1
|
Yang J, Liu B, Wang Q, Yan H, Li G, Wang X, Shang Z, Ou T, Chen W. Carboxylated mesoporous silica nanoparticle-nucleic acid chimera conjugate-assisted delivery of siRNA and doxorubicin effectively treat drug-resistant bladder cancer. Biomed Pharmacother 2024; 178:117185. [PMID: 39053429 DOI: 10.1016/j.biopha.2024.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Chemotherapy is the main treatment for bladder cancer, but drug resistance and side effects limit its application and therapeutic effect. Herein, we constructed doxorubicin (DOX)/COOH-mesoporous silica nanoparticle/polyethylenimine (PEI)/nucleic acid chimeras (DOX/MSN/Chimeras) to reduce the toxicity of chemotherapy drugs and the resistance of bladder cancer cells. Transmission electron microscopy showed that PEI was coated on the DOX/MSN/BSA nanoparticles with a diameter of about 150 nm. DOX/MSN/PEI could control DOX release for over 48 h, and the sudden release rate was significantly lower than DOX/MSN. Immunohistochemical results showed that DOX/MSN/Chimera specifically bound to bladder cancer cells, and markedly inhibited PI3K expression and proliferation of DOX-resistant bladder cancer cells. DOX/MSN/Chimera promoted the apoptosis of drug-resistant bladder cancer cells, which was superior to DOX/MSN/Aptamer or DOX/MSN. We further carried out animal experiments and found that DOX/MSN/Chimera could reduce the volume of transplanted tumors in vivo. Compared with DOX/MSN/Aptamer group, the proliferation rate was significantly decreased and the proportion of apoptotic cells was highly increased. Through the histological observation of kidneys and lungs, we believed that DOX/MSN/Chimera can effectively reduce the damage of chemotherapy drugs to normal tissues. In conclusion, we constructed a COOH-MSN/nucleic acid chimera conjugate for the targeted delivery of siRNA and anti-cancer drugs. Our study provides a new method for personalized and targeted treatment of drug-resistant bladder cancer.
Collapse
Affiliation(s)
- Jintao Yang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Biao Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guangping Li
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xu Wang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhenhua Shang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Wen Chen
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing 100091, China.
| |
Collapse
|
2
|
Paul A, Muralidharan A, Biswas A, Venkatesh Kamath B, Joseph A, Alex AT. siRNA Therapeutics and its Challenges: Recent Advances in Effective Delivery for Cancer Therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Ning Y, Wang X, Chen P, Liu S, Hu J, Xiao R, Li L, Lu F. Targeted inhibition of methicillin-resistant Staphylococcus aureus biofilm formation by a graphene oxide-loaded aptamer/berberine bifunctional complex. Drug Deliv 2022; 29:1675-1683. [PMID: 35616277 PMCID: PMC9154759 DOI: 10.1080/10717544.2022.2079768] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Biofilm formation is known to promote drug resistance in methicillin-resistant Staphylococcus aureus (MRSA), which is closely related to persistent infections in hospital settings. In this study, a DNA aptamer specific to penicillin-binding protein 2a (PBP2a) with a dissociation constant (Kd) of 82.97 ± 8.86 nM was obtained after 14 cycles of systematic evolution of ligands by exponential enrichment (SELEX). Next, a bifunctional complex containing the aptamer intercalated by berberine into the double-strand region was prepared and adsorbed onto the surface of graphene oxide (GO) by π-stacking interactions. The GO-loaded aptamer/berberine bifunctional complex showed significantly higher inhibition of MRSA biofilm formation than the control. Furthermore, this study shows that the complex possesses anti-biofilm activity, which can be attributed to the ability of the aptamer to reduce cell-surface attachment by blocking the function of PBP2a and berberine to attenuate the level of the accessory gene regulator (agr) system, which plays an important role in mediating MRSA biofilm formation. Therefore, the simultaneous delivery of berberine and PBP2a-targted aptamer using GO may have potential for the treatment of chronic infections caused by MRSA biofilms. It also provides a new avenue for multitarget treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Xiaoqi Wang
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Pingan Chen
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Shiwu Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Rong Xiao
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Ling Li
- Experimental Center of Molecular Biology, The Chinese Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| |
Collapse
|
4
|
