1
|
Vohra R, Kolko M. Lactate: More Than Merely a Metabolic Waste Product in the Inner Retina. Mol Neurobiol 2020; 57:2021-2037. [PMID: 31916030 DOI: 10.1007/s12035-019-01863-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
The retina is an extension of the central nervous system and has been considered to be a simplified, more tractable and accessible version of the brain for a variety of neuroscience investigations. The optic nerve displays changes in response to underlying neurodegenerative diseases, such as stroke, multiple sclerosis, and Alzheimer's disease, as well as inner retinal neurodegenerative disease, e.g., glaucoma. Neurodegeneration has increasingly been linked to dysfunctional energy metabolism or conditions in which the energy supply does not meet the demand. Likewise, increasing lactate levels have been correlated with conditions consisting of unbalanced energy supply and demand, such as ischemia-associated diseases or excessive exercise. Lactate has thus been acknowledged as a metabolic waste product in organs with high energy metabolism. However, in the past decade, numerous beneficial roles of lactate have been revealed in the central nervous system. In this context, lactate has been identified as a valuable energy substrate, protecting against glutamate excitotoxicity and ischemia, as well as having signaling properties which regulate cellular functions. The present review aims to summarize and discuss protective roles of lactate in various model systems (in vitro, ex vivo, and in vivo) reflecting the inner retina focusing on lactate metabolism and signaling in inner retinal homeostasis and disease.
Collapse
Affiliation(s)
- Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark. .,Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
2
|
Lactate-Mediated Protection of Retinal Ganglion Cells. J Mol Biol 2019; 431:1878-1888. [PMID: 30878479 DOI: 10.1016/j.jmb.2019.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
Abstract
Loss of retinal ganglion cells (RGCs) is a leading cause of blinding conditions. The purpose of this study was to evaluate the effect of extracellular l-lactate on RGC survival facilitated through lactate metabolism and ATP production. We identified lactate as a preferred energy substrate over glucose in murine RGCs and showed that lactate metabolism and consequently increased ATP production are crucial components in promoting RGC survival during energetic crisis. Lactate was released to the extracellular environment in the presence of glucose and detained intracellularly during glucose deprivation. Lactate uptake and metabolism was unaltered in the presence and absence of glucose. However, the ATP production declined significantly for 24 h of glucose deprivation and increased significantly in the presence of lactate. Finally, lactate exposure for 2 and 24 h resulted in increased RGC survival during glucose deprivation. In conclusion, the metabolic pathway of lactate in RGCs may be of great future interest to unravel potential pharmaceutical targets, ultimately leading to novel therapies in the prevention of blinding neurodegenerative diseases, for example, glaucoma.
Collapse
|
3
|
Coggan JS, Keller D, Calì C, Lehväslaiho H, Markram H, Schürmann F, Magistretti PJ. Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLoS Comput Biol 2018; 14:e1006392. [PMID: 30161133 PMCID: PMC6160207 DOI: 10.1371/journal.pcbi.1006392] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/27/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
The mechanism of rapid energy supply to the brain, especially to accommodate the heightened metabolic activity of excited states, is not well-understood. We explored the role of glycogen as a fuel source for neuromodulation using the noradrenergic stimulation of glia in a computational model of the neural-glial-vasculature ensemble (NGV). The detection of norepinephrine (NE) by the astrocyte and the coupled cAMP signal are rapid and largely insensitive to the distance of the locus coeruleus projection release sites from the glia, implying a diminished impact for volume transmission in high affinity receptor transduction systems. Glucosyl-conjugated units liberated from glial glycogen by NE-elicited cAMP second messenger transduction winds sequentially through the glycolytic cascade, generating robust increases in NADH and ATP before pyruvate is finally transformed into lactate. This astrocytic lactate is rapidly exported by monocarboxylate transporters to the associated neuron, demonstrating that the astrocyte-to-neuron lactate shuttle activated by glycogenolysis is a likely fuel source for neuromodulation and enhanced neural activity. Altogether, the energy supply for both astrocytes and neurons can be supplied rapidly by glycogenolysis upon neuromodulatory stimulus. Although efficient compared to computers, the human brain utilizes energy at 10-fold the rate of other organs by mass. How the brain is supplied with sufficient on-demand energy to support its activity in the absence of neuronal storage capacity remains unknown. Neurons are not capable of meeting their own energy requirements, instead energy supply in the brain is managed by an oligocellular cartel composed of neurons, glia and the local vasculature (NGV), wherein glia can provide the ergogenic metabolite lactate to the neuron in a process called the astrocyte-to-neuron shuttle (ANLS). The only means of energy storage in the brain is glycogen, a polymerized form of glucose that is localized largely to astrocytes, but its exact role and conditions of use are not clear. In this computational model we show that neuromodulatory stimulation by norepinephrine induces astrocytes to recover glucosyl subunits from glycogen for use in a glycolytic process that favors the production of lactate. The ATP and NADH produced support metabolism in the astrocyte while the lactate is exported to feed the neuron. Thus, rapid energy demands by both neurons and glia in a stimulated brain can be met by glycogen mobilization.
