1
|
Sheibani N, Arab SS, Kamalvand M. Designing a recombinant coat protein to reduce tobacco mosaic virus infection in plants. J Biomol Struct Dyn 2024:1-7. [PMID: 39589026 DOI: 10.1080/07391102.2024.2430456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/16/2024] [Indexed: 11/27/2024]
Abstract
The Tobacco Mosaic Virus (TMV) is a critical plant virus that can cause a significant drop in crop yield. To understand how recombinant coat-protein impacts the affinity and assembly of TMV's subunits, research is being conducted to assess the effect of recombinant protein on virus resistance. To develop a recombinant coat-protein that can lower TMV infection rates in plants, a design strategy was employed that involves creating defective viral subunits leading to incorrect assembly. This method is similar to using defective puzzle pieces that form incorrect connections resulting in disrupted viral assembly, ultimately affecting the production of mature virus particles. The study investigated the effect of mutations on one side of the Tobacco mosaic virus coat-protein using molecular modeling and dynamics simulation techniques. The simulation showed that the recombinant subunit had lower flexibility (between 0.15 to 0.20 nm) compared to the other subunits (between 0.45 to 0.75 nm), which was attributed to the smaller loop area. The study suggests an effective recombinant coat-protein with the potential to prevent virus infection by disrupting the coat-protein assembly process. This approach can be used to design a plant vaccine against viruses. Developing a recombinant protein can also provide benefits to plants such as protection from pests and enhancement of growth and productivity.
Collapse
Affiliation(s)
- Narjes Sheibani
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Kamalvand
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| |
Collapse
|
2
|
Le Thi HN, Le NT, Bui Thi TH, Nguyen Thi HL, Nguyen TT, Nguyen Thi Y, Ha MN, Nguyen DT. Novel melanin-derived stationary phase for immobilized metal ion affinity chromatography in recombinant His-tagged protein purification. Protein Expr Purif 2024; 217:106444. [PMID: 38365166 DOI: 10.1016/j.pep.2024.106444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
The matrix of the stationary phase is a crucial element in affinity chromatography for protein purification. Various materials, including polymer or magnetic materials, have been employed as the matrix in the purification of His-tagged protein. Here, for the first time, we utilized a combination of melanin and alginate, both natural polymer materials, to synthesize Ni-melanin/alginate (Ni-M/A) beads for His-tagged protein purification. We investigated the binding of His-tagged Mpro on the Ni-M/A beads, referred to as Ni-M/A-Mpro, and assessed the elution efficiency of Mpro from the beads. Our examination involved FTIR, EDS, XRD, SDS-PAGE, and Western blotting methods. FTIR spectra revealed notable changes in the stretching patterns and intensities of hydroxyl, amine, carbonyl, imine and amide chemical groups, when Mpro protein was present in the Ni-M/A sample. XRD spectra demonstrated the occurrence of two Nickel peaks at 35-40 deg and 40-45 deg in Ni-M/A, but only one nickel peak at 35-40 deg in Ni-M/A-Mpro, indicating the binding of Mpro on the Nickel ions. EDS analysis reported a decrease in the concentration of Nickel on the surface of Ni-M/A from 16% to 7% when Mpro protein was loaded into the stationary phase. Importantly, our data indicated that the purity of the His-tagged protein Mpro after purification reached 97% after just one-step purification using the Ni-M/A stationary phase. Moreover, the binding capacity of Ni-M/A for Mpro was approximately 5.2 mg/g with recovery efficiency of 40%. Our results suggested Ni-M/A as a highly potential solid phase for affinity chromatography in the purification of His-tagged protein.
