohistochemical localization for the cellular proliferation and apoptotic markers, Ki67 and Caspase-3. A number of hot spots of cellular proliferation characterized by Ki67 localization are present in the penis and clitoris especially early in development, most notably in the corporal body, glans, remodeling glanular urethra, the urethral plate, the roof of the urethral groove and the fully formed penile urethra. The 12-fold increase in penile length over 10 weeks of growth from 8 to 18 weeks of gestation based on Ki67 labelling appears to be driven by cellular proliferation in the corporal body and glans. Throughout all ages in both the developing penis and clitoris Ki67 labeling was consistently elevated in the ventral epidermis and ventral mesenchyme relative to the dorsal counterparts. This finding is consistent with the intense morphogenetic activity/remodeling in the ventral half of the genital tubercle in both sexes involving formation of the urethral/vestibular plates, canalization of the urethral/vestibular plates and fusion of the urethral folds to form the penile urethra. Areas of reduced or absent Ki67 staining include the urethral fold epithelium that fuses to form the penile tubular urethra. In contrast, the urethral fold mesenchyme is positive for Ki67. Apoptosis was rarely noted in the developing penis and clitoris; the only area of minimal Caspase-3 localization was in the epithelium of the ventral epithelial glanular channel remodeling.
Collapse
Affiliation(s)
- Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA.
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Yi Li
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Maya Overland
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Dylan Isaacson
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
3
|
Cunha GR, Sinclair A, Ricke WA, Robboy SJ, Cao M, Baskin LS. Reproductive tract biology: Of mice and men. Differentiation 2019; 110:49-63. [PMID: 31622789 PMCID: PMC7339118 DOI: 10.1016/j.diff.2019.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
Abstract
The study of male and female reproductive tract development requires expertise in two separate disciplines, developmental biology and endocrinology. For ease of experimentation and economy, the mouse has been used extensively as a model for human development and pathogenesis, and for the most part similarities in developmental processes and hormone action provide ample justification for the relevance of mouse models for human reproductive tract development. Indeed, there are many examples describing the phenotype of human genetic disorders that have a reasonably comparable phenotype in mice, attesting to the congruence between mouse and human development. However, anatomic, developmental and endocrinologic differences exist between mice and humans that (1) must be appreciated and (2) considered with caution when extrapolating information between all animal models and humans. It is critical that the investigator be aware of both the similarities and differences in organogenesis and hormone action within male and female reproductive tracts so as to focus on those features of mouse models with clear relevance to human development/pathology. This review, written by a team with extensive expertise in the anatomy, developmental biology and endocrinology of both mouse and human urogenital tracts, focusses upon the significant human/mouse differences, and when appropriate voices a cautionary note regarding extrapolation of mouse models for understanding development of human male and female reproductive tracts.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA; George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA; Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA.
| | - Adriane Sinclair
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI, 93705, USA
| | - Stanley J Robboy
- Department of Pathology, Duke University, Davison Building, Box 3712, Durham, NC, 27710, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
4
|
Li P, Zhou C, Yan Y, Li J, Liu J, Zhang Y, Liu P. Crumbs protein homolog 3 (CRB3) expression is associated with oestrogen and progesterone receptor positivity in breast cancer. Clin Exp Pharmacol Physiol 2019; 46:837-844. [PMID: 31087799 PMCID: PMC6772053 DOI: 10.1111/1440-1681.13104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/11/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022]
Abstract
The crumbs protein homolog 3 (CRB3) regulates the tight junction to help maintain epithelial polarity. Altered CRB3 expression was associated with carcinogenesis of epithelial cells. This study detected CRB3 expression in 192 cases of breast cancer tissues and in the Molecular Taxonomy of Breast Cancer International Consortium (Metabric) and The Cancer Genome Atlas (TCGA) datasets for association with triple negative breast cancer (TNBC) phenotypes. The in vitro experiments confirm the ex vivo data. The data showed that levels of both CRB3 mRNA and protein were associated with TNBC phenotypes, ie, 41.1% (39/95) of ER+ breast cancer was CRB3-positive, whereas 26.9% (25/93) ER- tumour was CRB3-positive (P = 0.046). Moreover, 47.6% (30/63) of PR+ breast cancer was CRB3-positive vs 28.4% (33/116) PR- tumours positive for CRB3 (P = 0.013). In addition, 40.1% (27/66) of ER+/PR+ tumour was CRB3-positive, but only 22.4% (19/85) of TNBC showed CRB3 expression (P = 0.048). Indeed, levels of CRB3 mRNA were higher in non-TNBC than TNBC in both Metabric (P = 3.682e-10) and TCGA datasets (P = 2.501e-07). The in vitro data showed that CRB3 expression was higher in luminal (MCF7 and T47D) than in HER2 (MDA-MB-453 and SK-BR-3) and basal (MDA-MB-231 and BT-549) breast cancer cell lines. More interestingly, ERα regulated expression of CRB3 protein in MCF7 and BT-549 cells and ERα expression was associated with CRB3 expression in breast cancer tissues specimens. This study demonstrated that ERα could be a novel regulator for CRB3 expression in breast cancer.