Collapse
Affiliation(s)
- Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- * E-mail: (JSC); (PJM)
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Corrado Calì
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Heikki Lehväslaiho
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Pierre J. Magistretti
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- * E-mail: (JSC); (PJM)
| |
Collapse
|
4
|
Routh VH, Donovan CM, Ritter S. 2. Hypoglycemia Detection. TRANSLATIONAL ENDOCRINOLOGY & METABOLISM 2012; 3:47-87. [PMID: 24910721 PMCID: PMC4045627 DOI: 10.1210/team.9781936704200.ch2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Choi JK, Dedeoglu A, Jenkins BG. Application of MRS to mouse models of neurodegenerative illness. NMR IN BIOMEDICINE 2007; 20:216-37. [PMID: 17451183 DOI: 10.1002/nbm.1145] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The rapid development of transgenic mouse models of neurodegenerative diseases, in parallel with the rapidly expanding growth of MR techniques for assessing in vivo, non-invasive, neurochemistry, offers the potential to develop novel markers of disease progression and therapy. In this review we discuss the interpretation and utility of MRS for the study of these transgenic mouse and rodent models of neurodegenerative diseases such as Alzheimer's (AD), Huntington's (HD) and Parkinson's disease (PD). MRS studies can provide a wealth of information on various facets of in vivo neurochemistry, including neuronal health, gliosis, osmoregulation, energy metabolism, neuronal-glial cycling, and molecular synthesis rates. These data provide information on the etiology, natural history and therapy of these diseases. Mouse models enable longitudinal studies with useful time frames for evaluation of neuroprotection and therapeutic interventions using many of the potential MRS markers. In addition, the ability to manipulate the genome in these models allows better mechanistic understanding of the roles of the observable neurochemicals, such as N-acetylaspartate, in the brain. The argument is made that use of MRS, combined with correlative histology and other MRI techniques, will enable objective markers with which potential therapies can be followed in a quantitative fashion.
Collapse
Affiliation(s)
- Ji-Kyung Choi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
6
|
Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA. Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 2007; 321:45-50. [PMID: 17251391 DOI: 10.1124/jpet.106.115550] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycogen in the brain is localized almost exclusively to astrocytes. The physiological function of this energy store has been difficult to establish because of the difficulty in manipulating brain glycogen concentrations in vivo. Here, we used a novel glycogen phosphorylase inhibitor, CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide), that causes glycogen accumulation under normoglycemic conditions but permits glycogen utilization when glucose concentrations are low. Rats treated with CP-316,819 had an 88 +/- 3% increase in brain glycogen content. When subjected to hypoglycemia, these rats maintained brain electrical activity 91 +/- 14 min longer than rats with normal brain glycogen levels and showed markedly reduced neuronal death. These studies establish a novel approach for manipulating brain glycogen concentration in normal, awake animals and provide in vivo confirmation that astrocyte glycogen supports neuronal function and survival during glucose deprivation. These findings also suggest an approach for forestalling hypoglycemic coma and brain injury in diabetic patients.
Collapse
Affiliation(s)
- Sang Won Suh
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
7
|
Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ. Activity-dependent regulation of energy metabolism by astrocytes: An update. Glia 2007; 55:1251-1262. [PMID: 17659524 DOI: 10.1002/glia.20528] [Citation(s) in RCA: 579] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.