Collapse
Affiliation(s)
- Hong-Nhung Le Thi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Ngoc-Tram Le
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Thu-Hoai Bui Thi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Hong-Loan Nguyen Thi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Thanh-Thuy Nguyen
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Yen Nguyen Thi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Minh-Ngoc Ha
- VNU Key Laboratory of Advanced Materials for Green Growth, VNU University of Science, Vietnam National University, 100000, Hanoi, Viet Nam
| | - Dinh-Thang Nguyen
- Faculty of Advanced Technology and Engineering, Vietnam-Japan University, Vietnam National University, 100000, Hanoi, Viet Nam.
| |
Collapse
|
3
|
Shendge AA, D’Souza JS. Strategic optimization of conditions for the solubilization of GST-tagged amphipathic helix-containing ciliary proteins overexpressed as inclusion bodies in E. coli. Microb Cell Fact 2022; 21:258. [PMID: 36510188 PMCID: PMC9746132 DOI: 10.1186/s12934-022-01979-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Expression of affinity-tagged recombinant proteins for crystallography, protein-protein interaction, antibody generation, therapeutic applications, etc. mandates the generation of high-yield soluble proteins. Although recent developments suggest the use of yeast, insect, and mammalian cell lines as protein expression platforms, Escherichia coli is still the most popular, due mainly to its ease of growth, feasibility in genetic manipulation and economy. However, some proteins have a spontaneous tendency to form inclusion bodies (IBs) when over-expressed in bacterial expression systems such as E. coli, thus posing a challenge in purification and yield. At times, small peptides undergo degradation during protein production and hence using suitable tags could circumvent the problem. Although several independent techniques have been used to solubilize IBs, these cannot always be applied in a generic sense. Although tagging a GST moiety is known to enhance the solubility of fusion proteins in E. coli, resulting in yields of 10-50 mg/L of the culture, the inherent nature of the protein sequence at times could lead to the formation of IBs. We have been working on a Myc Binding Protein-1 orthologue, viz. Flagellar Associated Protein 174 (FAP174) from the axoneme of Chlamydomonas reinhardtii that binds to an A-Kinase Anchoring Protein 240 (AKAP240) which has been annotated as Flagellar Associated Protein 65 (FAP65). Using an in-silico approach, we have identified two amphipathic helices on FAP65 (CrFAP65AH1 and CrFAP65AH2) that are predicted to bind to FAP174. To test this prediction, we have cloned the GST-tagged peptides, and overexpressed them in E. coli that have resulted in insoluble IBs. The yields of these over-expressed recombinant proteins dropped considerably due to IB formation, indicating aggregation. An integrated approach has been used to solubilize four highly hydrophobic polypeptides, viz. two amphipathic helices and the respective proline variants of FAP65. For solubilizing these polypeptides, variables such as non-denaturing detergents (IGEPAL CA-630), changing the ionic strength of the cell lysis and solubilization buffer, addition of BugBuster®, diluting the cell lysate and sonication were introduced. Our statistically viable results yielded highly soluble and functional polypeptides, indiscreet secondary structures, and a yield of ~ 20 mg/L of the E. coli culture. Our combinatorial strategy using chemical and physical methods to solubilize IBs could prove useful for hydrophobic peptides and proteins with amphipathic helices.
Collapse
Affiliation(s)
- Amruta A. Shendge
- grid.452882.10000 0004 1761 3305School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098 India
| | - Jacinta S. D’Souza
- grid.452882.10000 0004 1761 3305School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098 India
| |
Collapse
|
4
|
Genomics-based strategies toward the identification of a Z-ISO carotenoid biosynthetic enzyme suitable for structural studies. Methods Enzymol 2022; 671:171-205. [PMID: 35878977 DOI: 10.1016/bs.mie.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Over the past 20years, structural genomics efforts have proven enormously successful for the determination of integral membrane protein structures, particularly for those of prokaryotic origin. However, traditional genomic expansion screens have included up to hundreds of targets, necessitating the use of robotics and other automation not available to most laboratories. Moreover, such large-scale screens of eukaryotic targets are not easily performed at such a scale. To have broader appeal, traditional structural genomic approaches need to be modified and improved such that they are feasible for most laboratories and especially so for proteins from eukaryotic organisms. One such refinement, termed "microgenomic expansion," has been recently described. This approach improves the process of target selection by making target screening a two-step process, with a minimal number of targets tested at each step. Microgenomic expansion methods are applied here theoretically to a project that has the objective of acquiring a structure for the plant 15-cis-ζ-carotene isomerase, Z-ISO.
