1
|
Parslow VR, Elmore SA, Cochran RZ, Bolon B, Mahler B, Sabio D, Lubeck BA. Histology Atlas of the Developing Mouse Respiratory System From Prenatal Day 9.0 Through Postnatal Day 30. Toxicol Pathol 2024; 52:153-227. [PMID: 39096105 DOI: 10.1177/01926233241252114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Respiratory diseases are one of the leading causes of death and disability around the world. Mice are commonly used as models of human respiratory disease. Phenotypic analysis of mice with spontaneous, congenital, inherited, or treatment-related respiratory tract abnormalities requires investigators to discriminate normal anatomic features of the respiratory system from those that have been altered by disease. Many publications describe individual aspects of normal respiratory tract development, primarily focusing on morphogenesis of the trachea and lung. However, a single reference providing detailed low- and high-magnification, high-resolution images of routine hematoxylin and eosin (H&E)-stained sections depicting all major structures of the entire developing murine respiratory system does not exist. The purpose of this atlas is to correct this deficiency by establishing one concise reference of high-resolution color photomicrographs from whole-slide scans of H&E-stained tissue sections. The atlas has detailed descriptions and well-annotated images of the developing mouse upper and lower respiratory tracts emphasizing embryonic days (E) 9.0 to 18.5 and major early postnatal events. The selected images illustrate the main structures and events at key developmental stages and thus should help investigators both confirm the chronological age of mouse embryos and distinguish normal morphology as well as structural (cellular and organ) abnormalities.
Collapse
Affiliation(s)
| | - Susan A Elmore
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Robert Z Cochran
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Beth Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - David Sabio
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Beth A Lubeck
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
2
|
Huang Z, Yang Y, Ma S, Li J, Ye H, Chen Q, Li Z, Deng J, Tan C. KLF4 down-regulation underlies placental angiogenesis impairment induced by maternal glucose intolerance in late pregnancy. J Nutr Biochem 2024; 124:109509. [PMID: 37907170 DOI: 10.1016/j.jnutbio.2023.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Maternal glucose intolerance in late pregnancy can easily impair pregnancy outcomes and placental development. The impairment of placental angiogenesis is closely related to the occurrence of glucose intolerance during pregnancy, but the mechanism remains largely unknown. In this study, the pregnant mouse model of maternal high-fat diet and endothelial injury model of porcine vascular endothelial cells (PVECs) was used to investigate the effect of glucose intolerance on pregnancy outcomes and placental development. Feeding pregnant mice, a high-fat diet was shown to induce glucose intolerance in late pregnancy, and significantly increase the incidence of resorbed fetuses. Moreover, a decrease was observed in the proportion of blood sinusoids area and the expression level of CD31 in placenta, indicating that placental vascular development was impaired by high-fat diet. Considering that hyperglycemia is an important symptom of glucose intolerance, we exposed PVECs to high glucose (50 mM), which verified the negative effects of high glucose on endothelial function. Bioinformatics analysis further emphasized that high glucose exposure could significantly affect the angiogenesis-related functions of PVECs and predicted that Krüppel-like factor 4 (KLF4) may be a key mediator of these functional changes. The subsequent regulation of KLF4 expression confirmed that the inhibition of KLF4 expression was an important reason why high glucose impaired the endothelial function and angiogenesis of PVECs. These results indicate that high-fat diet can aggravate maternal glucose intolerance and damage pregnancy outcome and placental angiogenesis, and that regulating the expression of KLF4 may be a potential therapeutic strategy for maintaining normal placental angiogenesis.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yunyu Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Department of Animal Science, Guangdong Maoming Agriculture & Forestry Technical College, Maoming, China
| | - Shuo Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinfeng Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongxuan Ye
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qiling Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhishan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Chengquan Tan
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Ahmadi SE, Shabannezhad A, Kahrizi A, Akbar A, Safdari SM, Hoseinnezhad T, Zahedi M, Sadeghi S, Mojarrad MG, Safa M. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11:60. [PMID: 37280670 DOI: 10.1186/s40364-023-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Kahrizi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Akbar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taraneh Hoseinnezhad
- Department of Hematolog, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Sadeghi
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
| | - Mahsa Golizadeh Mojarrad
- Shahid Beheshti Educational and Medical Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Safa
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fang Y, Chen L, Imoukhuede PI. Toward Blood-Based Precision Medicine: Identifying Age-Sex-Specific Vascular Biomarker Quantities on Circulating Vascular Cells. Cell Mol Bioeng 2023; 16:189-204. [PMID: 37456786 PMCID: PMC10338416 DOI: 10.1007/s12195-023-00771-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Abnormal angiogenesis is central to vascular disease and cancer, and noninvasive biomarkers of vascular origin are needed to evaluate patients and therapies. Vascular endothelial growth factor receptors (VEGFRs) are often dysregulated in these diseases, making them promising biomarkers, but the need for an invasive biopsy has limited biomarker research on VEGFRs. Here, we pioneer a blood biopsy approach to quantify VEGFR plasma membrane localization on two circulating vascular proxies: circulating endothelial cells (cECs) and circulating progenitor cells (cPCs). Methods Using quantitative flow cytometry, we examined VEGFR expression on cECs and cPCs in four age-sex groups: peri/premenopausal females (aged < 50 years), menopausal/postmenopausal females (≥ 50 years), and younger and older males with the same age cut-off (50 years). Results cECs in peri/premenopausal females consisted of two VEGFR populations: VEGFR-low (~ 55% of population: population medians ~ 3000 VEGFR1 and 3000 VEGFR2/cell) and VEGFR-high (~ 45%: 138,000 VEGFR1 and 39,000-236,000 VEGFR2/cell), while the menopausal/postmenopausal group only possessed the VEGFR-low cEC population; and 27% of cECs in males exhibited high plasma membrane VEGFR expression (206,000 VEGFR1 and 155,000 VEGFR2/cell). The absence of VEGFR-high cEC subpopulations in menopausal/postmenopausal females suggests that their high-VEGFR cECs are associated with menstruation and could be noninvasive proxies for studying the intersection of age-sex in angiogenesis. VEGFR1 plasma membrane localization in cPCs was detected only in menopausal/postmenopausal females, suggesting a menopause-specific regenerative mechanism. Conclusions Overall, our quantitative, noninvasive approach targeting cECs and cPCs has provided the first insights into how sex and age influence VEGFR plasma membrane localization in vascular cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00771-1.