Khanali J, Azangou-Khyavy M, Asaadi Y, Jamalkhah M, Kiani J. Nucleic Acid-Based Treatments Against COVID-19: Potential Efficacy of Aptamers and siRNAs. Front Microbiol 2021; 12:758948. [PMID: 34858370 PMCID: PMC8630580 DOI: 10.3389/fmicb.2021.758948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Despite significant efforts, there are currently no approved treatments for COVID-19. However, biotechnological approaches appear to be promising in the treatment of the disease. Accordingly, nucleic acid-based treatments including aptamers and siRNAs are candidates that might be effective in COVID-19 treatment. Aptamers can hamper entry and replication stages of the SARS-CoV-2 infection, while siRNAs can cleave the viral genomic and subgenomic RNAs to inhibit the viral life cycle and reduce viral loads. As a conjugated molecule, aptamer–siRNA chimeras have proven to be dual-functioning antiviral therapy, acting both as virus-neutralizing and replication-interfering agents as well as being a siRNA targeted delivery approach. Previous successful applications of these compounds against various stages of the pathogenesis of diseases and viral infections, besides their advantages over other alternatives, might provide sufficient rationale for the application of these nucleic acid-based drugs against the SARS-CoV-2. However, none of them are devoid of limitations. Here, the literature was reviewed to assess the plausibility of using aptamers, siRNAs, and aptamer–siRNA chimeras against the SARS-CoV-2 based on their previously established effectiveness, and discussing challenges lie in applying these molecules.
Collapse
Affiliation(s)
- Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Monire Jamalkhah
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jafar Kiani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics 2021; 13:pharmaceutics13101646. [PMID: 34683938 PMCID: PMC8540715 DOI: 10.3390/pharmaceutics13101646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
The use of short oligonucleotide or peptide molecules as target-specific aptamers has recently garnered substantial attention in the field of the detection and treatment of viral infections. Based on their high affinity and high specificity to desired targets, their use is on the rise to replace antibodies for the detection of viruses and viral antigens. Furthermore, aptamers inhibit intracellular viral transcription and translation, in addition to restricting viral entry into host cells. This has opened up a plethora of new targets for the research and development of novel vaccines against viruses. Here, we discuss the advances made in aptamer technology for viral diagnosis and therapy in the past decade.
Collapse
|
6
|
Bolhassani A, Milani A. Small Interfering RNAs and their Delivery Systems: A Novel Powerful Tool for the Potential Treatment of HIV Infections. Curr Mol Pharmacol 2021; 13:173-181. [PMID: 31760929 DOI: 10.2174/1874467212666191023120954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Small interfering RNAs (siRNAs) have rapidly developed into biomedical research as a novel tool for the potential treatment of various human diseases. They are based on altered gene expression. In spite of the availability of highly active antiretroviral therapy (HAART), there is a specific interest in developing siRNAs as a therapeutic agent for human immunodeficiency virus (HIV) due to several problems including toxicity and drug resistance along with long term treatment. The successful use of siRNAs for therapeutic goals needs safe and effective delivery to specific cells and tissues. Indeed, the efficiency of gene silencing depends on the potency of the carrier used for siRNA delivery. The combination of siRNA and nano-carriers is a potent method to prevent the limitations of siRNA formulation. Three steps were involved in non-viral siRNA carriers such as the complex formation of siRNA with a cationic carrier, conjugation of siRNA with small molecules, and encapsulation of siRNA within nanoparticles. In this mini-review, the designed siRNAs and their carriers are described against HIV-1 infections both in vitro and in vivo.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.,Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| |
Collapse
|
7
|
Could gene therapy cure HIV? Life Sci 2021; 277:119451. [PMID: 33811896 DOI: 10.1016/j.lfs.2021.119451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 02/05/2023]
Abstract
The Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) continues to be a major global public health issue, having claimed almost 33 million lives so far. According to the recent report of the World Health Organization (WHO) in 2019, about 38 million people are living with AIDS. Hence, finding a solution to overcome this life-threatening virus can save millions of lives. Scientists and medical doctors have prescribed HIV patients with specific drugs for many years. Methods such antiretroviral therapy (ART) or latency-reversing agents (LRAs) have been used for a while to treat HIV patients, however they have some side effects and drawbacks causing their application to be not quite successful. Instead, the application of gene therapy which refers to the utilization of the therapeutic delivery of nucleic acids into a patient's cells as a drug to treat disease has shown promising results to control HIV infection. Therefore, in this review, we will summarize recent advances in gene therapy approach against HIV.
