1
|
Karvaly G, Kovács K, Gyarmatig M, Gerszi D, Nagy S, Jalal DA, Tóth Z, Vasarhelyi B, Gyarmati B. Reference data on estrogen metabolome in healthy pregnancy. Mol Cell Probes 2024; 74:101953. [PMID: 38432490 DOI: 10.1016/j.mcp.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Estrogen hormones and their metabolites are implicated in the maintenance of healthy pregnancy and adequate fetal development. Abnormal levels were related to increased risk of pregnancy complications, particularly preeclampsia. Our aims were (1) to develop a methodological platform for the comprehensive assessment of estrogen metabolome in pregnancy; (2) to collect healthy reference data for relevant elements of estrogen metabolome in each trimester; (3) to assess unconjugated fractions of the estrogen metabolome, (4) to assess the dominant metabolic pathways of estrogen compounds. METHODS We enrolled healthy pregnant mothers between gestational week 5-15 (on the confirmation of pregnancy; 79 samples), gestational weeks 19-27 (70 samples), and gestational week 34-39 (54 samples). A method employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed to assess estrone, 17-beta-estradiol, estriol levels, and their metabolites as conjugated and unconjugated forms. Descriptive statistics were used to characterize the level of compounds in each trimester. RESULTS Estrone, 17-beta-estradiol and estriol levels are dramatically increasing with the advancement of pregnancy. Measured levels were in a very wide range. 17-beta-estradiol is neither glucuronated nor sulphated. To the contrary, estriol and estrone are significantly conjugated; unconjugated fraction is <15% of total hormone levels in any trimester. Regarding metabolism, 4-methoxy-estradiol and 17-epiestriol were not detected. CONCLUSION We concluded that (1) the levels of estrogen compounds and metabolites increase with advancing gestational age; (2) the wide ranges of levels challenge the establishment of a healthy reference range for clinical purposes; (3) 17-beta-estradiol is not conjugated significantly; (4) 4-methylation and 17-epimerization pathways of estrogens are negligible with our LC-MS/MS method.
Collapse
Affiliation(s)
- Gellért Karvaly
- Department of Laboratory Medicine, 1089, Budapest, Nagyvárad Tér 4, Hungary.
| | - Krisztián Kovács
- Department of Laboratory Medicine, 1089, Budapest, Nagyvárad Tér 4, Hungary.
| | - Marcell Gyarmatig
- Semmelweis University, Department of Laboratory Medicine, 1089, Budapest, Nagyvárad Tér 4, Hungary.
| | - Dóra Gerszi
- Semmelweis University, Department of Obstetrics and Gynecology, 1082, Budapest, Üllői út 78/A, Hungary.
| | - Sándor Nagy
- Széchenyi István, University Faculty of Health and Sport Sciences, 9026, Győr, Egyetem Tér 1, Hungary.
| | - Dlovan Ali Jalal
- Semmelweis University, Department of Laboratory Medicine, 1089, Budapest, Nagyvárad Tér 4, Hungary.
| | - Zoltán Tóth
- Uzsoki Utcai Hospital, Department of Urology, 1145, Budapest, Uzsoki Utca 29-41, Hungary.
| | - Barna Vasarhelyi
- Semmelweis University, Department of Laboratory Medicine, 1089, Budapest, Nagyvárad Tér 4, Hungary.
| | - Béla Gyarmati
- Uzsoki Utcai Hospital, Department of Obstetrics and Gynecology, 1145, Budapest, Uzsoki Utca 29-41, Hungary.
| |
Collapse
|
2
|
Luoto S. Understanding the Biodevelopment of Sexual Orientation Requires a Multilevel Evolutionary Analysis. ARCHIVES OF SEXUAL BEHAVIOR 2023; 52:3001-3006. [PMID: 36575266 DOI: 10.1007/s10508-022-02515-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Severi Luoto
- School of Population Health, University of Auckland, 1023, Auckland, New Zealand.