Collapse
Affiliation(s)
- Yingye Fang
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Ling Chen
- Division of Biostatistics, Washington University in St. Louis School of Medicine, St. Louis, MO USA
| | - P. I. Imoukhuede
- Department of Bioengineering, University of Washington, Seattle, WA USA
| |
Collapse
|
5
|
Meng L, Zhan Y, Wei M, Yang R, Wang J, Weng S, Chen L, Zheng S, Dong K, Dong R. Single-cell RNA sequencing of solid pseudopapillary neoplasms of the pancreas in children. Cancer Sci 2023; 114:1986-2000. [PMID: 36721980 PMCID: PMC10154873 DOI: 10.1111/cas.15744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
Solid pseudopapillary neoplasm (SPN) of the pancreas is a rare pancreatic tumor in children. Its origin remains elusive, along with its pathogenesis. Heterogeneity within SPN has not been previously described. In addition, low malignant but recurrent cases have occasionally been reported. To comprehensively unravel these profiles, single-cell RNA sequencing was performed using surgical specimens. We identified the cell types and suggested the origin of pancreatic endocrine progenitors. The Wnt/β-catenin pathway may be involved in tumorigenesis, while the epithelial-to-mesenchymal transition may be responsible for SPN recurrence. Furthermore, NOV, DCN were nominated as primary and S100A10, MGP as recurrent SPN marker genes, respectively. Our results provide insight into the pathogenesis of SPN.
Collapse
Affiliation(s)
- Lingdu Meng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Meng Wei
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China.,Department of Hematology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Junfeng Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Shuting Weng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Lian Chen
- Department of Pathology, Children's Hospital of Fudan University, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| |
Collapse
|
6
|
Context dependent role of p53 during the interaction of hepatocellular carcinoma and endothelial cells. Microvasc Res 2022; 142:104374. [PMID: 35523268 DOI: 10.1016/j.mvr.2022.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND During the progression of hepatocellular carcinoma (HCC), several angiogenic factors are overexpressed in the hepatic microenvironment, which play a critical role in governing the phenotype of the endothelial cells. Mutation in the p53 gene (TP53) is a common event in HCC that may dysregulate the angiogenic signals. However, their functional messages remain largely unexplored at the onset of metastasis. METHODS Role of p53 was studied by siRNA mediated silencing of p53 in HepG2 cells (WTp53), collecting and analyzing their conditioned medium, followed by indirect co-culture with endothelial cells (HUVECs). Gene and protein expression in HCC cells and endothelial cells was studied by RT-qPCR and western blotting respectively. β-catenin protein expression and localization were analyzed by immunocytochemistry. RESULTS We have studied a cell-to-cell interaction model to investigate the crosstalk of endothelial and hepatoma cells by either knocking down p53 or by using p53 null low metastatic HCC cell line. In the absence of p53, the HCC cells influence the migration and vascular network formation of endothelial cells through paracrine signaling of VEGF. Secretory VEGF activated the VEGF receptor-2 along with the survival signaling in endothelial cells. However, the β-catenin signal is upregulated in endothelial cells only during interaction with metastatic set up irrespective of absence and presence of p53, indicating context-dependent participation of p53 during communication between hepatoma cells and endothelial cells. CONCLUSION This study highlights that the role of p53 on cellular responses during interaction of hepatocellular carcinoma and endothelial cells is distinct to cell types and context.
Collapse
|
7
|
Nery da Silva A, Alves L, Osowski GV, Sabei L, Ferraz PA, Pugliesi G, Marques MG, Zanella R, Zanella AJ. Housing Conditions and a Challenge with Lipopolysaccharide on the Day of Estrus Can Influence Gene Expression of the Corpus Luteum in Gilts. Genes (Basel) 2022; 13:genes13050769. [PMID: 35627154 PMCID: PMC9141224 DOI: 10.3390/genes13050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum (CL) is a temporary endocrine gland that plays a decisive role in the reproductive physiology of gilts. Recently, it has been suggested that exogenous factors may compromise the normal functioning of the CL. In the present study, we aimed to understand to what extent an acute and systemic challenge with lipopolysaccharide (LPS) on the day of estrus could compromise gene expression of gilts’ CLs housed in different welfare conditions. For this, we housed 42 gilts in three different housing systems: crates, indoor group pens, and outdoor housing. Then, we challenged six females from each group with LPS and eight with saline (SAL) on the day of estrus. After slaughtering the gilts on the fifth day after the challenge, ovaries were collected for gene expression analysis by RT-qPCR. Housing system and LPS challenge did not have a significant interaction for any genes evaluated; thus, their effects were studied separately. We identified significant (p < 0.05) downregulation of the angiogenic genes VEGF and FTL1 among LPS-challenged animals. Meanwhile, we also observed upregulation of HSD3B1 gene among LPS-challenged animals. We found that STAR and LHCGR genes were differentially expressed depending on the housing system, which indicates that the environment may affect adaptation capabilities. Our results indicate that an acute health challenge on the estrus day alters CL gene expression; however, the role of the housing system remains uncertain.
Collapse
Affiliation(s)
- Arthur Nery da Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Luana Alves
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Germana Vizzotto Osowski
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Leandro Sabei
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
| | - Priscila Assis Ferraz
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (P.A.F.); (G.P.)
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (P.A.F.); (G.P.)
| | - Mariana Groke Marques
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil;
- Programa de Pós-Graduação em Produção e Sanidade Animal, Instituto Federal Catarinense—IFC, Concórdia 89703-720, SC, Brazil
| | - Ricardo Zanella
- School of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo 99052-900, RS, Brazil;
| | - Adroaldo José Zanella
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 05508-070, SP, Brazil; (A.N.d.S.); (L.A.); (G.V.O.); (L.S.)