Collapse
|
8
|
Moranguinho I, Valente ST. Block-And-Lock: New Horizons for a Cure for HIV-1. Viruses 2020; 12:v12121443. [PMID: 33334019 PMCID: PMC7765451 DOI: 10.3390/v12121443] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1/AIDS remains a global public health problem. The world health organization (WHO) reported at the end of 2019 that 38 million people were living with HIV-1 worldwide, of which only 67% were accessing antiretroviral therapy (ART). Despite great success in the clinical management of HIV-1 infection, ART does not eliminate the virus from the host genome. Instead, HIV-1 remains latent as a viral reservoir in any tissue containing resting memory CD4+ T cells. The elimination of these residual proviruses that can reseed full-blown infection upon treatment interruption remains the major barrier towards curing HIV-1. Novel approaches have recently been developed to excise or disrupt the virus from the host cells (e.g., gene editing with the CRISPR-Cas system) to permanently shut off transcription of the virus (block-and-lock and RNA interference strategies), or to reactivate the virus from cell reservoirs so that it can be eliminated by the immune system or cytopathic effects (shock-and-kill strategy). Here, we will review each of these approaches, with the major focus placed on the block-and-lock strategy.
Collapse
|
9
|
Zhao D, Yang G, Liu Q, Liu W, Weng Y, Zhao Y, Qu F, Li L, Huang Y. A photo-triggerable aptamer nanoswitch for spatiotemporal controllable siRNA delivery. NANOSCALE 2020; 12:10939-10943. [PMID: 32207496 DOI: 10.1039/d0nr00301h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A photo-triggerable aptamer nanoswitch was proposed for spatiotemporal regulation of siRNA delivery. Recognition between AS1411 and nucleolin was effectively blocked by a photo-labile complementary oligonucleotide, which could be reactivated with photo-irradiation, resulting in efficient tumor-targeted siRNA internalization and gene silencing in vitro and in vivo.
Collapse
Affiliation(s)
- Deyao Zhao
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China
| | - Ge Yang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Qing Liu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wenjing Liu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China. and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Yi Zhao
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Feng Qu
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
10
|
Aptamer Chimeras for Therapeutic Delivery: The Challenging Perspectives. Genes (Basel) 2018; 9:genes9110529. [PMID: 30384431 PMCID: PMC6266988 DOI: 10.3390/genes9110529] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Nucleic acid-based aptamers have emerged as efficient delivery carriers of therapeutics. Thanks to their unique features, they can be, to date, considered one of the best targeting moieties, allowing the specific recognition of diseased cells and avoiding unwanted off-target effects on healthy tissues. In this review, we revise the most recent contributes on bispecific and multifunctional aptamer therapeutic chimeras. We will discuss key examples of aptamer-mediated delivery of nucleic acid and peptide-based therapeutics underlying their great potentiality and versatility. Achieved objectives and challenges will be highlighted as well.