Collapse
|
5
|
Boock JT, Taw M, King BC, Conrado RJ, Gibson DM, DeLisa MP. Two-Tiered Selection and Screening Strategy to Increase Functional Enzyme Production in E. coli. Methods Mol Biol 2022; 2406:169-187. [PMID: 35089557 DOI: 10.1007/978-1-0716-1859-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Development of recombinant enzymes as industrial biocatalysts or metabolic pathway elements requires soluble expression of active protein. Here we present a two-step strategy, combining a directed evolution selection with an enzyme activity screen, to increase the soluble production of enzymes in the cytoplasm of E. coli. The directed evolution component relies on the innate quality control of the twin-arginine translocation pathway coupled with antibiotic selection to isolate point mutations that promote intracellular solubility. A secondary screen is applied to ensure the solubility enhancement has not compromised enzyme activity. This strategy has been successfully applied to increase the soluble production of a fungal endocellulase by 30-fold in E. coli without change in enzyme specific activity through two rounds of directed evolution.
Collapse
Affiliation(s)
- Jason T Boock
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
- Department of Chemical, Paper and Biomedical Engineering, Miami University (OH), Oxford, OH, USA.
| | - May Taw
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Brian C King
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Robert J Conrado
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Donna M Gibson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
- USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Carratalá JV, Brouillette E, Serna N, Sánchez-Chardi A, Sánchez JM, Villaverde A, Arís A, Garcia-Fruitós E, Ferrer-Miralles N, Malouin F. In Vivo Bactericidal Efficacy of GWH1 Antimicrobial Peptide Displayed on Protein Nanoparticles, a Potential Alternative to Antibiotics. Pharmaceutics 2020; 12:pharmaceutics12121217. [PMID: 33348529 PMCID: PMC7766456 DOI: 10.3390/pharmaceutics12121217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Oligomerization of antimicrobial peptides into nanosized supramolecular complexes produced in biological systems (inclusion bodies and self-assembling nanoparticles) seems an appealing alternative to conventional antibiotics. In this work, the antimicrobial peptide, GWH1, was N-terminally fused to two different scaffold proteins, namely, GFP and IFN-γ for its bacterial production in the form of such recombinant protein complexes. Protein self-assembling as regular soluble protein nanoparticles was achieved in the case of GWH1-GFP, while oligomerization into bacterial inclusion bodies was reached in both constructions. Among all these types of therapeutic proteins, protein nanoparticles of GWH1-GFP showed the highest bactericidal effect in an in vitro assay against Escherichia coli, whereas non-oligomerized GWH1-GFP and GWH1-IFN-γ only displayed a moderate bactericidal activity. These results indicate that the biological activity of GWH1 is specifically enhanced in the form of regular multi-display configurations. Those in vitro observations were fully validated against a bacterial infection using a mouse mastitis model, in which the GWH1-GFP soluble nanoparticles were able to effectively reduce bacterial loads.
Collapse
Affiliation(s)
- Jose V. Carratalá
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eric Brouillette
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
| | - Naroa Serna
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Alejandro Sánchez-Chardi
- Microscopy Service, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain;
- Departament of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Julieta M. Sánchez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (N.F.-M.); (F.M.)
| | - François Malouin
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
- Correspondence: (N.F.-M.); (F.M.)