- Correspondence:
| |
Collapse
|
8
|
Abdulkadir S, Li C, Jiang W, Zhao X, Sang P, Wei L, Hu Y, Li Q, Cai J. Modulating Angiogenesis by Proteomimetics of Vascular Endothelial Growth Factor. J Am Chem Soc 2022; 144:270-281. [PMID: 34968032 PMCID: PMC8886800 DOI: 10.1021/jacs.1c09571] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis, formation of new blood vessels from the existing vascular network, is a hallmark of cancer cells that leads to tumor vascular proliferation and metastasis. This process is mediated through the binding interaction of VEGF-A with VEGF receptors. However, the balance between pro-angiogenic and anti-angiogenic effect after ligand binding yet remains elusive and is therefore challenging to manipulate. To interrogate this interaction, herein we designed a few sulfono-γ-AA peptide based helical peptidomimetics that could effectively mimic a key binding interface on VEGF (helix-α1) for VEGFR recognition. Intriguingly, although both sulfono-γ-AA peptide sequences V2 and V3 bound to VEGF receptors tightly, in vitro angiogenesis assays demonstrated that V3 potently inhibited angiogenesis, whereas V2 activated angiogenesis effectively instead. Our findings suggested that this distinct modulation of angiogenesis might be due to the result of selective binding of V2 to VEGFR-1 and V3 to VEGFR-2, respectively. These molecules thus provide us a key to switch the angiogenic signaling, a biological process that balances the effects of pro-angiogenic and anti-angiogenic factors, where imbalances lead to several diseases including cancer. In addition, both V2 and V3 exhibited remarkable stability toward proteolytic hydrolysis, suggesting that V2 and V3 are promising therapeutic agents for the intervention of disease conditions arising due to angiogenic imbalances and could also be used as novel molecular switching probes to interrogate the mechanism of VEGFR signaling. The findings also further demonstrated the potential of sulfono-γ-AA peptides to mimic the α-helical domain for protein recognition and modulation of protein-protein interactions.
Collapse
Affiliation(s)
- Sami Abdulkadir
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chunpu Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department of Medical Oncology, Cancer Institute of Medicine, Shuguang Hospital; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Jiang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xue Zhao
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lulu Wei
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yong Hu
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Qi Li
- Department of Medical Oncology, Cancer Institute of Medicine, Shuguang Hospital; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
9
|
Dadwal UC, Bhatti FUR, Awosanya OD, Nagaraj RU, Perugini AJ, Sun S, Valuch CR, de Andrade Staut C, Mendenhall SK, Tewari NP, Mostardo SL, Nazzal MK, Battina HL, Zhou D, Kanagasabapathy D, Blosser RJ, Mulcrone PL, Li J, Kacena MA. The effects of bone morphogenetic protein 2 and thrombopoietin treatment on angiogenic properties of endothelial cells derived from the lung and bone marrow of young and aged, male and female mice. FASEB J 2021; 35:e21840. [PMID: 34423881 DOI: 10.1096/fj.202001616rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
With an aging world population, there is an increased risk of fracture and impaired healing. One contributing factor may be aging-associated decreases in vascular function; thus, enhancing angiogenesis could improve fracture healing. Both bone morphogenetic protein 2 (BMP-2) and thrombopoietin (TPO) have pro-angiogenic effects. The aim of this study was to investigate the effects of treatment with BMP-2 or TPO on the in vitro angiogenic and proliferative potential of endothelial cells (ECs) isolated from lungs (LECs) or bone marrow (BMECs) of young (3-4 months) and old (22-24 months), male and female, C57BL/6J mice. Cell proliferation, vessel-like structure formation, migration, and gene expression were used to evaluate angiogenic properties. In vitro characterization of ECs generally showed impaired vessel-like structure formation and proliferation in old ECs compared to young ECs, but improved migration characteristics in old BMECs. Differential sex-based angiogenic responses were observed, especially with respect to drug treatments and gene expression. Importantly, these studies suggest that NTN1, ROBO2, and SLIT3, along with angiogenic markers (CD31, FLT-1, ANGPT1, and ANGP2) differentially regulate EC proliferation and functional outcomes based on treatment, sex, and age. Furthermore, treatment of old ECs with TPO typically improved vessel-like structure parameters, but impaired migration. Thus, TPO may serve as an alternative treatment to BMP-2 for fracture healing in aging owing to improved angiogenesis and fracture healing, and the lack of side effects associated with BMP-2.
Collapse
Affiliation(s)
- Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rohit U Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Conner R Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Caio de Andrade Staut
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen K Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nikhil P Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah L Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hanisha L Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Deepa Kanagasabapathy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel J Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Patrick L Mulcrone
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
10
|
Roy B, Palaniyandi SS. A role for aldehyde dehydrogenase (ALDH) 2 in angiotensin II-mediated decrease in angiogenesis of coronary endothelial cells. Microvasc Res 2021; 135:104133. [PMID: 33428883 DOI: 10.1016/j.mvr.2021.104133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Diabetes-induced coronary endothelial cell (CEC) dysfunction contributes to diabetic heart diseases. Angiotensin II (Ang II), a vasoactive hormone, is upregulated in diabetes, and is reported to increase oxidative stress in CECs. 4-hydroxy-2-nonenal (4HNE), a key lipid peroxidation product, causes cellular dysfunction by forming adducts with proteins. By detoxifying 4HNE, aldehyde dehydrogenase (ALDH) 2 reduces 4HNE mediated proteotoxicity and confers cytoprotection. Thus, we hypothesize that ALDH2 improves Ang II-mediated defective CEC angiogenesis by decreasing 4HNE-mediated cytotoxicity. To test our hypothesis, we treated the cultured mouse CECs (MCECs) with Ang II (0.1, 1 and 10 μM) for 2, 4 and 6 h. Next, we treated MCECs with Alda-1 (10 μM), an ALDH2 activator or disulfiram (2.5 μM)/ALDH2 siRNA (1.25 nM), the ALDH2 inhibitors, or blockers of angiotensin II type-1 and 2 receptors i.e. Losartan and PD0123319 respectively before challenging MCECs with 10 μM Ang II. We found that 10 μM Ang II decreased tube formation in MCECs with in vitro angiogenesis assay (P < .0005 vs control). 10 μM Ang II downregulated the levels of vascular endothelial growth factor receptor 1 (VEGFR1) (p < .005 for mRNA and P < .05 for protein) and VEGFR2 (p < .05 for mRNA and P < .005 for protein) as well as upregulated the levels of angiotensin II type-2 receptor (AT2R) (p < .05 for mRNA and P < .005 for protein) and 4HNE-adducts (P < .05 for protein) in cultured MCECs, compared to controls. ALDH2 inhibition with disulfiram/ALDH2 siRNA exacerbated 10 μM Ang II-induced decrease in coronary angiogenesis (P < .005) by decreasing the levels of VEGFR1 (P < .005 for mRNA and P < .05 for protein) and VEGFR2 (P < .05 for both mRNA and protein) and increasing the levels of AT2R (P < .05 for both mRNA and protein) and 4HNE-adducts (P < .05 for protein) relative to Ang II alone. AT2R inhibition per se improved angiogenesis in MCECs. Additionally, enhancing ALDH2 activity with Alda 1 rescued Ang II-induced decrease in angiogenesis by increasing the levels of VEGFR1, VEGFR2 and decreasing the levels of AT2R. In summary, ALDH2 can be an important target in reducing 4HNE-induced proteotoxicity and improving angiogenesis in MCECs. Finally, we conclude ALDH2 activation can be a therapeutic strategy to improve coronary angiogenesis to ameliorate cardiometabolic diseases.