Collapse
Affiliation(s)
- Pingping Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Can Zhou
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yu Yan
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Juan Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jie Liu
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yan Zhang
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Peijun Liu
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory for Tumor Precision Medicine of Shaanxi ProvinceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
5
|
Goodman ML, Trinca GM, Walter KR, Papachristou EK, D'Santos CS, Li T, Liu Q, Lai Z, Chalise P, Madan R, Fan F, Markiewicz MA, Jin VX, Carroll JS, Hagan CR. Progesterone Receptor Attenuates STAT1-Mediated IFN Signaling in Breast Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3076-3086. [PMID: 30936295 PMCID: PMC6504603 DOI: 10.4049/jimmunol.1801152] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
Abstract
Why some tumors remain indolent and others progress to clinical relevance remains a major unanswered question in cancer biology. IFN signaling in nascent tumors, mediated by STAT1, is a critical step through which the surveilling immune system can recognize and destroy developing tumors. In this study, we have identified an interaction between the progesterone receptor (PR) and STAT1 in breast cancer cells. This interaction inhibited efficient IFN-induced STAT1 phosphorylation, as we observed a decrease in phospho-STAT1 in response to IFN treatment in PR-positive breast cancer cell lines. This phenotype was further potentiated in the presence of PR ligand. In human breast cancer samples, PR-positive tumors exhibited lower levels of phospho-STAT1 as compared with their PR-negative counterparts, indicating that this phenotype translates to human tumors. Breast cancer cells lacking PR exhibited higher levels of IFN-stimulated gene (ISG) RNA, the transcriptional end point of IFN activation, indicating that unliganded PR alone could decrease transcription of ISGs. Moreover, the absence of PR led to increased recruitment of STAT1, STAT2, and IRF9 (key transcription factors necessary for ISG transcription) to ISG promoters. These data indicate that PR, both in the presence and absence of ligand, attenuates IFN-induced STAT1 signaling, culminating in significantly abrogated activation of genes transcribed in response to IFNs. PR-positive tumors may use downregulation of STAT1-mediated IFN signaling to escape immune surveillance, leading to the development of clinically relevant tumors. Selective immune evasion of PR-positive tumors may be one explanation as to why over 65% of breast cancers are PR positive at the time of diagnosis.
Collapse
Affiliation(s)
- Merit L Goodman
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
- University of Kansas Cancer Center, Kansas City, KS 66160
| | - Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
- University of Kansas Cancer Center, Kansas City, KS 66160
| | - Katherine R Walter
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
- University of Kansas Cancer Center, Kansas City, KS 66160
| | - Evangelia K Papachristou
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Tianbao Li
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229
| | - Qi Liu
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229
| | - Zhao Lai
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229
| | - Prabhakar Chalise
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160; and
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160; and
| | - Mary A Markiewicz
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
- University of Kansas Cancer Center, Kansas City, KS 66160
| |
Collapse
|
6
|
Cunha GR, Baskin L. Development of human male and female urogenital tracts. Differentiation 2018; 103:1-4. [DOI: 10.1016/j.diff.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 11/28/2022]
|
7
|
Cunha GR, Robboy SJ, Kurita T, Isaacson D, Shen J, Cao M, Baskin LS. Development of the human female reproductive tract. Differentiation 2018; 103:46-65. [PMID: 30236463 PMCID: PMC6234064 DOI: 10.1016/j.diff.2018.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
Development of the human female reproductive tract is reviewed from the ambisexual stage to advanced development of the uterine tube, uterine corpus, uterine cervix and vagina at 22 weeks. Historically this topic has been under-represented in the literature, and for the most part is based upon hematoxylin and eosin stained sections. Recent immunohistochemical studies for PAX2 (reactive with Müllerian epithelium) and FOXA1 (reactive with urogenital sinus epithelium and its known pelvic derivatives) shed light on an age-old debate on the derivation of vaginal epithelium supporting the idea that human vaginal epithelium derives solely from urogenital sinus epithelium. Aside for the vagina, most of the female reproductive tract is derived from the Müllerian ducts, which fuse in the midline to form the uterovaginal canal, the precursor of uterine corpus and uterine cervix an important player in vaginal development as well. Epithelial and mesenchymal differentiation markers are described during human female reproductive tract development (keratins, homeobox proteins (HOXA11 and ISL1), steroid receptors (estrogen receptor alpha and progesterone receptor), transcription factors and signaling molecules (TP63 and RUNX1), which are expressed in a temporally and spatially dynamic fashion. The utility of xenografts and epithelial-mesenchymal tissue recombination studies are reviewed.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Stanley J Robboy
- Department of Pathology, Duke University Medical Center, DUMC 3712, Durham, NC 27710, USA
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, College of Medicine, Comprehensive Cancer Center, Ohio State University, 812 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Dylan Isaacson
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Joel Shen
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Cunha GR, Kurita T, Cao M, Shen J, Cooke PS, Robboy SJ, Baskin LS. Tissue interactions and estrogenic response during human female fetal reproductive tract development. Differentiation 2018; 101:39-45. [PMID: 29684808 DOI: 10.1016/j.diff.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022]
Abstract
The role of tissue interactions was explored to determine whether epithelial differentiation within the developing human reproductive tract is induced and specified by mesenchyme in tissue recombinants composed of mouse vaginal mesenchyme + human uterine tubal epithelium (mVgM+hTubE). The tissue recombinants were grown in DES-treated ovariectomized athymic mice. After 2-4 weeks of in vivo growth, several vaginal specific features were expressed in the human tubal epithelium. The mesenchyme-induced effects included morphological change as well as expression of several immunohistochemical markers. Although the mesenchyme-induced shift in vaginal differentiation in the human tubal epithelium was not complete, the partial induction of vaginal markers in human tubal epithelium verifies the importance of mesenchymal-epithelial interactions in development of the human female reproductive tract. In a separate experiment, DES-induction of uterine epithelial progesterone receptor (PGR) and estrogen receptor 1 (ESR1) was explored in tissue recombinants composed of wild-type or Esr1KO mouse uterine mesenchyme + human fetal uterine epithelium (wt UtM+hUtE and Esr1KO UtM+hUtE). The rationale of this experiment was to determine whether DES-induction of PGR and ESR1 is mediated directly via epithelial ESR1 or indirectly (paracrine mechanism) via mesenchymal ESR1. DES-induction of uterine epithelial ESR1 and PGR in Esr1KO UtM+hUtE tissue recombinants (devoid of mesenchymal ESR1) formally eliminates the paracrine mechanism and demonstrates that DES induction of human uterine epithelial ESR1 and PGR is directly mediated via epithelial ESR1.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States.