| |
Collapse
|
7
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
9
|
Perez-Riverol A, Musacchio-Lasa A, Fernandes LGR, dos Santos-Pinto JRA, Esteves FG, Bazon ML, Zollner RDL, Palma MS, Brochetto-Braga MR. Improved production of the recombinant phospholipase A1 from Polybia paulista wasp venom expressed in bacterial cells for use in routine diagnostics. 3 Biotech 2020; 10:217. [PMID: 32355591 DOI: 10.1007/s13205-020-02202-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/09/2020] [Indexed: 12/27/2022] Open
Abstract
Phospholipase A1 (PLA1) is one of the three major allergens identified in the venom of P. paulista (Hymenoptera: Vespidae), a clinically relevant wasp from southeastern Brazil. The recombinant form of this allergen (rPoly p 1) could be used for the development of molecular diagnostic of venom allergy. Early attempts to produce rPoly p 1 using Escherichia coli BL21 (DE3) cells rendered high yields of the insoluble rPoly p 1 but with low levels of solubilized protein recovery (12%). Here, we aimed to improve the production of rPoly p 1 in E. coli by testing different conditions of expression, solubilization of the inclusion bodies and protein purification. The results showed that the expression at 16 °C and 0.1 mM of IPTG increased the production of rPoly p 1, still in the insoluble form, but with high solubilized protein yields after incubation with citrate-phosphate buffer with 0.15 M NaCl, 6 M urea, pH 2.6 at 25 ºC for 2 h. The venom allergen was also cloned in pPICZαA vector for soluble expression as a secreted protein in Pichia pastoris X-33 cells, rendering almost undetectable levels (nanograms) in the culture supernatant. In contrast, a sevenfold increase of the solubilized and purified rPoly p 1 yields (1.5 g/L of fermentation broth) was obtained after improved production in E. coli. The identity of the protein was confirmed with an anti-His antibody and MS spectra. Allergen-specific IgE (sIgE)-mediated recognition was evaluated in immunoblotting with sera of allergic patients (n = 40). Moreover, rPoly p 1 showed high levels of diagnostic sensitivity (95%). The optimized strategy for rPoly p 1 production described here, will provide the amounts of allergen necessary for the subsequent protein refolding, immunological characterization steps, and ultimately, to the development of molecular diagnostic for P. paulista venom allergy.
Collapse
|
10
|
Ulagesan S, Choi JW, Nam TJ, Choi YH. Peptidyl-prolyl isomerase and the biological activities of recombinant protein cyclophilin from Pyropia yezoensis (PyCyp). Protein Expr Purif 2020; 172:105636. [PMID: 32272150 DOI: 10.1016/j.pep.2020.105636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Cyclophilins are highly conserved proteins associated with peptidyl-prolyl cis-trans isomerase activity (PPIase). The present study was designed to analyze the biological activity of recombinant cyclophilin from the marine red algae Pyropia yezoensis (PyCyp). The cyclophilin gene from P. yezoensis was cloned into the pPROEX-HTA expression vector. The plasmid was transformed into BL21 Escherichia coli by high efficiency transformation. Recombinant protein was expressed using 0.1 mM IPTG and the fusion protein was purified by affinity column chromatography. The His-tag was removed by TEV protease. The recombinant protein was further purified on a HiPrep Sephacryl S-200 HR column and by reversed-phase high performance liquid chromatography with a Sep-pak plus C18 column. Purified cyclophilin was characterized by a variety of analytical methods and analyzed for its peptidyl-prolyl isomerase activity. Our recombinant PyCyp was shown to catalyze cis-trans isomerization. PyCyp was also evaluated for antimicrobial activity against both Gram-positive and Gram-negative bacteria cultures and showed significant antibacterial activity against tested pathogens. PyCyp was shown to permeabilize bacterial membranes as evidenced by increased fluorescence intensity in SYTOX Green uptake assays with Staphylococcus aureus. The radical scavenging activity of PyCyp increased in a dose-dependent manner, indicating significant antioxidant activity. This study provides information for the development of therapeutic proteins from marine algae.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea
| | - Jeong-Wook Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan, 46041, Republic of Korea; Department of Marine Bio-materials & Aquaculture, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
11
|
Thimiri Govinda Raj DB, Khan NA, Venkatachalam S, Arumugam S. BacMam System for Rapid Recombinant Protein Expression in Mammalian Cells. Methods Mol Biol 2020; 2125:205-208. [PMID: 31228126 DOI: 10.1007/7651_2019_249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Baculovirus expression vector system (BEVS) is an established technology for recombinant protein expression in insect cells. Further, BEVS-mediated gene transduction of mammalian cells (BacMam) is emerging as a technique for high level recombinant protein expression in mammalian cells. Here, we describe generic method in using BEVS as a BacMam for rapid recombinant protein expression in mammalian cells.