Collapse
Affiliation(s)
- Bipradas Roy
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States of America; Department of Physiology, Wayne State University, Detroit, MI 48202, United States of America
| | - Suresh Selvaraj Palaniyandi
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States of America; Department of Physiology, Wayne State University, Detroit, MI 48202, United States of America.
| |
Collapse
|
11
|
Jing G, Yao J, Dang Y, Liang W, Xie L, Chen J, Li Z. The role of β-HCG and VEGF-MEK/ERK signaling pathway in villi angiogenesis in patients with missed abortion. Placenta 2020; 103:16-23. [PMID: 33068962 DOI: 10.1016/j.placenta.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To analyze the effects of the Human Chorionic Gonadotropin beta (β-hCG) and the VEGF-MEK/ERK signaling pathway on villi angiogenesis in early missed abortion. METHODS A total of 12 cases of women with missed abortion and 12 cases of women who had induced abortion voluntarily without any disease were included in the present study. The age, pregnancy time and gestation period in the control group corresponded to the missed abortion group. Wes Simple Western system and qRT-PCR were used to detect the expression of VEGF-MEK/ERK signaling pathway related proteins and genes in villous. Radioimmunoassay and Enzyme-linked immunosorbent assay were used to detect β-hCG and VEGF levels in serum. The microvascular density (MVD) in villous tissue was analyzed by immunohistochemical staining. RESULTS The levels of β-hCG and VEGF in serum, the expression of VEGF-MEK/ERK signaling pathway and MVD in villous tissue of the missed abortion group were lower than those of the control group. In addition, compared with the control group, the layers of trophoblasts of the villous tissue in the missed abortion group became thinner significantly, the number of cells reduced, the cell structures were disorganized, and parts of the trophoblast cells were absent. Correlational analysis showed that the protein expression of ERK1/2 was positively correlated with MVD in missed abortion group. CONCLUSIONS Our results reveal that decreased production of β-hCG in early pregnant women could down-regulate the expression of VEGF-MEK/ERK signal pathway, then reduce angiogenesis and eventually leading to the abnormal angiogenesis of villous, which may be an important mechanism of missed abortion.
Collapse
Affiliation(s)
- Guangzhuang Jing
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jianling Yao
- Maternal and Child Health Hospital of Jingning Country, Lanzhou, 743400, China
| | - Yuhui Dang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Weitao Liang
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Li'ao Xie
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jia Chen
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Zhilan Li
- Institute of Maternal, Child and Adolescent Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Fu Y, Li J, Wu S, Wang H. Electroacupuncture pretreatment promotes angiogenesis via hypoxia-inducible factor 1α and vascular endothelial growth factor in a rat model of chronic myocardial ischemia. Acupunct Med 2020; 39:367-375. [PMID: 32811184 DOI: 10.1177/0964528420938378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Electroacupuncture (EA) pretreatment appears useful in the treatment of chronic myocardial ischemia (CMI). The goal of this study was to investigate the effect of EA preconditioning on the regulation of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) proteins in a CMI model of vascular regeneration. METHODS A CMI model was established by subcutaneous injection of isoprinosine hydrochloride (ISO) for 14 days in 45 Wistar rats, which had been randomly divided into a model group (n = 15), a CMI group pretreated with sham EA for 21 days (CMI + Sham group, n = 15) and a CMI group pretreated with verum EA for 21 days (CMI + EA, n = 15) prior to modeling. An additional 15 Wistar rats received 0.9% sodium chloride via intraperitoneal injection for 14 consecutive days (control group). Serum levels of VEGF and HIF-1α were measured by ELISA, while protein expression of VEGF and HIF-1α in the area of myocardial infarction was measured by Western blotting. The area of myocardial infarction and fibrosis of the myocardial tissue in the study groups were visualized by hematoxylin-eosin (HE) staining and Masson staining, respectively. RESULTS EA pretreatment improved cardiac function by regulating left ventricular end-diastolic diameter and left ventricular end-systolic diameter, left ventricular ejection fraction and the ST segment voltage of the electrocardiogram. EA pretreatment promoted vascular regeneration by increasing serum levels of VEGF and HIF-1α and by increasing protein expression of HIF-1α and VEGF in the infarcted region of the myocardium, leading to a reduction in the area of myocardial infarction on HE staining and reduction of myocardial fibrosis on Masson staining. CONCLUSION EA pretreatment promotes protein expression of HIF-1α and VEGF in areas of ischemic myocardium, which may represent useful biomarkers for coronary collateral establishment and offer potential targets for therapeutic angiogenesis in patients with CMI.
Collapse
Affiliation(s)
- Yimeng Fu
- Hubei University of Chinese Medicine, Wuhan, China
| | - Jia Li
- Hubei University of Chinese Medicine, Wuhan, China
| | - Song Wu
- Hubei University of Chinese Medicine, Wuhan, China
| | - Hua Wang
- Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
13
|
Vaquié A, Sauvain A, Duman M, Nocera G, Egger B, Meyenhofer F, Falquet L, Bartesaghi L, Chrast R, Lamy CM, Bang S, Lee SR, Jeon NL, Ruff S, Jacob C. Injured Axons Instruct Schwann Cells to Build Constricting Actin Spheres to Accelerate Axonal Disintegration. Cell Rep 2020; 27:3152-3166.e7. [PMID: 31189102 DOI: 10.1016/j.celrep.2019.05.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 05/17/2019] [Indexed: 01/26/2023] Open
Abstract
After a peripheral nerve lesion, distal ends of injured axons disintegrate into small fragments that are subsequently cleared by Schwann cells and later by macrophages. Axonal debris clearing is an early step of the repair process that facilitates regeneration. We show here that Schwann cells promote distal cut axon disintegration for timely clearing. By combining cell-based and in vivo models of nerve lesion with mouse genetics, we show that this mechanism is induced by distal cut axons, which signal to Schwann cells through PlGF mediating the activation and upregulation of VEGFR1 in Schwann cells. In turn, VEGFR1 activates Pak1, leading to the formation of constricting actomyosin spheres along unfragmented distal cut axons to mediate their disintegration. Interestingly, oligodendrocytes can acquire a similar behavior as Schwann cells by enforced expression of VEGFR1. These results thus identify controllable molecular cues of a neuron-glia crosstalk essential for timely clearing of damaged axons.