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, College of Medicine, Comprehensive Cancer Center, Ohio State University, 812 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210, United States
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Joel Shen
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Paul S Cooke
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL 32610, United States
| | - Stanley J Robboy
- Department of Pathology, Duke University Medical Center, DUMC 3712, Durham, NC 27710, United States
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| |
Collapse
|
9
|
Cunha GR, Kurita T, Cao M, Shen J, Robboy SJ, Baskin L. Response of xenografts of developing human female reproductive tracts to the synthetic estrogen, diethylstilbestrol. Differentiation 2017; 98:35-54. [PMID: 29102757 DOI: 10.1016/j.diff.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Human female fetal reproductive tracts 9.5-22 weeks of gestation were grown for 1 month in ovariectomized athymic adult female mouse hosts that were either untreated or treated continuously with diethylstilbestrol (DES) via subcutaneous pellet. Normal morphogenesis and normal patterns of differentiation marker expression (KRT6, KRT7, KRT8, KRT10, KRT14, KRT19, ESR1, PGR, TP63, RUNX1, ISL1, HOXA11 and α-ACT2) were observed in xenografts grown in untreated hosts and mimicked observations of previously reported (Cunha et al., 2017) non-grafted specimens of comparable age. DES elicited several notable morphological affects: (a) induction of endometrial/cervical glands, (b) increased plication (folding) of tubal epithelium, (c) stratified squamous maturation of vaginal epithelium and (d) vaginal adenosis. DES also induced ESR1 in epithelia of the uterine corpus, cervix and globally induced PGR in most cells of the developing human female reproductive tract. Keratin expression (KRT6, KRT7, KRT8, KRT14 and KRT19) was minimally affected by DES. Simple columnar adenotic epithelium was devoid of TP63 and RUNX1, while DES-induced mature vaginal epithelium was positive for both transcription factors. Another striking effect of DES was observed in grafts of human uterine tube, in which DES perturbed smooth muscle patterning. These results define for the first time IHC protein markers of DES action on the developing human reproductive tract, which provide bio-endpoints of estrogen-induced teratogenesis in the developing human female reproductive tract for future testing of estrogenic endocrine disruptors.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States.
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, College of Medicine, Comprehensive Cancer Center, 812 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210, United States
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Joel Shen
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Stanley J Robboy
- Departments of Pathology and Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, United States
| | - Laurence Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| |
Collapse
|
10
|
Trinca GM, Goodman ML, Papachristou EK, D'Santos CS, Chalise P, Madan R, Slawson C, Hagan CR. O-GlcNAc-Dependent Regulation of Progesterone Receptor Function in Breast Cancer. Discov Oncol 2017; 9:12-21. [PMID: 28929346 DOI: 10.1007/s12672-017-0310-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Emerging clinical trial data implicate progestins in the development of breast cancer. While the role for the progesterone receptor (PR) in this process remains controversial, it is clear that PR, a steroid-activated nuclear receptor, alters the transcriptional landscape of breast cancer. PR interacts with many different types of proteins, including transcriptional co-activators and co-repressors, transcription factors, nuclear receptors, and proteins that post-translationally modify PR (i.e., kinases and phosphatases). Herein, we identify a novel interaction between PR and O-GlcNAc transferase (OGT), the enzyme that catalyzes the addition of a single N-acetylglucosamine sugar, referred to as O-GlcNAc, to acceptor serines and threonines in target proteins. This interaction between PR and OGT leads to the post-translational modification of PR by O-GlcNAc. Moreover, we show that O-GlcNAcylated PR is more transcriptionally active on PR-target genes, despite the observation that PR messenger RNA and protein levels are decreased when O-GlcNAc levels are high. O-GlcNAcylation in breast cancer is clinically relevant, as we show that O-GlcNAc levels are higher in breast cancer as compared to matched normal tissues, and PR-positive breast cancers have higher levels of OGT. These data predict that under conditions where O-GlcNAc levels are high (breast cancer), PR, through an interaction with the modifying enzyme OGT, will exhibit increased O-GlcNAcylation and potentiated transcriptional activity. Therapeutic strategies aimed at altering cellular O-GlcNAc levels may have profound effects on PR transcriptional activity in breast cancer.