Collapse
Affiliation(s)
| | - Niamat Ali Khan
- Envirotransgene® Bio-solutions Global, Chennai, India
- DTCG®, Chennai, India
| | | | - Sivakumar Arumugam
- School of Bio Sciences and Technology (SBST), VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
12
|
Computational Modelling of Metabolic Burden and Substrate Toxicity in Escherichia coli Carrying a Synthetic Metabolic Pathway. Microorganisms 2019; 7:microorganisms7110553. [PMID: 31718036 PMCID: PMC6921056 DOI: 10.3390/microorganisms7110553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
In our previous work, we designed and implemented a synthetic metabolic pathway for 1,2,3-trichloropropane (TCP) biodegradation in Escherichia coli. Significant effects of metabolic burden and toxicity exacerbation were observed on single cell and population levels. Deeper understanding of mechanisms underlying these effects is extremely important for metabolic engineering of efficient microbial cell factories for biotechnological processes. In this paper, we present a novel mathematical model of the pathway. The model addresses for the first time the combined effects of toxicity exacerbation and metabolic burden in the context of bacterial population growth. The model is calibrated with respect to the real data obtained with our original synthetically modified E. coli strain. Using the model, we explore the dynamics of the population growth along with the outcome of the TCP biodegradation pathway considering the toxicity exacerbation and metabolic burden. On the methodological side, we introduce a unique computational workflow utilising algorithmic methods of computer science for the particular modelling problem.
Collapse
|
13
|
Erian AM, Gibisch M, Pflügl S. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis. Microb Cell Fact 2018; 17:190. [PMID: 30501633 PMCID: PMC6267845 DOI: 10.1186/s12934-018-1038-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/23/2018] [Indexed: 12/03/2022] Open
Abstract
Background Efficient microbial production of chemicals is often hindered by the cytotoxicity of the products or by the pathogenicity of the host strains. Hence 2,3-butanediol, an important drop-in chemical, is an interesting alternative target molecule for microbial synthesis since it is non-cytotoxic. Metabolic engineering of non-pathogenic and industrially relevant microorganisms, such as Escherichia coli, have already yielded in promising 2,3-butanediol titers showing the potential of microbial synthesis of 2,3-butanediol. However, current microbial 2,3-butanediol production processes often rely on yeast extract as expensive additive, rendering these processes infeasible for industrial production. Results The aim of this study was to develop an efficient 2,3-butanediol production process with E. coli operating on the premise of using cost-effective medium without complex supplements, considering second generation feedstocks. Different gene donors and promoter fine-tuning allowed for construction of a potent E. coli strain for the production of 2,3-butanediol as important drop-in chemical. Pulsed fed-batch cultivations of E. coli W using microaerobic conditions showed high diol productivity of 4.5 g l−1 h−1. Optimizing oxygen supply and elimination of acetoin and by-product formation improved the 2,3-butanediol titer to 68 g l−1, 76% of the theoretical maximum yield, however, at the expense of productivity. Sugar beet molasses was tested as a potential substrate for industrial production of chemicals. Pulsed fed-batch cultivations produced 56 g l−1 2,3-butanediol, underlining the great potential of E. coli W as production organism for high value-added chemicals. Conclusion A potent 2,3-butanediol producing E. coli strain was generated by considering promoter fine-tuning to balance cell fitness and production capacity. For the first time, 2,3-butanediol production was achieved with promising titer, rate and yield and no acetoin formation from glucose in pulsed fed-batch cultivations using chemically defined medium without complex hydrolysates. Furthermore, versatility of E. coli W as production host was demonstrated by efficiently converting sucrose from sugar beet molasses into 2,3-butanediol. Electronic supplementary material The online version of this article (10.1186/s12934-018-1038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Maria Erian
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Martin Gibisch
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
14
|