Collapse
Affiliation(s)
- Adrien Vaquié
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alizée Sauvain
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mert Duman
- Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianluigi Nocera
- Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg, Switzerland; Bioimage Light Microscopy Facility, University of Fribourg, Fribourg, Switzerland
| | - Felix Meyenhofer
- Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Medicine, University of Fribourg, Fribourg, Switzerland; Bioimage Light Microscopy Facility, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Medicine, University of Fribourg, Fribourg, Switzerland; Bioinformatics Core Facility, University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Luca Bartesaghi
- Departments of Neuroscience and Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roman Chrast
- Departments of Neuroscience and Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Seokyoung Bang
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Seung-Ryeol Lee
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Sophie Ruff
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Claire Jacob
- Department of Biology, University of Fribourg, Fribourg, Switzerland; Department of Biology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
14
|
Fang Y, Kaszuba T, Imoukhuede PI. Systems Biology Will Direct Vascular-Targeted Therapy for Obesity. Front Physiol 2020; 11:831. [PMID: 32760294 PMCID: PMC7373796 DOI: 10.3389/fphys.2020.00831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Healthy adipose tissue expansion and metabolism during weight gain require coordinated angiogenesis and lymphangiogenesis. These vascular growth processes rely on the vascular endothelial growth factor (VEGF) family of ligands and receptors (VEGFRs). Several studies have shown that controlling vascular growth by regulating VEGF:VEGFR signaling can be beneficial for treating obesity; however, dysregulated angiogenesis and lymphangiogenesis are associated with several chronic tissue inflammation symptoms, including hypoxia, immune cell accumulation, and fibrosis, leading to obesity-related metabolic disorders. An ideal obesity treatment should minimize adipose tissue expansion and the advent of adverse metabolic consequences, which could be achieved by normalizing VEGF:VEGFR signaling. Toward this goal, a systematic investigation of the interdependency of vascular and metabolic systems in obesity and tools to predict personalized treatment ranges are necessary to improve patient outcomes through vascular-targeted therapies. Systems biology can identify the critical VEGF:VEGFR signaling mechanisms that can be targeted to regress adipose tissue expansion and can predict the metabolic consequences of different vascular-targeted approaches. Establishing a predictive, biologically faithful platform requires appropriate computational models and quantitative tissue-specific data. Here, we discuss the involvement of VEGF:VEGFR signaling in angiogenesis, lymphangiogenesis, adipogenesis, and macrophage specification – key mechanisms that regulate adipose tissue expansion and metabolism. We then provide useful computational approaches for simulating these mechanisms, and detail quantitative techniques for acquiring tissue-specific parameters. Systems biology, through computational models and quantitative data, will enable an accurate representation of obese adipose tissue that can be used to direct the development of vascular-targeted therapies for obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Yingye Fang
- Imoukhuede Systems Biology Laboratory, Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Tomasz Kaszuba
- Imoukhuede Systems Biology Laboratory, Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - P I Imoukhuede
- Imoukhuede Systems Biology Laboratory, Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
15
|
Unruh D, Horbinski C. Beyond thrombosis: the impact of tissue factor signaling in cancer. J Hematol Oncol 2020; 13:93. [PMID: 32665005 PMCID: PMC7362520 DOI: 10.1186/s13045-020-00932-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue factor (TF) is the primary initiator of the coagulation cascade, though its effects extend well beyond hemostasis. When TF binds to Factor VII, the resulting TF:FVIIa complex can proteolytically cleave transmembrane G protein-coupled protease-activated receptors (PARs). In addition to activating PARs, TF:FVIIa complex can also activate receptor tyrosine kinases (RTKs) and integrins. These signaling pathways are utilized by tumors to increase cell proliferation, angiogenesis, metastasis, and cancer stem-like cell maintenance. Herein, we review in detail the regulation of TF expression, mechanisms of TF signaling, their pathological consequences, and how it is being targeted in experimental cancer therapeutics.
Collapse
Affiliation(s)
- Dusten Unruh
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.,Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
16
|
Empagliflozin alleviates neuronal apoptosis induced by cerebral ischemia/reperfusion injury through HIF-1α/VEGF signaling pathway. Arch Pharm Res 2020; 43:514-525. [PMID: 32436127 DOI: 10.1007/s12272-020-01237-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Ischemic stroke is a serious condition associated with severe functional disability and high mortality, however; effective therapy remains elusive. Empagliflozin, a sodium-glucose cotransporter 2 inhibitor, has been shown to exert additional non-glycemic benefits including anti-apoptotic effects in different disease settings. Thereby, this study was designed to investigate the ameliorative effect of empagliflozin on the neuronal apoptosis exhibited in cerebral ischemia/reperfusion (I/R) in a rat model targeting HIF-1α/VEGF signaling which is involved in this insult. Global cerebral I/R injury was induced in male Wistar rats through occlusion of the bilateral common carotid arteries for 30 min followed by one-hour reperfusion. Empagliflozin doses of 1 and 10 mg/kg were administered 1 and 24 h after reperfusion. In I/R-injured rats, empagliflozin treatments significantly reduced infarct size and enhanced neurobehavioral functions in a dose-dependent manner. The drug alleviated neuronal death and cerebral injury inflicted by global ischemia as it suppressed neuronal caspase-3 protein expression. In parallel, protein expressions of HIF-1α and its downstream mediator VEGF were upregulated in the ischemic brain following empagliflozin treatment. The results indicated that empagliflozin attenuates cerebral I/R-induced neuronal death via the HIF-1α/VEGF cascade.