| |
Collapse
|
3
|
Mahsoub HM, Heffron CL, Hassebroek AM, Sooryanarain H, Wang B, LeRoith T, Rodríguez GR, Tian D, Meng XJ. Fetal Loss in Pregnant Rabbits Infected with Genotype 3 Hepatitis E Virus Is Associated with Altered Inflammatory Responses, Enhanced Virus Replication, and Extrahepatic Virus Dissemination with Positive Correlations with Increased Estradiol Level. mBio 2023; 14:e0041823. [PMID: 36939322 PMCID: PMC10128027 DOI: 10.1128/mbio.00418-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/21/2023] Open
Abstract
Hepatitis E virus (HEV) causes adverse clinical outcomes in pregnant women, but the underlying mechanisms remain poorly understood. To delineate the mechanisms of pregnancy-associated adverse effects during HEV infection, we utilized a genotype 3 HEV from rabbit (HEV-3ra) and its cognate host (rabbits) to systematically investigate the clinical consequences, viral replication dynamics, and host immune and hormonal responses of HEV infection during pregnancy. We found a significant fetal loss of 23% in HEV-infected pregnant rabbits, indicating an early-stage miscarriage. HEV infection in pregnant rabbits was characterized by higher viral loads in feces, intestinal contents, liver, and spleen tissues, as well as a longer and earlier onset of viremia than in infected nonpregnant rabbits. HEV infection altered the pattern of cytokine gene expressions in the liver of pregnant rabbits and caused a transient increase of serum interferon gamma (IFN-γ) shortly after a notable increase in viral replication, which may contribute to early fetal loss. Histological lesions in the spleen were more pronounced in infected pregnant rabbits, although moderate liver lesions were seen in both infected pregnant and nonpregnant rabbits. Total bilirubin was elevated in infected pregnant rabbits. The serum levels of estradiol (E2) in HEV-infected pregnant rabbits were significantly higher than those in mock-infected pregnant rabbits at 14 days postinoculation (dpi) and correlated positively with higher viral loads in feces, liver, and spleen tissues at 28 dpi, suggesting that it may play a role in extrahepatic virus dissemination. The results have important implications for understanding the severe diseases associated with HEV infection during pregnancy. IMPORTANCE HEV causes adverse pregnancy outcomes, with a mortality rate of >30% in pregnant women, but the underlying mechanisms are poorly understood. In this study, we utilized HEV-3ra and its cognate host (pregnant rabbit) to delineate the potential underlying mechanisms of pregnancy-associated adverse outcomes during HEV infection. We found that infected pregnant rabbits had a fetal loss of 23%, which coincided with enhanced viral replication and an elevated systemic IFN-γ response, followed by longer viremia duration and extrahepatic viral dissemination. Estradiol levels were increased in infected pregnant rabbits and correlated positively with higher fecal viral shedding and higher viral loads in liver and spleen tissues. Infected pregnant rabbits had more pronounced splenic lesions, higher serum total bilirubin, and an altered cytokine gene expression profile in the liver. The results will contribute to our understanding of the mechanisms of HEV-associated adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Hassan M. Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - C. Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Anna M. Hassebroek
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Guillermo Raimundi Rodríguez
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Høj PH, Møller-Sørensen J, Wissing AL, Alatraktchi FA. Electrochemical biosensors for monitoring of selected pregnancy hormones during the first trimester: A systematic review. Talanta 2023; 258:124396. [PMID: 36870154 DOI: 10.1016/j.talanta.2023.124396] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The hormones human chorionic gonadotropin, progesterone, estrogen and four of its metabolites (estradiol, estrone, estriol, estetrol), as well as relaxin play an essential role in the development of the fetus during the first trimester. Imbalances in these hormones during the first trimester have been directly linked to miscarriages. However, frequent monitoring of the hormones is limited by the current conventional centralized analytical tools that do not allow a rapid response time. Electrochemical sensing is considered an ideal tool to detect hormones owing to its advantages such as quick response, user-friendliness, low economic costs, and possibility of use in point-of-care settings. Electrochemical detection of pregnancy hormones is an emerging field that has been demonstrated primarily at research level. Thus, it is timely with a comprehensive overview of the characteristics of the reported detection techniques. This is the first extensive review focusing on the advances related to electrochemical detection of hormones linked to the first trimester of pregnancy. Additionally, this review offers insights into the main challenges that must be addressed imminently to ensure progress from research to clinical applications.