Collapse
|
11
|
Sivakumar P, Kim S, Kang HC, Shim MS. Targeted siRNA delivery using aptamer-siRNA chimeras and aptamer-conjugated nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1543. [PMID: 30070426 DOI: 10.1002/wnan.1543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/09/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
The sequence-specific gene-silencing ability of small interfering RNA (siRNA) has been exploited as a new therapeutic approach for the treatment of a variety of diseases. However, efficient and safe delivery of siRNA into target cells is still a challenge in the clinical development of siRNA-based therapeutics. Recently, nucleic acid-based aptamers that target cell surface proteins have emerged as a new class of targeting moieties due to their high specificity and avidity. To date, various aptamer-mediated siRNA delivery systems have been developed to enhance the RNA interference (RNAi) efficacy of siRNA via targeted delivery. In this review, we summarize recent advances in developing aptamer-mediated siRNA delivery systems for RNAi therapeutics, mainly aptamer-siRNA chimeras and aptamer-functionalized nanocarriers incorporating siRNA, with a focus on their molecular designs and formulations. In addition, the challenges and engineering strategies of aptamer-mediated siRNA delivery systems for clinical translation are discussed. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Padmanaban Sivakumar
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Sumin Kim
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
12
|
Batool S, Bhandari S, George S, Okeoma P, Van N, Zümrüt HE, Mallikaratchy P. Engineered Aptamers to Probe Molecular Interactions on the Cell Surface. Biomedicines 2017; 5:biomedicines5030054. [PMID: 28850067 PMCID: PMC5618312 DOI: 10.3390/biomedicines5030054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in vitro evolution method enabling the design and development of aptamer-based functional molecular scaffolds against wide range of cell surface molecules. This article reviews the application of aptamers as monitors and modulators of molecular interactions on the mammalian cell surface with the aim of increasing our understanding of cell-surface receptor response to external stimuli. The information gained from these types of studies could eventually prove useful in engineering improved medical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sana Batool
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY 10468, USA.
| | - Sanam Bhandari
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY 10468, USA.
| | - Shanell George
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY 10468, USA.
| | - Precious Okeoma
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY 10468, USA.
| | - Nabeela Van
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY 10468, USA.
| | - Hazan E Zümrüt
- Ph.D. Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA.
| | - Prabodhika Mallikaratchy
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY 10468, USA.
- Ph.D. Programs in Chemistry and Biochemistry, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA.
- Ph.D. Program in Molecular, Cellular and Developmental Biology, CUNY Graduate Center, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
13
|
Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects. Biomedicines 2017; 5:biomedicines5030045. [PMID: 28792479 PMCID: PMC5618303 DOI: 10.3390/biomedicines5030045] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery tools for many therapeutic oligonucleotide-based drugs, including small interfering RNAs (siRNAs). In this review, we summarize recent progress in the aptamer selection technology that has made possible the identification of cell-specific, cell-internalizing aptamers for the cell-targeted delivery of therapeutic oligonucleotides. In addition, we review the original, proof-of-concept aptamer-siRNA delivery studies and discuss recent advances in aptamer-siRNA conjugate designs for applications ranging from cancer therapy to the development of targeted antivirals. Challenges and prospects of aptamer-targeted siRNA drugs for clinical development are further highlighted.
Collapse
|
14
|
Antimisiaris S, Mourtas S, Papadia K. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential. Int J Pharm 2017; 525:293-312. [PMID: 28163221 DOI: 10.1016/j.ijpharm.2017.01.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The concept of RNA interference therapeutics has been initiated 18 years ago, and the main bottleneck for translation of the technology into therapeutic products remains the delivery of functional RNA molecules into the cell cytoplasm. In the present review article after an introduction about the theoretical basis of RNAi therapy and the main challenges encountered for its realization, an overview of the different types of delivery systems or carriers, used as potential systems to overcome RNAi delivery issues, will be provided. Characteristic examples or results obtained with the most promising systems will be discussed. Focus will be given mostly on the applications of liposomes or other types of lipid carriers, such as exosomes, towards improved delivery of RNAi to therapeutic targets. Finally the approach of integrating the advantages of these two vesicular systems, liposomes and exosomes, as a potential solution to realize RNAi therapy, will be proposed.
Collapse
Affiliation(s)
- Sophia Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece; Institute of Chemical Engineering, FORTH/ICE-HT, Rio 26504, Greece.