Collapse
|
17
|
Thalgott JH, Dos-Santos-Luis D, Hosman AE, Martin S, Lamandé N, Bracquart D, Srun S, Galaris G, de Boer HC, Tual-Chalot S, Kroon S, Arthur HM, Cao Y, Snijder RJ, Disch F, Mager JJ, Rabelink TJ, Mummery CL, Raymond K, Lebrin F. Decreased Expression of Vascular Endothelial Growth Factor Receptor 1 Contributes to the Pathogenesis of Hereditary Hemorrhagic Telangiectasia Type 2. Circulation 2019; 138:2698-2712. [PMID: 30571259 DOI: 10.1161/circulationaha.117.033062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hereditary Hemorrhagic Telangiectasia type 2 (HHT2) is an inherited genetic disorder characterized by vascular malformations and hemorrhage. HHT2 results from ACVRL1 haploinsufficiency, the remaining wild-type allele being unable to contribute sufficient protein to sustain endothelial cell function. Blood vessels function normally but are prone to respond to angiogenic stimuli, leading to the development of telangiectasic lesions that can bleed. How ACVRL1 haploinsufficiency leads to pathological angiogenesis is unknown. METHODS We took advantage of Acvrl1+/- mutant mice that exhibit HHT2 vascular lesions and focused on the neonatal retina and the airway system after Mycoplasma pulmonis infection, as physiological and pathological models of angiogenesis, respectively. We elucidated underlying disease mechanisms in vitro by generating Acvrl1+/- mouse embryonic stem cell lines that underwent sprouting angiogenesis and performed genetic complementation experiments. Finally, HHT2 plasma samples and skin biopsies were analyzed to determine whether the mechanisms evident in mice are conserved in humans. RESULTS Acvrl1+/- retinas at postnatal day 7 showed excessive angiogenesis and numerous endothelial "tip cells" at the vascular front that displayed migratory defects. Vascular endothelial growth factor receptor 1 (VEGFR1; Flt-1) levels were reduced in Acvrl1+/- mice and HHT2 patients, suggesting similar mechanisms in humans. In sprouting angiogenesis, VEGFR1 is expressed in stalk cells to inhibit VEGFR2 (Flk-1, KDR) signaling and thus limit tip cell formation. Soluble VEGFR1 (sVEGFR1) is also secreted, creating a VEGF gradient that promotes orientated sprout migration. Acvrl1+/- embryonic stem cell lines recapitulated the vascular anomalies in Acvrl1+/- (HHT2) mice. Genetic insertion of either the membrane or soluble form of VEGFR1 into the ROSA26 locus of Acvrl1+/- embryonic stem cell lines prevented the vascular anomalies, suggesting that high VEGFR2 activity in Acvrl1+/- endothelial cells induces HHT2 vascular anomalies. To confirm our hypothesis, Acvrl1+/- mice were infected by Mycoplasma pulmonis to induce sustained airway inflammation. Infected Acvrl1+/- tracheas showed excessive angiogenesis with the formation of multiple telangiectases, vascular defects that were prevented by VEGFR2 blocking antibodies. CONCLUSIONS Our findings demonstrate a key role of VEGFR1 in HHT2 pathogenesis and provide mechanisms explaining why HHT2 blood vessels respond abnormally to angiogenic signals. This supports the case for using anti-VEGF therapy in HHT2.
Collapse
Affiliation(s)
- Jérémy H Thalgott
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
| | - Damien Dos-Santos-Luis
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
| | - Anna E Hosman
- St. Antonius Hospital, Nieuwegein, The Netherlands (A.E.H., S.K., R.J.S., F.D., J.J.M.)
| | - Sabrina Martin
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
| | - Noël Lamandé
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
| | - Diane Bracquart
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
| | - Samly Srun
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
| | - Georgios Galaris
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
| | - Hetty C de Boer
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Centre of Life, Newcastle University, United Kingdom (S.T.-C., H.M.A., )
| | - Steven Kroon
- St. Antonius Hospital, Nieuwegein, The Netherlands (A.E.H., S.K., R.J.S., F.D., J.J.M.)
| | - Helen M Arthur
- Institute of Genetic Medicine, Centre of Life, Newcastle University, United Kingdom (S.T.-C., H.M.A., )
| | - Yihai Cao
- Department of Microbiology, Tumor and cell Biology, Karolinska Institute, Stockholm, Sweden (Y.C.)
| | - Repke J Snijder
- St. Antonius Hospital, Nieuwegein, The Netherlands (A.E.H., S.K., R.J.S., F.D., J.J.M.)
| | - Frans Disch
- St. Antonius Hospital, Nieuwegein, The Netherlands (A.E.H., S.K., R.J.S., F.D., J.J.M.)
| | - Johannes J Mager
- St. Antonius Hospital, Nieuwegein, The Netherlands (A.E.H., S.K., R.J.S., F.D., J.J.M.)
| | - Ton J Rabelink
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands (C.L.M.)
| | - Karine Raymond
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
- Sorbonne Université, UPMC Université Paris 06, INSERM UMR_S938, Centre de Recherche Saint-Antoine, France (K.R.)
| | - Franck Lebrin
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, The Netherlands (J.H.T., G.G., H.C.d.B., T.J.R., K.R., F.L.)
- CNRS UMR 7241, INSERM U1050, Collège de France, Paris (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- MEMOLIFE Laboratory of Excellence and PSL Research University, Paris, France (D.D.-S.-L., S.M., N.L., D.B., S.S., F.L.)
- CNRS UMR 7587, INSERM U979, Institut Langevin, ESPCI, Paris, France (F.L.)
| |
Collapse
|
18
|
Doudou NR, Kampo S, Liu Y, Ahmmed B, Zeng D, Zheng M, Mohamadou A, Wen QP, Wang S. Monitoring the Early Antiproliferative Effect of the Analgesic-Antitumor Peptide, BmK AGAP on Breast Cancer Using Intravoxel Incoherent Motion With a Reduced Distribution of Four b-Values. Front Physiol 2019; 10:708. [PMID: 31293432 PMCID: PMC6598093 DOI: 10.3389/fphys.2019.00708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The present study aimed to investigate the possibility of using intravoxel incoherent motion (IVIM) diffusion magnetic resonance imaging (MRI) to quantitatively assess the early therapeutic effect of the analgesic–antitumor peptide BmK AGAP on breast cancer and also evaluate the medical value of a reduced distribution of four b-values. Methods: IVIM diffusion MRI using 10 b-values and 4 b-values (0–1,000 s/mm2) was performed at five different time points on BALB/c mice bearing xenograft breast tumors treated with BmK AGAP. Variability in Dslow, Dfast, PF, and ADC derived from the set of 10 b-values and 4 b-values was assessed to evaluate the antitumor effect of BmK AGAP on breast tumor. Results: The data showed that PF values significantly decreased in rBmK AGAP-treated mice on day 12 (P = 0.044). PF displayed the greatest AUC but with a poor medical value (AUC = 0.65). The data showed no significant difference between IVIM measurements acquired from the two sets of b-values at different time points except in the PF on the day 3. The within-subject coefficients of variation were relatively higher in Dfast and PF. However, except for a case noticed on day 0 in PF measurements, the results indicated no statistically significant difference at various time points in the rBmK AGAP-treated or the untreated group (P < 0.05). Conclusion: IVIM showed poor medical value in the early evaluation of the antiproliferative effect of rBmK AGAP in breast cancer, suggesting sensitivity in PF. A reduced distribution of four b-values may provide remarkable measurements but with a potential loss of accuracy in the perfusion-related parameter PF.