Controlled Non-Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Novak K, Flöckner L, Erian AM, Freitag P, Herwig C, Pflügl S. Characterizing the effect of expression of an acetyl-CoA synthetase insensitive to acetylation on co-utilization of glucose and acetate in batch and continuous cultures of E. coli W. Microb Cell Fact 2018; 17:109. [PMID: 29986728 PMCID: PMC6036698 DOI: 10.1186/s12934-018-0955-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/02/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Due to its high stress tolerance and low acetate secretion, Escherichia coli W is reported to be a good production host for several metabolites and recombinant proteins. However, simultaneous co-utilization of glucose and other substrates such as acetate remains a challenge. The activity of acetyl-CoA-synthetase, one of the key enzymes involved in acetate assimilation is tightly regulated on a transcriptional and post-translational level. The aim of this study was to engineer E. coli W for overexpression of an acetylation insensitive acetyl-CoA-synthetase and to characterize this strain in batch and continuous cultures using glucose, acetate and during co-utilization of both substrates. RESULTS Escherichia coli W engineered to overexpress an acetylation-insensitive acetyl-CoA synthetase showed a 2.7-fold increase in acetate uptake in a batch process containing glucose and high concentrations of acetate compared to a control strain, indicating more efficient co-consumption of glucose and acetate. When acetate was used as the carbon source, batch duration could significantly be decreased in the overexpression strain, possibly due to alleviation of acetate toxicity. Chemostat cultivations with different dilution rates using glucose revealed only minor differences between the overexpression and control strain. Accelerostat cultivations using dilution rates between 0.20 and 0.70 h-1 indicated that E. coli W is naturally capable of efficiently co-utilizing glucose and acetate over a broad range of specific growth rates. Expression of acetyl-CoA synthetase resulted in acetate and glucose accumulation at lower dilution rates compared to the control strain. This observation can possibly be attributed to a higher ratio between acs and pta-ackA in the overexpression strain as revealed by gene expression analysis. This would result in enhanced energy dissipation caused by an imbalance in the Pta-AckA-Acs cycle. Furthermore, yjcH and actP, genes co-transcribed with acetyl-CoA synthetase showed significant down-regulation at elevated dilution rates. CONCLUSIONS Escherichia coli W expressing an acetylation-insensitive acetyl-CoA synthetase was shown to be a promising candidate for mixed feed processes using glucose and acetate. Comparison between batch and continuous cultures revealed distinct differences in glucose-acetate co-utilization behavior, requiring additional investigations such as multi-omics analysis and further engineering towards even more efficient co-utilization strains of E. coli W.
Collapse
Affiliation(s)
- Katharina Novak
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Lukas Flöckner
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Anna Maria Erian
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Philipp Freitag
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Christoph Herwig
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
16
|
Toinon A, Fontaine C, Thion L, Gajewska B, Carpick B, Nougarede N, Uhlrich S. Host cell protein testing strategy for hepatitis B antigen in Hexavalent vaccine – Towards a general testing strategy for recombinant vaccines. Biologicals 2018; 54:1-7. [DOI: 10.1016/j.biologicals.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
|
17
|
Amorim FG, Cordeiro FA, Pinheiro-Júnior EL, Boldrini-França J, Arantes EC. Microbial production of toxins from the scorpion venom: properties and applications. Appl Microbiol Biotechnol 2018; 102:6319-6331. [PMID: 29858954 DOI: 10.1007/s00253-018-9122-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
Scorpion venom are composed mainly of bioactive proteins and peptides that may serve as lead compounds for the design of biotechnological tools and therapeutic drugs. However, exploring the therapeutic potential of scorpion venom components is mainly impaired by the low yield of purified toxins from milked venom. Therefore, production of toxin-derived peptides and proteins by heterologous expression is the strategy of choice for research groups and pharmaceutical industry to overcome this limitation. Recombinant expression in microorganisms is often the first choice, since bacteria and yeast systems combine high level of recombinant protein expression, fast cell growth and multiplication and simple media requirement. Herein, we present a comprehensive revision, which describes the scorpion venom components that were produced in their recombinant forms using microbial systems. In addition, we highlight the pros and cons of performing the heterologous expression of these compounds, regarding the particularities of each microorganism and how these processes can affect the application of these venom components. The most used microbial system in the heterologous expression of scorpion venom components is Escherichia coli (85%), and among all the recombinant venom components produced, 69% were neurotoxins. This review may light up future researchers in the choice of the best expression system to produce scorpion venom components of interest.