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| |
Collapse
|
15
|
Single-stranded DNA aptamer targeting and neutralization of anti-D alloantibody: a potential therapeutic strategy for haemolytic diseases caused by Rhesus alloantibody. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 16:184-192. [PMID: 27893356 DOI: 10.2450/2016.0123-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/26/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Rhesus (Rh) D antigen is the most important antigen in the Rh blood group system because of its strong immunogenicity. When RhD-negative individuals are exposed to RhD-positive blood, they may produce anti-D alloantibody, potentially resulting in delayed haemolytic transfusion reactions and Rh haemolytic disease of the foetus and newborn, which are difficult to treat. Inhibition of the binding of anti-D antibody with RhD antigens on the surface of red blood cells may effectively prevent immune haemolytic diseases. MATERIALS AND METHODS In this study, single-stranded (ss) DNA aptamers, specifically binding to anti-D antibodies, were selected via systematic evolution of ligands by exponential enrichment (SELEX) technology. After 14 rounds of selection, the purified ssDNA was sequenced using a Personal Genome Machine system. Haemagglutination inhibition assays were performed to screen aptamers for biological activity in terms of blocking antigen-antibody reactions: the affinity and specificity of the aptamers were also determined. RESULTS In addition to high specificity, the aptamers which were selected showed high affinity for anti-D antibodies with dissociation constant (Kd) values ranging from 51.46±14.90 to 543.30±92.59 nM. By the combined use of specific ssDNA aptamer 7 and auxiliary ssDNA aptamer 2, anti-D could be effectively neutralised at low concentrations of the aptamers. DISCUSSION Our results demonstrate that ssDNA aptamers may be a novel, promising strategy for the treatment of delayed haemolytic transfusion reactions and Rh haemolytic disease of the foetus and newborn.
Collapse
|
16
|
Catuogno S, Esposito CL, de Franciscis V. Aptamer-Mediated Targeted Delivery of Therapeutics: An Update. Pharmaceuticals (Basel) 2016; 9:E69. [PMID: 27827876 PMCID: PMC5198044 DOI: 10.3390/ph9040069] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
The selective delivery of drugs in a cell- or tissue-specific manner represents the main challenge for medical research; in order to reduce the occurrence of unwanted off-target effects. In this regard, nucleic acid aptamers have emerged as an attractive class of carrier molecules due to their ability to bind with high affinity to specific ligands; their high chemical flexibility; as well as tissue penetration capability. To date, different aptamer-drug systems and aptamer-nanoparticles systems, in which nanoparticles function together with aptamers for the targeted delivery, have been successfully developed for a wide range of therapeutics, including toxins; peptides; chemotherapeutics and oligonucleotides. Therefore, aptamer-mediated drug delivery represents a powerful tool for the safe and effective treatment of different human pathologies, including cancer; neurological diseases; immunological diseases and so on. In this review, we will summarize recent progress in the field of aptamer-mediated drug delivery and we will discuss the advantages, the achieved objectives and the challenges to be still addressed in the near future, in order to improve the effectiveness of therapies.
Collapse
Affiliation(s)
- Silvia Catuogno
- Istituto per I'Endocrinologia e I'Oncologia Sperimentale del CNR "G. Salvatore", Via S. Pansini 5, 80131 Naples, Italy.
| | - Carla L Esposito
- Istituto per I'Endocrinologia e I'Oncologia Sperimentale del CNR "G. Salvatore", Via S. Pansini 5, 80131 Naples, Italy.
| | - Vittorio de Franciscis
- Istituto per I'Endocrinologia e I'Oncologia Sperimentale del CNR "G. Salvatore", Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
17
|
High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency. Sci Rep 2016; 6:33697. [PMID: 27652575 PMCID: PMC5031971 DOI: 10.1038/srep33697] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/31/2016] [Indexed: 12/25/2022] Open
Abstract
The systemic evolution of ligands by exponential enrichment (SELEX) technique is a powerful and effective aptamer-selection procedure. However, modifications to the process can dramatically improve selection efficiency and aptamer performance. For example, droplet digital PCR (ddPCR) has been recently incorporated into SELEX selection protocols to putatively reduce the propagation of byproducts and avoid selection bias that result from differences in PCR efficiency of sequences within the random library. However, a detailed, parallel comparison of the efficacy of conventional solution PCR versus the ddPCR modification in the RNA aptamer-selection process is needed to understand effects on overall SELEX performance. In the present study, we took advantage of powerful high throughput sequencing technology and bioinformatics analysis coupled with SELEX (HT-SELEX) to thoroughly investigate the effects of initial library and PCR methods in the RNA aptamer identification. Our analysis revealed that distinct “biased sequences” and nucleotide composition existed in the initial, unselected libraries purchased from two different manufacturers and that the fate of the “biased sequences” was target-dependent during selection. Our comparison of solution PCR- and ddPCR-driven HT-SELEX demonstrated that PCR method affected not only the nucleotide composition of the enriched sequences, but also the overall SELEX efficiency and aptamer efficacy.