Collapse
Affiliation(s)
- Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Merit L Goodman
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | | | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Prabhakar Chalise
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Rashna Madan
- Division of Hematology/Oncology, Department of Pathology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, MS3030, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA. .,Department of Cancer Biology, and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
11
|
Walter KR, Goodman ML, Singhal H, Hall JA, Li T, Holloran SM, Trinca GM, Gibson KA, Jin VX, Greene GL, Hagan CR. Interferon-Stimulated Genes Are Transcriptionally Repressed by PR in Breast Cancer. Mol Cancer Res 2017; 15:1331-1340. [PMID: 28684637 DOI: 10.1158/1541-7786.mcr-17-0180] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
The progesterone receptor (PR) regulates transcriptional programs that drive proliferation, survival, and stem cell phenotypes. Although the role of native progesterone in the development of breast cancer remains controversial, PR clearly alters the transcriptome in breast tumors. This study identifies a class of genes, Interferon (IFN)-stimulated genes (ISGs), potently downregulated by ligand-activated PR which have not been previously shown to be regulated by PR. Progestin-dependent transcriptional repression of ISGs was observed in breast cancer cell line models and human breast tumors. Ligand-independent regulation of ISGs was also observed, as basal transcript levels were markedly higher in cells with PR knockdown. PR repressed ISG transcription in response to IFN treatment, the canonical mechanism through which these genes are activated. Liganded PR is robustly recruited to enhancer regions of ISGs, and ISG transcriptional repression is dependent upon PR's ability to bind DNA. In response to PR activation, key regulatory transcription factors that are required for IFN-activated ISG transcription, STAT2 and IRF9, exhibit impaired recruitment to ISG promoter regions, correlating with PR/ligand-dependent ISG transcriptional repression. IFN activation is a critical early step in nascent tumor recognition and destruction through immunosurveillance. As the large majority of breast tumors are PR positive at the time of diagnosis, PR-dependent downregulation of IFN signaling may be a mechanism through which early PR-positive breast tumors evade the immune system and develop into clinically relevant tumors.Implications: This study highlights a novel transcriptional mechanism through which PR drives breast cancer development and potentially evades the immune system. Mol Cancer Res; 15(10); 1331-40. ©2017 AACR.
Collapse
Affiliation(s)
- Katherine R Walter
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Merit L Goodman
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Hari Singhal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jade A Hall
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Tianbao Li
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, Texas
| | - Sean M Holloran
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Katelin A Gibson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, Texas
| | - Geoffrey L Greene
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas. .,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
12
|
Callis R, Rabow A, Tonge M, Bradbury R, Challinor M, Roberts K, Jones K, Walker G. A Screening Assay Cascade to Identify and Characterize Novel Selective Estrogen Receptor Downregulators (SERDs). ACTA ACUST UNITED AC 2015; 20:748-59. [DOI: 10.1177/1087057115580298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/27/2015] [Indexed: 11/16/2022]
Abstract
Here, we describe an approach to identify novel selective estrogen receptor downregulator (SERD) compounds with improved properties such as oral bioavailability and the potential of increased efficacy compared to currently marketed drug treatments. Previously, methodologies such as Western blotting and transient cell reporter assays have been used to identify and characterize SERD compounds, but such approaches can be limited due to low throughput and sensitivity, respectively. We have used an endogenous cell-imaging strategy that has both the throughput and sensitivity to support a large-scale hit-to-lead program to identify novel compounds. A screening cascade with a suite of assays has been developed to characterize compounds that modulate estrogen receptor α (ERα)-mediated signaling or downregulate ERα levels in cells. Initially, from a focused high-throughput screening, novel ERα binders were identified that could be modified chemically into ERα downregulators. Following this, cellular assays helped determine the mechanism of action of compounds to distinguish between on-target and off-target compounds and differentiate SERDs, selective estrogen receptor modulator (SERM) compounds, and agonist ERα ligands. Data are shown to exemplify the characterization of ERα-mediated signaling inhibitors using a selection of literature compounds and illustrate how this cascade has been used to drive the chemical design of novel SERD compounds.