Collapse
Affiliation(s)
- Pernille Hagen Høj
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jon Møller-Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | | |
Collapse
|
5
|
Zhang J, Wang Z, Dai Y, Zhang L, Guo J, Lv S, Qi X, Lu D, Liang W, Cao Y, Wu C, Chang X, Zhou Z. Multiple mediation effects on association between prenatal triclosan exposure and birth outcomes. ENVIRONMENTAL RESEARCH 2022; 215:114226. [PMID: 36049513 DOI: 10.1016/j.envres.2022.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Triclosan is a broad-spectrum antimicrobial, and was thought to affect intrauterine development, but the mechanism remains unclear. OBJECTIVE To explore the association between prenatal triclosan exposure and birth outcomes. METHODS Based on 726 mother-child pairs from the Sheyang Mini Birth Cohort Study (SMBCS), we used the available (published) data of triclosan in maternal urines, the hormones including thyroid-related hormones, gonadal hormones in cord blood, and adipokines, trimethylamine-N-oxide (TMAO) and its precursors in cord blood to explore possible health effects of triclosan on birth outcomes through assessing different hormones and parameters, using Bayesian mediation analysis. RESULTS Maternal triclosan exposure was associated with ponderal index (β = 0.317) and head circumference (β = -0.172) in generalized linear models. In Bayesian mediation analysis of PI model, estradiol (β = 0.806) and trimethylamine (TMA, β = 0.164) showed positive mediation effects, while total thyroxine (TT4, β = -0.302), leptin (β = -2.023) and TMAO (β = -0.110) showed negative mediation effects. As for model of head circumference, positive mediation effects were observed in free thyroxine (FT4, β = 0.493), TMA (β = 0.178), and TMAO (β = 0.683), negative mediation effects were observed in TT4 (β = -0.231), testosterone (β = -0.331), estradiol (β = -1.153), leptin (β = -2.361), choline (β = -0.169), betaine (β = -0.104), acetyl-L-carnitine (β = -0.773). CONCLUSION The results indicated triclosan can affect intrauterine growth by interfering thyroid-related hormones, gonadal hormones, adipokines, TMAO and its precursors.
Collapse
Affiliation(s)
- Jiming Zhang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zheng Wang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Yiming Dai
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Lei Zhang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Jianqiu Guo
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Shenliang Lv
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Xiaojuan Qi
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No.3399 Binsheng Road, Hangzhou, 310051, China.
| | - Dasheng Lu
- Shanghai Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Shanghai, 200336, China.
| | - Weijiu Liang
- Changning Center for Disease Control and Prevention, No.39 Yunwushan Road, Shanghai, 200051, China.