Collapse
Affiliation(s)
- Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Francielle Almeida Cordeiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Ernesto Lopes Pinheiro-Júnior
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Johara Boldrini-França
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
18
|
Batumalaie K, Khalili E, Mahat NA, Huyop FZ, Wahab RA. A statistical approach for optimizing the protocol for overexpressing lipase KV1 in Escherichia coli: purification and characterization. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1407670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Kalaivani Batumalaie
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Elham Khalili
- Department of Biotechnology and Medical Engineering, Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Naji Arafat Mahat
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Fahrul Zaman Huyop
- Department of Biotechnology and Medical Engineering, Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
19
|
Heterologous Expression, Purification and Immunoreactivity of the Antigen 5 from Polybia paulista Wasp Venom. Toxins (Basel) 2017; 9:toxins9090259. [PMID: 28837089 PMCID: PMC5618192 DOI: 10.3390/toxins9090259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023] Open
Abstract
Polybia paulista (Hymenoptera: Vespidae) is responsible for a high number of sting accidents and anaphylaxis events in Southeast Brazil, Argentina and Paraguay. The specific detection of allergy to the venom of this wasp is often hampered by the lack of recombinant allergens currently available for molecular diagnosis. Antigen 5 (~23 kDa) from P. paulista venom (Poly p 5) is a highly abundant and glycosylated allergenic protein that could be used for development of component-resolved diagnosis (CRD). Here, we describe the cloning and heterologous expression of the antigen 5 (rPoly p 5) from P. paulista venom using the eukaryotic system Pichia pastoris. The expression as a secreted protein yielded high levels of soluble rPoly p 5. The recombinant allergen was further purified to homogeneity (99%) using a two-step chromatographic procedure. Simultaneously, the native form of the allergen (nPoly p 5) was purified from the wasp venom by Ion exchange chromatography. The rPoly p 5 and nPoly p 5 were then submitted to a comparative analysis of IgE-mediated immunodetection using sera from patients previously diagnosed with sensitization to wasp venoms. Both rPoly p 5 and nPoly p 5 were recognized by specific IgE (sIgE) in the sera of the allergic individuals. The high levels of identity found between nPoly p 5 and rPoly p 5 by the alignment of its primary sequences as well as by 3-D models support the results obtained in the immunoblot. Overall, we showed that P. pastoris is a suitable system for production of soluble rPoly p 5 and that the recombinant allergen represents a potential candidate for molecular diagnosis of P.paulista venom allergy.
Collapse
|
20
|
Iyengar ARS, Pande AH. Organophosphate-Hydrolyzing Enzymes as First-Line of Defence Against Nerve Agent-Poisoning: Perspectives and the Road Ahead. Protein J 2016; 35:424-439. [DOI: 10.1007/s10930-016-9686-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Tang X, Chen J, Wang Y, Wang X. Gene cloning, expression and polyclonal antibody preparation of Rab3A for protein interaction analysis. SPRINGERPLUS 2016; 5:1705. [PMID: 27795879 PMCID: PMC5052235 DOI: 10.1186/s40064-016-3330-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022]
Abstract
Background Rab3A is a GTP-binding protein and plays critical roles in the regulation of synaptic vesicle exocytosis. Up to date, how Rab3A participates in such a regulatory process is not completely clear. Results In this report the Rab3A gene from Rattus norvegicus was cloned and heterologously expressed in E. coli using pCold-TF expression vector with folding capacity. Due to the presence of His-tag sequence on the N-terminal side, Rab3A fusion protein was purified to greater than 95 % purity with a single Ni-affinity purification step. After the Rab3A fusion protein was used to immunize mice, an anti-serum against Rab3A with a titer of about 6000 was generated. Western blot analysis indicated that the prepared polyclonal antibody could recognize both Rab3A fusion protein and native Rab3A protein. To remove the tag sequence, thrombin was used to cleave the Rab3A fusion protein, followed by SDS-PAGE to separate the cleavage products. Using the gel protein recovery strategy with a Micro Protein PAGE Recovery Kit, the de-tagged Rab3A protein of electrophoretic purity was prepared. Conclusions The present work not only prepared the ground for the study on Rab3A-mediated protein interactions, but also provided systematic experimental methods referable for the similar studies.