Collapse
Affiliation(s)
- Rowena Callis
- Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| | - Alfred Rabow
- Oncology Innovative Medicines Unit, AstraZeneca, Macclesfield, Cheshire, UK
| | - Michael Tonge
- Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| | - Robert Bradbury
- Oncology Innovative Medicines Unit, AstraZeneca, Macclesfield, Cheshire, UK
| | | | - Karen Roberts
- Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| | - Karen Jones
- Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| | - Graeme Walker
- Discovery Sciences, AstraZeneca, Macclesfield, Cheshire, UK
| |
Collapse
|
13
|
Hefti MM, Hu R, Knoblauch NW, Collins LC, Haibe-Kains B, Tamimi RM, Beck AH. Estrogen receptor negative/progesterone receptor positive breast cancer is not a reproducible subtype. Breast Cancer Res 2014; 15:R68. [PMID: 23971947 PMCID: PMC3978610 DOI: 10.1186/bcr3462] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
Introduction Estrogen receptor (ER) and progesterone receptor (PR) testing are performed in the evaluation of breast cancer. While the clinical utility of ER as a predictive biomarker to identify patients likely to benefit from hormonal therapy is well-established, the added value of PR is less well-defined. The primary goals of our study were to assess the distribution, inter-assay reproducibility, and prognostic significance of breast cancer subtypes defined by patterns of ER and PR expression. Methods We integrated gene expression microarray (GEM) and clinico-pathologic data from 20 published studies to determine the frequency (n = 4,111) and inter-assay reproducibility (n = 1,752) of ER/PR subtypes (ER+/PR+, ER+/PR-, ER-/PR-, ER-/PR+). To extend our findings, we utilized a cohort of patients from the Nurses’ Health Study (NHS) with ER/PR data recorded in the medical record and assessed on tissue microarrays (n = 2,011). In both datasets, we assessed the association of ER and PR expression with survival. Results In a genome-wide analysis, progesterone receptor was among the least variable genes in ER- breast cancer. The ER-/PR+ subtype was rare (approximately 1 to 4%) and showed no significant reproducibility (Kappa = 0.02 and 0.06, in the GEM and NHS datasets, respectively). The vast majority of patients classified as ER-/PR+ in the medical record (97% and 94%, in the GEM and NHS datasets) were re-classified by a second method. In the GEM dataset (n = 2,731), progesterone receptor mRNA expression was associated with prognosis in ER+ breast cancer (adjusted P <0.001), but not in ER- breast cancer (adjusted P = 0.21). PR protein expression did not contribute significant prognostic information to multivariate models considering ER and other standard clinico-pathologic features in the GEM or NHS datasets. Conclusion ER-/PR+ breast cancer is not a reproducible subtype. PR expression is not associated with prognosis in ER- breast cancer, and PR does not contribute significant independent prognostic information to multivariate models considering ER and other standard clinico-pathologic factors. Given that PR provides no clinically actionable information in ER+ breast cancer, these findings question the utility of routine PR testing in breast cancer.
Collapse
|
14
|
Lei F, Zhang L, Li X, Lin X, Wu S, Li F, Liu J. Overexpression of prostate tumor overexpressed 1 correlates with tumor progression and predicts poor prognosis in breast cancer. BMC Cancer 2014; 14:457. [PMID: 24947166 PMCID: PMC4070404 DOI: 10.1186/1471-2407-14-457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/16/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Prostate tumor overexpressed 1 (PTOV1) was demonstrated to play an important role in cancer progression and was correlated with unfavorable clinical outcome. However, the clinical role of PTOV1 in cancer remains largely unknown. This study aimed to investigate the expression and clinicopathological significance of PTOV1 in breast cancer. METHODS The mRNA and protein expression levels of PTOV1 were analyzed in 12 breast cancer cell lines and eight paired breast cancer tumors by semi-quantitative real time-PCR and western blotting, respectively. Immunohistochemistry was performed to assess PTOV1 protein expression in 169 paraffin-embedded, archived breast cancer samples. Survival analysis and Cox regression analysis were performed to investigate the clinicopathological significance of PTOV1 expression. RESULTS Our data revealed that PTOV1 was frequently overexpressed in breast cancer cell lines compared to normal human breast epithelial cells and in primary breast cancer samples compared to adjacent noncancerous breast tissues, at both the mRNA and protein levels. Moreover, high expression of PTOV1 in breast cancer is strongly associated with clinicopathological characteristics and estrogen receptor expression status (P = 0.003). Breast cancer patients with higher PTOV1 expression had substantially shorter survival times than patients with lower PTOV1 expression (P < 0.001). Univariate and multivariate analysis revealed that PTOV1 might be an independent prognostic factor for breast cancer patients (P = 0.005). CONCLUSIONS Our study showed that PTOV1 is upregulated in breast cancer cell lines and clinical samples, and its expression was positively associated with progression and aggressiveness of breast cancer, suggesting that PTOV1 could serve as an independent prognostic marker.