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, 70182, Sweden; Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - Chunhua Wu
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Xiuli Chang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
Dong C, Zhang BP, Ying YQ, Hou L, Wu W, Wei H, Luo XP. Oestradiol promotes the intrahepatic bile duct development of C57BL/6CrSlc mice during embryonic period via Notch signalling pathway. J Cell Mol Med 2021; 25:9447-9459. [PMID: 34498380 PMCID: PMC8500961 DOI: 10.1111/jcmm.16888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 01/23/2023] Open
Abstract
Oestradiol (E2) is a critical factor for multiple systems' development during the embryonic period. Here, we aimed to investigate the effects of oestradiol on intrahepatic bile duct development, which may allow a better understanding of congenital bile duct dysplasia. DLK+ hepatoblasts were extracted from the C57BL/6CrSlc foetal mice and randomly divided into control group, oestradiol groups (1, 10, 100 nM) and oestradiol (10 nM) + DAPT (inhibitor of Notch signalling; 40 µM) group for in vitro experiments. For in vivo analysis, pregnant mice were divided into control group, oestradiol (intraperitoneal injection of 0.6 mg/kg/day) ± DAPT (subcutaneous injection of 10 mg/kg/day) groups and tamoxifen (gavage administration of 0.4 mg/kg/day) group. The results showed that oestradiol promoted hepatoblast differentiation into cholangiocytes and intrahepatic bile duct development during the embryonic period. Tamoxifen, an antioestrogenic drug, inhibited the above processes. Moreover, oestradiol promoted the expression of Notch signalling pathway‐associated proteins and genes both in vitro and in vivo. Notably, DAPT addition inhibited the oestradiol‐mediated effects. In conclusion, oestradiol can promote hepatoblast differentiation into cholangiocytes and intrahepatic bile duct development of C57BL/6CrSlc mice during embryonic period via the Notch signalling pathway.
Collapse
Affiliation(s)
- Chen Dong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ben-Ping Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Qin Ying
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Hou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wei
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Luoto S, Krams I, Rantala MJ. A Life History Approach to the Female Sexual Orientation Spectrum: Evolution, Development, Causal Mechanisms, and Health. ARCHIVES OF SEXUAL BEHAVIOR 2019; 48:1273-1308. [PMID: 30229521 DOI: 10.1007/s10508-018-1261-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 05/12/2023]
Abstract
Women's capacity for sexual fluidity is at least as interesting a phenomenon from the point of view of evolutionary biology and behavioral endocrinology as exclusively homosexual orientation. Evolutionary hypotheses for female nonheterosexuality have failed to fully account for the existence of these different categories of nonheterosexual women, while also overlooking broader data on the causal mechanisms, physiology, ontogeny, and phylogeny of female nonheterosexuality. We review the evolutionary-developmental origins of various phenotypes in the female sexual orientation spectrum using the synergistic approach of Tinbergen's four questions. We also present femme-specific and butch-specific hypotheses at proximate and ultimate levels of analysis. This review article indicates that various nonheterosexual female phenotypes emerge from and contribute to hormonally mediated fast life history strategies. Life history theory provides a biobehavioral explanatory framework for nonheterosexual women's masculinized body morphology, psychological dispositions, and their elevated likelihood of experiencing violence, substance use, obesity, teenage pregnancy, and lower general health. This pattern of life outcomes can create a feedback loop of environmental unpredictability and harshness which destabilizes intrauterine hormonal conditions in mothers, leading to a greater likelihood of fast life history strategies, global health problems, and nonheterosexual preferences in female offspring. We further explore the potential of female nonheterosexuality to function as an alloparental buffer that enables masculinizing alleles to execute their characteristic fast life history strategies as they appear in the female and the male phenotype. Synthesizing life history theory with the female sexual orientation spectrum enriches existing scientific knowledge on the evolutionary-developmental mechanisms of human sex differences.
Collapse
Affiliation(s)
- Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Arts 1, Building 206, Room 616, 14A Symonds St., Auckland, 1010, New Zealand.
- School of Psychology, University of Auckland, Auckland, New Zealand.