Collapse
|
18
|
Parlea L, Puri A, Kasprzak W, Bindewald E, Zakrevsky P, Satterwhite E, Joseph K, Afonin KA, Shapiro BA. Cellular Delivery of RNA Nanoparticles. ACS COMBINATORIAL SCIENCE 2016; 18:527-47. [PMID: 27509068 PMCID: PMC6345529 DOI: 10.1021/acscombsci.6b00073] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA nanostructures can be programmed to exhibit defined sizes, shapes and stoichiometries from naturally occurring or de novo designed RNA motifs. These constructs can be used as scaffolds to attach functional moieties, such as ligand binding motifs or gene expression regulators, for nanobiology applications. This review is focused on four areas of importance to RNA nanotechnology: the types of RNAs of particular interest for nanobiology, the assembly of RNA nanoconstructs, the challenges of cellular delivery of RNAs in vivo, and the delivery carriers that aid in the matter. The available strategies for the design of nucleic acid nanostructures, as well as for formulation of their carriers, make RNA nanotechnology an important tool in both basic research and applied biomedical science.
Collapse
Affiliation(s)
- Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Anu Puri
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Paul Zakrevsky
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily Satterwhite
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kenya Joseph
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
19
|
Swamy MN, Wu H, Shankar P. Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Adv Drug Deliv Rev 2016; 103:174-186. [PMID: 27013255 PMCID: PMC4935623 DOI: 10.1016/j.addr.2016.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
RNA interference (RNAi) provides a powerful tool to silence specific gene expression and has been widely used to suppress host factors such as CCR5 and/or viral genes involved in HIV-1 replication. Newer nuclease-based gene-editing technologies, such as zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, also provide powerful tools to ablate specific genes. Because of differences in co-receptor usage and the high mutability of the HIV-1 genome, a combination of host factors and viral genes needs to be suppressed for effective prevention and treatment of HIV-1 infection. Whereas the continued presence of small interfering/short hairpin RNA (si/shRNA) mediators is needed for RNAi to be effective, the continued expression of nucleases in the gene-editing systems is undesirable. Thus, RNAi provides the only practical way for expression of multiple silencers in infected and uninfected cells, which is needed for effective prevention/treatment of infection. There have been several advances in the RNAi field in terms of si/shRNA design, targeted delivery to HIV-1 susceptible cells, and testing for efficacy in preclinical humanized mouse models. Here, we comprehensively review the latest advances in RNAi technology towards prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Manjunath N Swamy
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| | - Haoquan Wu
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Premlata Shankar
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| |
Collapse
|
20
|
Lin H, Song P, Zhao Y, Xue LJ, Liu Y, Chu CQ. Targeting Th17 Cells with Small Molecules and Small Interference RNA. Mediators Inflamm 2015; 2015:290657. [PMID: 26792955 PMCID: PMC4697089 DOI: 10.1155/2015/290657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 02/05/2023] Open
Abstract
T helper 17 (Th17) cells play a central role in inflammatory and autoimmune diseases via the production of proinflammatory cytokines interleukin- (IL-) 17, IL-17F, and IL-22. Anti-IL-17 monoclonal antibodies show potent efficacy in psoriasis but poor effect in rheumatoid arthritis (RA) and Crohn's disease. Alternative agents targeting Th17 cells may be a better way to inhibit the development and function of Th17 cells than antibodies of blocking a single effector cytokine. Retinoic acid-related orphan receptor gamma t (RORγt) which acts as the master transcription factor of Th17 differentiation has been an attractive pharmacologic target for the treatment of Th17-mediated autoimmune disease. Recent progress in technology of chemical screen and engineering nucleic acid enable two new classes of therapeutics targeting RORγt. Chemical screen technology identified several small molecule specific inhibitors of RORγt from a small molecule library. Systematic evolution of ligands by exponential enrichment (SELEX) technology enabled target specific aptamers to be isolated from a random sequence oligonucleotide library. In this review, we highlight the development and therapeutic potential of small molecules inhibiting Th17 cells by targeting RORγt and aptamer mediated CD4(+) T cell specific delivery of small interference RNA against RORγt gene expression to inhibit pathogenic effector functions of Th17 lineage.