Collapse
Affiliation(s)
- Fangyong Lei
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Longjuan Zhang
- Laboratory of Surgery, First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan 2nd Rd, Guangzhou 510080, China
| | - Xinghua Li
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Xi Lin
- Ultrasonic department, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shu Wu
- State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Fengyan Li
- State Key Laboratory of Oncology in South China and Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Junling Liu
- State Key Laboratory of Oncology in South China and Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
15
|
Rao PS, Labhart M, Mayhew SL, Thirumala S, Rao US. Heterogeneity in the expression of receptors in the human breast cancer metastasized to the brain. Tumour Biol 2014; 35:7267-73. [PMID: 24777335 DOI: 10.1007/s13277-014-1979-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/15/2014] [Indexed: 12/19/2022] Open
Abstract
Assessment of the human epidermal growth factor receptor-2 (Her2/ErbB2) and estrogen receptor (ER) and progesterone receptor (PR) expression in breast cancer has been an accepted standard to predict clinical outcome. Expression of these receptors in primary breast cancer has also been an important predictor of visceral organ metastasis. Many studies of breast cancer have reported risk factors for brain metastasis that include Her2/ErbB2 positivity, ER negativity, and negativity for all the above three receptors. However, it is not clear whether expression of these receptors would persist subsequent to brain metastasis. To address this possibility, we analyzed different breast cancer brain metastases (BCBM) for the expression of Her2/ErbB2, ER, and PR by immunohistochemistry procedure. The results showed that BCBM are heterogeneous in the receptor expression: Five BCBMs were Her2/ErbB2-positive and one negative; four BCBMs were ER-positive, and two were negative; five BCBMs were PR-positive and one negative. However, expression of these receptors in their combination is also heterogeneous: Four BCBMs were positive for all of the Her2/ErbB2, ER, and PR; one BCBM was positive for Her2/ErbB2 and PR but negative for ER; one BCBM was positive for PR but negative for Her2/ErbB2/ER. Similar heterogeneity in the expression of these receptors was also observed in primary tumors. Importantly, BCBM tumors that were assigned as ER- and PR-positive contained tumor cells that lacked expression of these receptors in other regions of the biopsies. Taken together, our findings indicate that the BCBM exhibit heterogeneity in the expression amounts of Her2/ErbB2, ER, and PR, which could be a result of the influence of tumor microenvironment in the brain or different tumor cells populating the metastatic region.
Collapse
Affiliation(s)
- Prema S Rao
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, 1060 Dragon Rd, Oakwood, VA, 24631, USA
| | | | | | | | | |
Collapse
|
16
|
Miousse IR, Gomez-Acevedo H, Sharma N, Vantrease J, Hennings L, Shankar K, Cleves MA, Badger TM, Ronis MJ. Mammary gland morphology and gene expression signature of weanling male and female rats following exposure to exogenous estradiol. Exp Biol Med (Maywood) 2013; 238:1033-46. [PMID: 23925648 DOI: 10.1177/1535370213497322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In order to characterize the actions of xenoestrogens, it is essential to possess a solid portrait of the physiological effects of exogenous estradiol. We assessed effects of three doses of exogenous estradiol (E2) (0.1, 1.0 and 10 µg/kg/day) given between postnatal days 21 and 33 on the mammary gland morphology and gene expression profiles of male and female rats compared to vehicle-treated controls. The male mammary gland was more responsive to E2 treatment than in females, with 509 genes regulated >2-fold in a dose-dependent manner in males and only 174 in females. In males, E2 treatment significantly (P < 0.01) increased the number of terminal end buds (TEBs) and the expression of proliferating cell nuclear antigen (PCNA) protein (P < 0.05), both of which are indicators of proliferation. This change was linked to a significant increase (P < 0.05) in the expression of the gene encoding amphiregulin, which is known to induce TEB formation. There was also a dose-dependent increase (P < 0.001) in the estrogen-regulated gene encoding the progesterone receptor. In intact females, despite lack of changes in mammary morphology, we observed a dose-dependent increase (P < 0.05) in the expression of genes encoding three milk proteins: whey acidic protein, casein beta and casein kappa. There was a significant (P < 0.05) downregulation of both estrogen receptors in response to E2 treatment. These results suggest that mammary glands of male rats are very sensitive to exogenous E2 during development post-weaning. The dose-dependent increase observed in amphiregulin and progesterone receptor gene expression was linked to morphological changes and represents a reliable and sensitive tool to evaluate estrogenicity. In contrast, intact weanling female rats were less responsive.
Collapse
|
17
|
Yan Y, Li X, Blanchard A, Bramwell VHC, Pritchard KI, Tu D, Shepherd L, Myal Y, Penner C, Watson PH, Leygue E, Murphy LC. Expression of both estrogen receptor-beta 1 (ER-β1) and its co-regulator steroid receptor RNA activator protein (SRAP) are predictive for benefit from tamoxifen therapy in patients with estrogen receptor-alpha (ER-α)-negative early breast cancer (EBC). Ann Oncol 2013; 24:1986-93. [PMID: 23579816 DOI: 10.1093/annonc/mdt132] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Roles of Estrogen Receptor-beta 1 (ER-β1) and its co-regulator Steroid Receptor RNA Activator Protein (SRAP) in breast cancer remain unclear. Previously, ER-β1 and SRAP expression were found positively correlated in breast cancer and, therefore, expression of these two molecules could characterize cancers with a distinct clinical outcome. PATIENTS AND METHODS ER-β1 and SRAP expression was determined by immunohistochemistry (IHC) in tissue microarrays from a randomized, placebo-controlled trial (NCIC-CTG-MA12), designed to determine the benefit of tamoxifen following chemotherapy in premenopausal early breast cancer (EBC). Expression was dichotomized into low and high using median IHC scores. Relationships with survival used Cox modeling. RESULTS In the whole cohort, ER-β1 and SRAP were not prognostic. However, high ER-β1 and SRAP significantly predicted tamoxifen responsiveness [overall survival, interaction test, P = 0.03; relapse-free survival (RFS), interaction test, P = 0.01]. Stratification by ER-α-status found predictive benefit only in ER-α-negative cases. The difference in RFS between tamoxifen and placebo was greater in patients whose tumors expressed both high SRAP and ER-β1[hazard ratio = 0.07; 95% confidence interval (CI) 0.01-0.41; P = 0.003] versus those with low SRAP or ER-β1 (interaction test, P = 0.02). The interaction test was not significant in ER-α-positive cohorts. CONCLUSIONS This study provides evidence that both ER-β1 and SRAP could be predictive biomarkers of tamoxifen benefit in ER-α-negative premenopausal EBC.