Collapse
Affiliation(s)
- Natacha Raissa Doudou
- Department of Radiology, Dalian Medical University, Dalian, China.,Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Sylvanus Kampo
- Department of Anesthesiology, Dalian Medical University, Dalian, China.,Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yajie Liu
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bulbul Ahmmed
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Dewei Zeng
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Minting Zheng
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Aminou Mohamadou
- Department of Radiology, Dalian Medical University, Dalian, China
| | - Qing-Ping Wen
- Department of Anesthesiology, Dalian Medical University, Dalian, China.,Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shaowu Wang
- Department of Radiology, Dalian Medical University, Dalian, China.,Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
Tetramethylpyrazine (TMP) ameliorates corneal neovascularization via regulating cell infiltration into cornea after alkali burn. Biomed Pharmacother 2018; 109:1041-1051. [PMID: 30551354 DOI: 10.1016/j.biopha.2018.10.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022] Open
Abstract
In the present study, we investigated the underlying mechanism of tetramethylpyrazine (TMP)-medicated inhibition of corneal neovascularization (CNV). Our data showed that TMP could effectively downregulate the expression levels of CXCR4 mRNA and protein, as well as inhibit HUVECs, endothelial cells, tubule formation in vitro. In vivo, alkali burn (1 M NaOH) could remarkably upregulate CXCR4 expression and increase the migration of TNF-α-positive cells to corneal stroma. TMP drops could significantly downregulate CXCR4 expression in cornea, compared to the control. However, there was no difference in the downregulation of CXCR4 between TMP and FK506, an immunosuppressive drug. Moreover, the immunofluorescent staining of CD45 showed TMP and FK506 could significantly restrain the bone marrow (BM)-derived infiltration while the F4/80 staining reflects the suppression of macrophage aggregation. Meanwhile TMP could regulate the Interleukin 10 (IL-10) and FK506 could restrain the Interleukin 2 (IL-2). Furthermore, TMP and FK506 significantly ameliorate corneal opacity and neovascularization. Clinical assessment detected an obvious improvement in TMP and FK506 treatment groups, compared to controls in vivo. Thus, TMP had similar effects in inhibition of immune response and CNV by suppressing BM-infiltrating cells into cornea as FK506. TMP could be a potential agent in eye-drop therapy for cornea damaged by Alkali Burn.
Collapse
|
20
|
Karaman S, Leppänen VM, Alitalo K. Vascular endothelial growth factor signaling in development and disease. Development 2018; 145:145/14/dev151019. [DOI: 10.1242/dev.151019] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT
Vascular endothelial growth factors (VEGFs) are best known for their involvement in orchestrating the development and maintenance of the blood and lymphatic vascular systems. VEGFs are secreted by a variety of cells and they bind to their cognate tyrosine kinase VEGF receptors (VEGFRs) in endothelial cells to elicit various downstream effects. In recent years, there has been tremendous progress in elucidating different VEGF/VEGFR signaling functions in both the blood and lymphatic vascular systems. Here, and in the accompanying poster, we present key elements of the VEGF/VEGFR pathway and highlight the classical and newly discovered functions of VEGF signaling in blood and lymphatic vessel development and pathology.
Collapse
Affiliation(s)
- Sinem Karaman
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Veli-Matti Leppänen
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
21
|
Lal N, Puri K, Rodrigues B. Vascular Endothelial Growth Factor B and Its Signaling. Front Cardiovasc Med 2018; 5:39. [PMID: 29732375 PMCID: PMC5920039 DOI: 10.3389/fcvm.2018.00039] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
In diabetes, compromised glucose utilization leads the heart to use FA almost exclusively for ATP generation. Chronically, this adaptation unfortunately leads to the conversion of FA to potentially toxic FA metabolites. Paired with increased formation of reactive oxygen species related to excessive mitochondrial oxidation of FA, can provoke cardiac cell death. To protect against this cell demise, intrinsic mechanisms must be available to the heart. Vascular endothelial growth factor B (VEGFB) may be one growth factor that plays an important role in protecting against heart failure. As a member of the VEGF family, initial studies with VEGFB focused on its role in angiogenesis. Surprisingly, VEGFB does not appear to play a direct role in angiogenesis under normal conditions or even when overexpressed, but has been implicated in influencing vascular growth indirectly by affecting VEGFA action. Intriguingly, VEGFB has also been shown to alter gene expression of proteins involved in cardiac metabolism and promote cell survival. Conversely, multiple models of heart failure, including diabetic cardiomyopathy, have indicated a significant drop in VEGFB. In this review, we will discuss the biology of VEGFB, and its relationship to diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Meier RPH, Muller YD, Balaphas A, Morel P, Pascual M, Seebach JD, Buhler LH. Xenotransplantation: back to the future? Transpl Int 2018; 31:465-477. [PMID: 29210109 DOI: 10.1111/tri.13104] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 11/26/2017] [Indexed: 12/26/2022]
Abstract
The field of xenotransplantation has fluctuated between great optimism and doubts over the last 50 years. The initial clinical attempts were extremely ambitious but faced technical and ethical issues that prompted the research community to go back to preclinical studies. Important players left the field due to perceived xenozoonotic risks and the lack of progress in pig-to-nonhuman-primate transplant models. Initial apparently unsurmountable issues appear now to be possible to overcome due to progress of genetic engineering, allowing the generation of multiple-xenoantigen knockout pigs that express human transgenes and the genomewide inactivation of porcine endogenous retroviruses. These important steps forward were made possible by new genome editing technologies, such as CRISPR/Cas9, allowing researchers to precisely remove or insert genes anywhere in the genome. An additional emerging perspective is the possibility of growing humanized organs in pigs using blastocyst complementation. This article summarizes the current advances in xenotransplantation research in nonhuman primates, and it describes the newly developed genome editing technology tools and interspecific organ generation.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Yannick D Muller
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland.,Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Balaphas
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Jörg D Seebach
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Leo H Buhler
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Oldani G, Peloso A, Lacotte S, Meier R, Toso C. Xenogeneic chimera-Generated by blastocyst complementation-As a potential unlimited source of recipient-tailored organs. Xenotransplantation 2017; 24. [PMID: 28736957 DOI: 10.1111/xen.12327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 12/13/2022]
Abstract
Blastocyst complementation refers to the injection of cells into a blastocyst. The technology allows for the creation of chimeric animals, which have the potential to be used as an unlimited source of organ donors. Pluripotent stem cells could be generated from a patient in need of a transplantation and injected into a large animal blastocyst (potentially of a pig), leading to the creation of organ(s) allowing immunosuppression-free transplantation. Various chimera combinations have already been generated, but one of the most recent steps leads to the creation of human-pig chimeras, which could be studied at an embryo stage. Although still far from clinical reality, the potential application is almost unlimited. The present review illustrates the historical steps of intra- and interspecific blastocyst complementation in rodents and large animals, specifically looking at its potential for generation of organ grafts. We also speculate on how it could change transplant indications, on its economic impact, and on the linked ethical concerns.