| | - Indrikis Krams
- Department of Zoology and Animal Ecology, University of Latvia, Riga, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Markus J Rantala
- Department of Biology & Turku Brain and Mind Center, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Singh AP, Gupta AK, Pardeshi R, Raipuria G. Hydrocolpos Caused by Imperforate Hymen in a Preterm Newborn. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2019; 7:124-125. [PMID: 31080396 PMCID: PMC6503698 DOI: 10.4103/sjmms.sjmms_69_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Aditya Pratap Singh
- Department of Pediatric Surgery, SMS Medical College, Jaipur, Rajasthan, India
| | - Arun Kumar Gupta
- Department of Pediatric Surgery, SMS Medical College, Jaipur, Rajasthan, India
| | - Rajlaxmi Pardeshi
- Department of Obstetrics and Gynecology, SMS Medical College, Jaipur, Rajasthan, India
| | - Gurudatt Raipuria
- Department of Pediatric Surgery, SMS Medical College, Jaipur, Rajasthan, India
| |
Collapse
|
10
|
Anelli GM, Mandò C, Letizia T, Mazzocco MI, Novielli C, Lisso F, Personeni C, Vago T, Cetin I. Placental ESRRG-CYP19A1 Expressions and Circulating 17-Beta Estradiol in IUGR Pregnancies. Front Pediatr 2019; 7:154. [PMID: 31069202 PMCID: PMC6491753 DOI: 10.3389/fped.2019.00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/01/2019] [Indexed: 12/04/2022] Open
Abstract
Introduction: Sex steroids are regulating factors for intrauterine growth. 17-β Estradiol (E2) is particularly critical to a physiological pregnancy, as increased maternal E2 was correlated to lower fetal weight at delivery. The placenta itself is a primary source of estrogens, synthetized from cholesterol precursors. Cytochrome P450 aromatase (encoded by CYP19A1 gene) is a rate-limiting enzyme for E2 biosynthesis. CYP19A1 transcription is supported by Estrogen Related-Receptor Gamma (ERRγ- ESRRG gene), which thus has an indirect role in placental steroidogenesis. Here we investigated maternal E2 levels and placental CYP19A1 and ESRRG expressions in pregnancies with IntraUterine Growth Restriction (IUGR). Methods: Singleton pregnancies were studied. E2 was measured in maternal plasma by electrochemiluminescence in 16 term controls and 11 IUGR (classified by umbilical artery doppler pulsatility index) at elective cesarean section, and also in 13 controls during pregnancy at a gestational age comparable to IUGR. CYP19A1 and ESRRG expressions were analyzed in placental tissue. Maternal/fetal characteristics, placental and molecular data were compared among study groups and tested for correlations. Results: Maternal E2 plasma concentrations were significantly decreased in IUGR compared to controls at delivery. When analyzing normal pregnancies at a gestational age similar to IUGR, E2 levels were not different to pathological cases. However, E2 levels at delivery positively correlated with placental efficiency. Placental CYP19A1 levels were significantly higher in IUGR placental tissue vs. controls, and specifically increased in female IUGR placentas. ESRRG expression was not different among groups. Discussion: We report a positive correlation between 17-β Estradiol levels and placental efficiency, that might indicate a disrupted steroidogenesis in IUGR pregnancies. Moreover, we show alterations of CYP19A1 expression in IUGR placentas, possibly indicating a compensatory effect to the adverse IUGR intrauterine environment, also depending on fetal sex. Further studies are needed to deeper investigate IUGR alterations in the complex interaction among molecules involved in placental steroidogenesis.