Collapse
Affiliation(s)
- Y Yan
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dodiya H, Patel A, Patel D, Kaushal A, Vijay DG. Study of hormone receptors and epidermal growth factor expression in invasive breast cancers in a cohort of Western India. Indian J Clin Biochem 2013; 28:403-9. [PMID: 24426244 DOI: 10.1007/s12291-012-0294-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/15/2012] [Indexed: 12/19/2022]
Abstract
The objective of study was to evaluate and correlate the pathological characteristics of breast cancer patients with estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2/neu) detected by immunohistochemistry and/or fluorescent in situ hybridization method. We have conducted 2 year study of 204 cases of breast cancer at HCG-Medisurge Hospitals, Ahmedabad from 2009 to 2011. Significant correlation was found in ER and PR expression whereas no correlation was found in hormonal receptors and Her2/neu expression. ER and PR positivity increased with advancing age in breast carcinoma patients while not affecting Her2/neu expression. The expression of hormone receptors were higher in infiltrating lobular carcinoma and infiltrating duct carcinoma subtypes of breast carcinoma as compared to other subtypes such medullary and in situ carcinoma. High-grade carcinoma patients were predominantly ER/PR negative and Her2/neu positive as compared to lower grade breast carcinoma whereas high-stage carcinoma patients were ER/PR positive and Her2/neu positive as compared to lower stage breast carcinoma.
Collapse
Affiliation(s)
- Hardik Dodiya
- Department of Clinical Research and Development, Aastha Oncology Associates, HCG-Medisurge Hospitals Private Limited, Ahmedabad, 380006 Gujarat India
| | - Amit Patel
- Department of Clinical Research and Development, Aastha Oncology Associates, HCG-Medisurge Hospitals Private Limited, Ahmedabad, 380006 Gujarat India
| | - Dipal Patel
- Department of Clinical Research and Development, Aastha Oncology Associates, HCG-Medisurge Hospitals Private Limited, Ahmedabad, 380006 Gujarat India
| | - Ashish Kaushal
- Department of Clinical Research and Development, Aastha Oncology Associates, HCG-Medisurge Hospitals Private Limited, Ahmedabad, 380006 Gujarat India
| | - D G Vijay
- Department of Clinical Research and Development, Aastha Oncology Associates, HCG-Medisurge Hospitals Private Limited, Ahmedabad, 380006 Gujarat India
| |
Collapse
|
19
|
Sherrill JD, Sparks M, Dennis J, Mansour M, Kemppainen BW, Bartol FF, Morrison EE, Akingbemi BT. Developmental exposures of male rats to soy isoflavones impact Leydig cell differentiation. Biol Reprod 2010; 83:488-501. [PMID: 20554919 PMCID: PMC6366397 DOI: 10.1095/biolreprod.109.082685] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/20/2010] [Accepted: 05/16/2010] [Indexed: 01/03/2023] Open
Abstract
Testicular Leydig cells, which are the predominant source of the male sex steroid hormone testosterone, express estrogen receptors (ESRs) and are subject to regulation by estrogen. Following ingestion, the two major isoflavones in soybeans, genistin and daidzin, are hydrolyzed by gut microflora to form genistein and daidzein, which have the capacity to bind ESRs and affect gene expression. Thus, the increasing use of soy-based products as nondairy sources of protein has raised concerns about the potential of these products to cause reproductive toxicity. In the present study, perinatal exposure of male rats to isoflavones induced proliferative activity in Leydig cells. Isoflavones have the capacity to act directly as mitogens in Leydig cells, because genistein treatment induced Leydig cell division in vitro. Genistein action regulating Leydig cell division involved ESRs, acting in concert with signaling molecules in the transduction pathway mediated by protein kinase B (AKT) and mitogen-activated protein kinase (MAPK). Enhanced proliferative activity in the prepubertal period increased Leydig cell numbers, which alleviated deficits in androgen biosynthesis and/or augmented serum and testicular testosterone concentrations in adulthood. Together, these observations indicate that the perinatal exposures of male rats to isoflavones affected Leydig cell differentiation, and they imply that including soy products in the diets of neonates has potential implications for testis function.
Collapse
Affiliation(s)
- Jessica D Sherrill
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Murphy L, Cherlet T, Lewis A, Banu Y, Watson P. New insights into estrogen receptor function in human breast cancer. Ann Med 2003; 35:614-31. [PMID: 14708971 DOI: 10.1080/07853890310014579] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
An important new concept associated with estrogen receptor (ER) function in breast cancer is that ER status/ phenotype is multifaceted. In particular, the two full-length, ligand binding ERs (ER-alpha and ER-beta) and possibly multiple variant isoforms of ER must be considered. In addition, cross-talk factors that can influence ER activity in a ligand independent fashion and factors downstream of the ER, including coactivators and corepressors, clearly have important roles in ER function. Their careful evaluation in addition to ER status will be necessary to more fully understand the etiology of breast cancer and the changes occurring in estrogen signaling during breast tumorigenesis and breast cancer progression. Such knowledge is necessary to have a significant impact on better prevention and treatment strategies for human breast cancer.