Collapse
Affiliation(s)
- Luc Pellerin
- Département de Physiologie, Université de Lausanne, Switzerland
| | - Anne-Karine Bouzier-Sore
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Agnès Aubert
- Département de Physiologie, Université de Lausanne, Switzerland
| | - Sébastien Serres
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Michel Merle
- Unité de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS-Université Victor Segalen, Bordeaux, France
| | - Robert Costalat
- INSERM U678, Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Pierre J Magistretti
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne and Centre de Neurosciences Psychiatriques, Hôpital de Cery, Prilly, Switzerland
| |
Collapse
|
8
|
Rönnbäck L, Hansson E. On the potential role of glutamate transport in mental fatigue. J Neuroinflammation 2004; 1:22. [PMID: 15527505 PMCID: PMC533886 DOI: 10.1186/1742-2094-1-22] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 11/04/2004] [Indexed: 11/20/2022] Open
Abstract
Mental fatigue, with decreased concentration capacity, is common in neuroinflammatory and neurodegenerative diseases, often appearing prior to other major mental or physical neurological symptoms. Mental fatigue also makes rehabilitation more difficult after a stroke, brain trauma, meningitis or encephalitis. As increased levels of proinflammatory cytokines are reported in these disorders, we wanted to explore whether or not proinflammatory cytokines could induce mental fatigue, and if so, by what mechanisms. It is well known that proinflammatory cytokines are increased in major depression, "sickness behavior" and sleep deprivation, which are all disorders associated with mental fatigue. Furthermore, an influence by specific proinflammatory cytokines, such as interleukin (IL)-1, on learning and memory capacities has been observed in several experimental systems. As glutamate signaling is crucial for information intake and processing within the brain, and due to the pivotal role for glutamate in brain metabolism, dynamic alterations in glutamate transmission could be of pathophysiological importance in mental fatigue. Based on this literature and observations from our own laboratory and others on the role of astroglial cells in the fine-tuning of glutamate neurotransmission we present the hypothesis that the proinflammatory cytokines tumor necrosis factor-α, IL-1β and IL-6 could be involved in the pathophysiology of mental fatigue through their ability to attenuate the astroglial clearance of extracellular glutamate, their disintegration of the blood brain barrier, and effects on astroglial metabolism and metabolic supply for the neurons, thereby attenuating glutamate transmission. To test whether our hypothesis is valid or not, brain imaging techniques should be applied with the ability to register, over time and with increasing cognitive loading, the extracellular concentrations of glutamate and potassium (K+) in humans suffering from mental fatigue. At present, this is not possible for technical reasons. Therefore, more knowledge of neuronal-glial signaling in in vitro systems and animal experiments is important. In summary, we provide a hypothetic explanation for a general neurobiological mechanism, at the cellular level, behind one of our most common symptoms during neuroinflammation and other long-term disorders of brain function. Understanding pathophysiological mechanisms of mental fatigue could result in better treatment.
Collapse
Affiliation(s)
- Lars Rönnbäck
- Institute of Clinical Neuroscience, Göteborg University, Göteborg, Sweden
| | - Elisabeth Hansson
- Institute of Clinical Neuroscience, Göteborg University, Göteborg, Sweden
| |
Collapse
|
9
|
Hansson E, Rönnbäck L. Glial-neuronal signaling and astroglial swelling in physiology and pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 559:313-323. [PMID: 18727250 DOI: 10.1007/0-387-23752-6_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Elisabeth Hansson
- Institute of Clinical Neurosciene, Goteborg University, P.O. Box 420, Medicinaregatan 5, SE 405 30 Goteborg, Sweden.
| | | |
Collapse
|
10
|
De Vivo DC, Wang D, Pascual JM, Ho YY. Glucose transporter protein syndromes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:259-88. [PMID: 12420362 DOI: 10.1016/s0074-7742(02)51008-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Darryl C De Vivo
- Department of Neurology, Colleen Giblin Research Laboratories for Pediatric Neurology, Columbia University, New York 10032, USA
| | | | | | | |
Collapse
|