Collapse
Affiliation(s)
- Gaia Maria Anelli
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Chiara Mandò
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Teresa Letizia
- Endocrinology Laboratory, Sacco University Hospital, Milan, Italy
| | - Martina Ilaria Mazzocco
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Chiara Novielli
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Fabrizia Lisso
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Carlo Personeni
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy
| | - Tarcisio Vago
- Endocrinology Laboratory, Sacco University Hospital, Milan, Italy
| | - Irene Cetin
- Unit of Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences, ASST Fatebenefratelli Sacco University Hospital, University of Milan, Milan, Italy.,Unit of Obstetrics and Gynecology, Buzzi University Hospital, Milan, Italy
| |
Collapse
|
11
|
Abstract
Prenatal exposure to excess steroids or steroid mimics can disrupt the normal developmental trajectory of organ systems, culminating in adult disease. The metabolic system is particularly susceptible to the deleterious effects of prenatal steroid excess. Studies in sheep demonstrate that prenatal exposure to excess native steroids or endocrine-disrupting chemicals with steroidogenic activity, such as bisphenol A, results in postnatal development of numerous cardiometabolic perturbations, including insulin resistance, increased adiposity, altered adipocyte size and distribution, and hypertension. The similarities in the phenotypic outcomes programmed by these different prenatal insults suggest that common mechanisms may be involved, and these may include hormonal imbalances (e.g., hyperandrogenism and hyperinsulinemia), oxidative stress, inflammation, lipotoxicity, and epigenetic alterations. Animal models, including the sheep, provide mechanistic insight into the metabolic repercussions associated with prenatal steroid exposure and represent valuable research tools in understanding human health and disease. Focusing on the sheep model, this review summarizes the cardiometabolic perturbations programmed by prenatal exposure to different native steroids and steroid mimics and discusses the potential mechanisms underlying the development of adverse outcomes.
Collapse
Affiliation(s)
- Rodolfo C Cardoso
- Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
12
|
Rabaglino MB, Keller‐Wood M, Wood CE. A transcriptomics model of estrogen action in the ovine fetal hypothalamus: evidence for estrogenic effects of ICI 182,780. Physiol Rep 2018; 6:e13871. [PMID: 30221477 PMCID: PMC6139289 DOI: 10.14814/phy2.13871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 01/13/2023] Open
Abstract
Estradiol plays a critical role in stimulating the fetal hypothalamus-pituitary-adrenal axis at the end of gestation. Estradiol action is mediated through nuclear and membrane receptors that can be modulated by ICI 182,780, a pure antiestrogen compound. The objective of this study was to evaluate the transcriptomic profile of estradiol and ICI 182,780, testing the hypothesis that ICI 182,780 antagonizes the action of estradiol in the fetal hypothalamus. Chronically catheterized ovine fetuses were infused for 48 h with: vehicle (Control, n = 6), 17β-estradiol 500 μg/kg/day (Estradiol, n = 4), ICI 182,780 5 μg/kg/day (ICI 5 μg, n = 4) and ICI 182,780 5 mg/kg/day (ICI 5 mg, n = 5). Fetal hypothalami were collected afterward, and gene expression was measured through microarray. Statistical analysis of transcriptomic data was performed with Bioconductor-R and Cytoscape software. Unexpectedly, 35% and 15.5% of the upregulated differentially expressed genes (DEG) by Estradiol significantly overlapped (P < 0.05) with upregulated DEG by ICI 5 mg and ICI 5 μg, respectively. For the downregulated DEG, these percentages were 29.9% and 15.5%, respectively. There was almost no overlap for DEG following opposite directions between Estradiol and ICI ICI 5 mg or ICI 5 μg. Furthermore, most of the genes in the estrogen signaling pathway - after activation of the epidermal growth factor receptor - followed the same direction in Estradiol, ICI 5 μg or ICI 5 mg compared to Control. In conclusion, estradiol and ICI 182,780 have estrogenic genomic effects in the developing brain, suggesting the possibility that the major action of estradiol on the fetal hypothalamus involves another receptor system rather than estrogen receptors.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Department of Physiology and Functional GenomicsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Maureen Keller‐Wood
- PharmacodynamicsCollege of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Charles E. Wood
- Department of Physiology and Functional GenomicsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
13
|
Animal Models in Sexual Medicine: The Need and Importance of Studying Sexual Motivation. Sex Med Rev 2017; 5:5-19. [DOI: 10.1016/j.sxmr.2016.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/11/2016] [Accepted: 07/22/2016] [Indexed: 01/14/2023]
|
14
|
Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update 2015; 22:164-81. [PMID: 26545808 DOI: 10.1093/humupd/dmv049] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as 'gatekeepers' at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus.
Collapse
Affiliation(s)
- E Bloise
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - S J Lye
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - W Gibb
- Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, ON, Canada Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - S G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|