Collapse
Affiliation(s)
- Leigh Murphy
- Manitoba Institute of Cell Biology, Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0V9.
| | | | | | | | | |
Collapse
|
21
|
Andersen J, Bentzen SM, Poulsen HS. Relationship between radioligand binding assay, immunoenzyme assay and immunohistochemical assay for estrogen receptors in human breast cancer and association with tumor differentiation. EUROPEAN JOURNAL OF CANCER & CLINICAL ONCOLOGY 1988; 24:377-84. [PMID: 3289941 DOI: 10.1016/s0277-5379(98)90006-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have studied the merit of a new enzyme immunoassay (EIA) in relation to the results obtained with a conventional dextran-coated charcoal assay (DCC) of estrogen receptors (ER) in cytosols and nuclear extracts of human breast cancer tissue. The results of the two assays were related to cytosolic progesterone receptor content (PgR), semiquantified ER content in formalin-fixed paraffin embedded tissue specimens and tumor differentiation. The EIA was found stable at low cytosol protein concentrations (0.5 mg/ml). The EIA and DCC assays were highly correlated both in cytosols (r = 0.92, n = 57) and nuclear extracts (r = 0.82, n = 25), but the EIA slightly overestimated the ER values in both ER fractions. A significant correlation between ER in nuclear (ER(N] and cytosolic (ER(C] fractions was established with both assays (DCC: r = 0.90, n = 56; EIA: r = 0.83, n = 24). A qualitative relationship was established between PgR and ER fractions as determined with both assays, the best quantitative association was between PgR and ER(N(DCC] (r = 0.58, n = 34, P less than 0.001). A significant qualitative and quantitative relationship was found between semiquantified ER content in formalin-fixed, paraffin-embedded tissue and ER(C(DCC] (r = 0.88), ER(N(DCC] (r = 0.86], ER(C(EIA] (r = 0.60), ER(N(CIA] (r = 0.64) and PgR (r = 0.65). Finally, we found tumor differentiation to be significantly associated with ER content as determined with all assays except for ER(N(EIA]. We recommend the use of the DCC assay for routine analysis of ER until the clinical correlation of EIA results has been established.
Collapse
Affiliation(s)
- J Andersen
- Danish Cancer Society, Department of Experimental Clinical Oncology, Aarhus C
| | | | | |
Collapse
|
22
|
Hendry WJ, Eller BC, Orgebin-Crist MC, Danzo BJ. Hormonal effects on the estrogen receptor system in the epididymis and accessory sex organs of sexually immature rabbits. JOURNAL OF STEROID BIOCHEMISTRY 1985; 23:39-49. [PMID: 4021492 DOI: 10.1016/0022-4731(85)90258-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The epididymis and male accessory sex organs (vesicular gland, prostate, and bulbourethral gland) of sexually immature rabbits contain a functional estrogen receptor system which is regulated in an organ-specific manner by various hormones. In both intact and castrated animals, acute estrogen challenge causes depletion of estrogen receptor from the cytosolic fraction and its appearance in the nuclear fraction of these tissues. A considerable amount of unoccupied nuclear receptor was detected both before and after estrogen challenge. An estrogen-activated, receptor-processing mechanism is operable in these organs since chronic treatment (daily for 14 days) with estradiol benzoate modified the levels of total estrogen receptor, and altered the relative amounts of occupied to unoccupied nuclear receptor present following estrogen challenge. Chronic treatment with estradiol benzoate, Tamoxifen, and testosterone propionate (alone and in combination) had differential, organ-specific effects on the ability of subsequent estrogen challenge to cause accumulation of nuclear receptor. The vesicular gland was the most responsive to estrogen treatment and the bulbourethral gland the least responsive.
Collapse
|
23
|
|
24
|
|
25
|
MacIndoe JH, Woods GR, Lee FJ. The specific binding of androgens and the subsequent distribution of androgen-receptor complexes within MCF-7 human breast cancer cells. Steroids 1981; 38:439-52. [PMID: 7314160 DOI: 10.1016/0039-128x(81)90078-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Using a whole cell suspension assay technique, we have examined both the specific binding of testosterone (T) and dihydrotestosterone (17 beta-hydroxy-5 alpha-androstan-3-one) (DHT) and the subsequent distribution of androgen binding activity within MCF-7 human breast cancer cells. We have observed that both androgens are bound with high affinity to the same single class of receptor which is present at a concentration of approximately 8,000 sites per cell. The incubation of cells with either T or DHT was followed by the nuclear accumulation of specifically bound ligand which increased to maximal values within 1 h and then decreased thereafter. However, only about 30% of the total cellular specific binding activity observed with either androgen was localized within the nuclear compartment at any time during a 4 h incubation. Further examination of the extranuclear binding component suggested that a substantial portion of this activity was localized to the particulate fraction of the cytoplasm. The results of these studies suggest that both T and DHT are capable of exerting biological activity within MCF-7 cells, and raise the interesting possibility that androgen-receptor complexes may participate in the direct regulation of mitochondrial and/or microsomal function in this system.
Collapse
|