Collapse
Affiliation(s)
- Xia Tang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Jia Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Ying Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| |
Collapse
|
22
|
Zhou RB, Lu HM, Liu J, Shi JY, Zhu J, Lu QQ, Yin DC. A Systematic Analysis of the Structures of Heterologously Expressed Proteins and Those from Their Native Hosts in the RCSB PDB Archive. PLoS One 2016; 11:e0161254. [PMID: 27517583 PMCID: PMC4982684 DOI: 10.1371/journal.pone.0161254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
Recombinant expression of proteins has become an indispensable tool in modern day research. The large yields of recombinantly expressed proteins accelerate the structural and functional characterization of proteins. Nevertheless, there are literature reported that the recombinant proteins show some differences in structure and function as compared with the native ones. Now there have been more than 100,000 structures (from both recombinant and native sources) publicly available in the Protein Data Bank (PDB) archive, which makes it possible to investigate if there exist any proteins in the RCSB PDB archive that have identical sequence but have some difference in structures. In this paper, we present the results of a systematic comparative study of the 3D structures of identical naturally purified versus recombinantly expressed proteins. The structural data and sequence information of the proteins were mined from the RCSB PDB archive. The combinatorial extension (CE), FATCAT-flexible and TM-Align methods were employed to align the protein structures. The root-mean-square distance (RMSD), TM-score, P-value, Z-score, secondary structural elements and hydrogen bonds were used to assess the structure similarity. A thorough analysis of the PDB archive generated five-hundred-seventeen pairs of native and recombinant proteins that have identical sequence. There were no pairs of proteins that had the same sequence and significantly different structural fold, which support the hypothesis that expression in a heterologous host usually could fold correctly into their native forms.
Collapse
Affiliation(s)
- Ren-Bin Zhou
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Hui-Meng Lu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Jie Liu
- School of Computer Science and Technology, Xidian University, Xi’an, PR China
| | - Jian-Yu Shi
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Jing Zhu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Qin-Qin Lu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
- * E-mail:
| |
Collapse
|
23
|
Wurm DJ, Veiter L, Ulonska S, Eggenreich B, Herwig C, Spadiut O. The E. coli pET expression system revisited-mechanistic correlation between glucose and lactose uptake. Appl Microbiol Biotechnol 2016; 100:8721-9. [PMID: 27229726 PMCID: PMC5035661 DOI: 10.1007/s00253-016-7620-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/01/2016] [Accepted: 05/07/2016] [Indexed: 12/21/2022]
Abstract
Therapeutic monoclonal antibodies are mainly produced in mammalian cells to date. However, unglycosylated antibody fragments can also be produced in the bacterium Escherichia coli which brings several advantages, like growth on cheap media and high productivity. One of the most popular E. coli strains for recombinant protein production is E. coli BL21(DE3) which is usually used in combination with the pET expression system. However, it is well known that induction by isopropyl β-d-1-thiogalactopyranoside (IPTG) stresses the cells and can lead to the formation of insoluble inclusion bodies. In this study, we revisited the pET expression system for the production of a novel antibody single-chain variable fragment (scFv) with the goal of maximizing the amount of soluble product. Thus, we (1) investigated whether lactose favors the recombinant production of soluble scFv compared to IPTG, (2) investigated whether the formation of soluble product can be influenced by the specific glucose uptake rate (qs,glu) during lactose induction, and (3) determined the mechanistic correlation between the specific lactose uptake rate (qs,lac) and qs,glu. We found that lactose induction gave a much greater amount of soluble scFv compared to IPTG, even when the growth rate was increased. Furthermore, we showed that the production of soluble protein could be tuned by varying qs,glu during lactose induction. Finally, we established a simple model describing the mechanistic correlation between qs,lac and qs,glu allowing tailored feeding and prevention of sugar accumulation. We believe that this mechanistic model might serve as platform knowledge for E. coli.
Collapse
Affiliation(s)
- David Johannes Wurm
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Lukas Veiter
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Sophia Ulonska
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Britta Eggenreich
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Christoph Herwig
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria.
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria.
| |
Collapse
|