Collapse
Affiliation(s)
- Hui Lin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pingfang Song
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR 97239, USA
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li-Jia Xue
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
21
|
Ni X, Zhang Y, Zennami K, Castanares M, Mukherjee A, Raval RR, Zhou H, DeWeese TL, Lupold SE. Systemic Administration and Targeted Radiosensitization via Chemically Synthetic Aptamer-siRNA Chimeras in Human Tumor Xenografts. Mol Cancer Ther 2015; 14:2797-804. [PMID: 26438155 DOI: 10.1158/1535-7163.mct-15-0291-t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/20/2015] [Indexed: 01/11/2023]
Abstract
Radiation therapy is a highly effective tool for treating all stages of prostate cancer, from curative approaches in localized disease to palliative care and enhanced survival for patients with distant bone metastases. The therapeutic index of these approaches may be enhanced with targeted radiation-sensitizing agents. Aptamers are promising nucleic acid delivery agents for short interfering RNAs (siRNA) and short hairpin RNAs (shRNA). We have previously developed a radiation-sensitizing RNA aptamer-shRNA chimera that selectively delivers DNA-PK targeting shRNAs to prostate-specific membrane antigen (PSMA) positive cells in the absence of transfection reagents. Although these chimera are effective, their synthesis requires in vitro transcription and their evaluation was limited to intratumoral administration. Here, we have developed a second-generation aptamer-siRNA chimera that can be assembled through the annealing of three separate chemically synthesized components. The resulting chimera knocked down DNA-PK in PSMA-positive prostate cancer cells, without the need of additional transfection reagents, and enhanced the efficacy of radiation-mediated cell death. Following intravenous injection, the chimera effectively knocked down DNA-PK in established subcutaneous PSMA-positive tumors. Systemic treatment with these radiation-sensitizing agents selectively enhanced the potency of external beam radiation therapy for established PSMA-positive tumors.
Collapse
Affiliation(s)
- Xiaohua Ni
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland. Shanghai Institute of Planned Parenthood Research, National Population and Family Planning Key Laboratory of Contraceptive Drugs and Devices, Shanghai, China
| | - Yonggang Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kenji Zennami
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mark Castanares
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Amarnath Mukherjee
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Raju R Raval
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Haoming Zhou
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Theodore L DeWeese
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland. Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shawn E Lupold
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland. Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
22
|
Opazo F, Eiden L, Hansen L, Rohrbach F, Wengel J, Kjems J, Mayer G. Modular Assembly of Cell-targeting Devices Based on an Uncommon G-quadruplex Aptamer. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e251. [PMID: 26325628 PMCID: PMC4877450 DOI: 10.1038/mtna.2015.25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/22/2015] [Indexed: 11/26/2022]
Abstract
Aptamers are valuable tools that provide great potential to develop cost-effective diagnostics and therapies in the biomedical field. Here, we report a novel DNA aptamer that folds into an unconventional G-quadruplex structure able to recognize and enter specifically into human Burkitt's lymphoma cells. We further optimized this aptamer to a highly versatile and stable minimized version. The minimized aptamer can be easily equipped with different functionalities like quantum dots, organic dyes, or even a second different aptamer domain yielding a bi-paratopic aptamer. Although the target molecule of the aptamer remains unknown, our microscopy and pharmacological studies revealed that the aptamer hijacks the clathrin-mediated endocytosis pathway for its cellular internalization. We conclude that this novel class of aptamers can be used as a modular tool to specifically deliver different cargoes into malignant cells. This work provides a thorough characterization of the aptamer and we expect that our strategy will pave the path for future therapeutic applications.
Collapse
Affiliation(s)
- Felipe Opazo
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Göttingen, Germany
| | - Laura Eiden
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Line Hansen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Falk Rohrbach
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jesper Wengel
- Nucleic Acid Center, University of Southern Denmark, Odense M, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Günter Mayer
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|