Collapse
Affiliation(s)
- Graziano Oldani
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of General Surgery, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Stéphanie Lacotte
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raphael Meier
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
24
|
Kandasamy Y, Hartley L, Rudd D, Smith R. The lack of association between vascular endothelial growth factor and retinopathy of prematurity in an observational study. J Matern Fetal Neonatal Med 2017; 31:2202-2208. [PMID: 28573924 DOI: 10.1080/14767058.2017.1338261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The objective of this study was to investigate the association between prematurity, vascular endothelial growth factor A (VEGF-A), VEGFR-1 (soluble fms-like tyrosine kinase-1 (sFLT-1)) and retinopathy of prematurity (ROP). METHODS A cohort of 53 neonates (gestation <28 weeks) was recruited into this study and peripheral venous samples for VEGF and sFLT-1 measurement were obtained between gestational ages 320-326 weeks. RESULTS The mean birth weight for the preterm neonates was 850 (178) g and the median gestational age was 26.4 [24.7-27.4] weeks. The median VEGF-A level was 1348 [608-2216] pg/mL and the median sFLT-1 level was 178 [103-244] pg/mL. Thirty-three neonates (33/53) developed various stages of ROP during their stay in the neonatal unit but only five neonates developed severe (stage 3) ROP needing treatment. The neonates with ROP were smaller (birth weight 801 (111) vs. 990 (175) g; p < .0001), more preterm (gestation 25.4 [24.2-26.0] vs. 27.1 [26.8-27.9] weeks; p < .0001) and received supplemental oxygen for a longer duration (1140 [218-1813] vs. 04 [40-434] hours; p= .012). There was no statistically significant difference in the VEGF-A level or sFLT-1 levels between those who developed ROP and those who did not. There was a positive correlation between VEGF and both birth weight and gestation, respectively. There was no correlation between sFLT1 and birth weight or gestation. VEGF-A/sFLT-1 ratio in babies treated for ROP was significantly lower compared to those not treated (2.8 [1.0-5.7] vs. 9.9 [5.6-13.7]; p = .04). A logistic regression model identified gestational age to be a statistically significant predictor of ROP (odds ratio 0.03 (0.001-0.550); p = .019). CONCLUSIONS There is no direct correlation between systemic VEGF-A or sFLT-1 plasma levels and severity of ROP in extremely preterm neonates. The link between VEGF and ROP remains to be fully understood.
Collapse
Affiliation(s)
- Yogavijayan Kandasamy
- a Department of Neonatology , The Townsville Hospital , Douglas , Australia.,b Mothers and Babies Research Centre, Hunter Region Mail Centre , Hunter Medical Research Institute, John Hunter Hospital , Newcastle , Australia.,c College of Public Health, Medical and Veterinary Sciences , James Cook University , Douglas , Australia
| | - Leo Hartley
- d Department of Medicine, Dentistry and Health Sciences , University of Melbourne , Melbourne , Australia
| | - Donna Rudd
- c College of Public Health, Medical and Veterinary Sciences , James Cook University , Douglas , Australia
| | - Roger Smith
- b Mothers and Babies Research Centre, Hunter Region Mail Centre , Hunter Medical Research Institute, John Hunter Hospital , Newcastle , Australia
| |
Collapse
|
25
|
Li GJ, Yang Y, Yang GK, Wan J, Cui DL, Ma ZH, Du LJ, Zhang GM. Slit2 suppresses endothelial cell proliferation and migration by inhibiting the VEGF-Notch signaling pathway. Mol Med Rep 2017; 15:1981-1988. [PMID: 28260032 PMCID: PMC5364956 DOI: 10.3892/mmr.2017.6240] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/10/2016] [Indexed: 11/11/2022] Open
Abstract
Slit homolog 2 (Slit2) is distributed in various tissues and participates in numerous cellular processes; however, the role of Slit2 in the regulation of angiogenesis remains controversial, since it has previously been reported to exert proangiogenic and antiangiogenic activities. The present study aimed to investigate the effects of Slit2 on vascular endothelial cell proliferation and migration in vitro, and to reveal the possible underlying signaling pathway. Aortic endothelial cells were isolated from Sprague Dawley rats and cultured. Cell proliferation assay, cell migration assay, immunocytochemistry and small interfering RNA transfection were subsequently performed. The results demonstrated that exogenous Slit2 administration markedly suppressed TNF-α-induced endothelial cell proliferation and migration in vitro. In addition, TNF-α application upregulated the protein expression levels of vascular endothelial growth factor (VEGF) and Notch in RAECs, whereas Slit2 administration downregulated VEGF and Notch expression in RAECs cultured in TNF-α conditioned medium. Further studies indicated that knockdown of VEGF suppressed the effects of TNF-α on the induction of RAEC proliferation and migration. VEGF knockdown-induced inhibition of RAEC proliferation and migration in TNF-α conditioned medium was also achieved without Slit2 administration. Furthermore, VEGF knockdown markedly decreased Notch1 and Notch2 expression. These results indicated that Slit2 suppresses TNF-α-induced vascular endothelial cell proliferation and migration in vitro by inhibiting the VEGF-Notch signaling pathway. Therefore, Slit2 may inhibit the proliferation and migration of endothelial cells during vascular development.
Collapse
Affiliation(s)
- Guo-Jian Li
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Yong Yang
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Guo-Kai Yang
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Jia Wan
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Dao-Lei Cui
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Zhen-Huan Ma
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Ling-Juan Du
- Department of Vascular Surgery, The Fourth Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Gui-Min Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|