1
|
Barreto BC, Neves MVGD, Cardoso CMA, Meira CS, Daltro PS, Figueira CP, Santos GC, Silva DN, Távora F, Neto JDDS, Macambira SG, Lampe PD, Coutinho KCDS, Kasai Brunswick TH, Ribeiro dos Santos R, Campos de Carvalho AC, Soares MBP. The effects of inflammation on connexin 43 in chronic Chagas disease cardiomyopathy. Front Immunol 2024; 15:1440662. [PMID: 39136016 PMCID: PMC11317259 DOI: 10.3389/fimmu.2024.1440662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Background Cardiac arrhythmias are the main cause of sudden death due to Chronic Chagasic Cardiomyopathy (CCC). Here we investigated alterations in connexin 43 (Cx43) expression and phosphorylation in cardiomyocytes as well as associations with cardiac arrhythmias in CCC. Methods C57Bl/6 mice infected with Trypanosoma cruzi underwent cardiac evaluations at 6 and 12 months after infection via treadmill testing and EKG. Histopathology, cytokine gene expression, and distribution of total Cx43 and its phosphorylated forms Cx43S368 and Cx43S325/328/330 were investigated. Human heart samples obtained from subjects with CCC were submitted to immunofluorescence analysis. In vitro simulation of a pro-inflammatory microenvironment (IL-1β, TNF, and IFN-γ) was performed in H9c2 cells and iPSC-derived cardiomyocytes to evaluate Cx43 distribution, action potential duration, and Lucifer Yellow dye transfer. Results Mice chronically infected with T. cruzi exhibited impaired cardiac function associated with increased inflammation, fibrosis and upregulated IL-1β, TNF, and IFN-γ gene expression. Confocal microscopy revealed altered total Cx43, Cx43S368 and Cx43S325/328/330 localization and phosphorylation patterns in CCC, with dispersed staining outside the intercalated disc areas, i.e., in lateral membranes and the cytoplasm. Reduced co-localization of total Cx43 and N-cadherin was observed in the intercalated discs of CCC mouse hearts compared to controls. Similar results were obtained in human CCC heart samples, which showed Cx43 distribution outside the intercalated discs. Stimulation of human iPSC-derived cardiomyocytes or H9c2 cells with IL-1β, TNF, and IFN-γ induced alterations in Cx43 localization, reduced action potential duration and dye transfer between adjacent cells. Conclusion Heart inflammation in CCC affects the distribution and phosphorylation pattern of Cx43, which may contribute to the generation of conduction disturbances in Chagas disease.
Collapse
Affiliation(s)
- Breno Cardim Barreto
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Biochemistry and Biophysics, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil
| | - Maria Vitória Gomes das Neves
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Biochemistry and Biophysics, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Cássio Santana Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil
| | - Pâmela Santana Daltro
- Department of Biochemistry and Biophysics, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Girlaine Café Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Biochemistry and Biophysics, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Daniela Nascimento Silva
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil
| | - Fábio Távora
- Messejana Heart and Lung Hospital, Fortaleza, Brazil
| | | | - Simone Garcia Macambira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- Department of Biochemistry and Biophysics, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | | | | | - Ricardo Ribeiro dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil
| | | | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Brazil
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, Bahia, Brazil
| |
Collapse
|
2
|
Lopez TE, Zhang H, Bouysse E, Neiers F, Ye XY, Garrido C, Wendremaire M, Lirussi F. A pivotal role for the IL-1β and the inflammasome in preterm labor. Sci Rep 2024; 14:4234. [PMID: 38378749 PMCID: PMC10879161 DOI: 10.1038/s41598-024-54507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
During labor, monocytes infiltrate massively the myometrium and differentiate into macrophages secreting high levels of reactive oxygen species and of pro-inflammatory cytokines (i.e. IL-1β), leading to myometrial contraction. Although IL-1β is clearly implicated in labor, its function and that of the inflammasome complex that cleaves the cytokine in its active form, has never been studied on steps preceding contraction. In this work, we used our model of lipopolysaccharide-induced preterm labor to highlight their role. We demonstrated that IL-1β was secreted by the human myometrium during labor or in presence of infection and was essential for myometrial efficient contractions as its blockage with an IL-1 receptor antagonist (Anakinra) or a neutralizing antibody completely inhibited the induced contractions. We evaluated the implication of the inflammasome on myometrial contractions and differentiation stages of labor onset. We showed that the effects of macrophage-released IL-1β in myometrial cell transactivation were blocked by inhibition of the inflammasome, suggesting that the inflammasome by producing IL-1β was essential in macrophage/myocyte crosstalk during labor. These findings provide novel innovative approaches in the management of preterm labor, specifically the use of an inflammasome inhibitor to block the precursor stages of labor before the acquisition of the contractile phenotype.
Collapse
Affiliation(s)
- T E Lopez
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France
- Faculty of Medicine and Pharmacy, University of Burgundy, 21000, Dijon, France
| | - H Zhang
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - E Bouysse
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France
- Faculty of Medicine and Pharmacy, University of Burgundy, 21000, Dijon, France
| | - F Neiers
- Faculty of Medicine and Pharmacy, University of Burgundy, 21000, Dijon, France
| | - X Y Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - C Garrido
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France
- Faculty of Medicine and Pharmacy, University of Burgundy, 21000, Dijon, France
- Cancer Center George-François Leclerc, 21000, Dijon, France
| | - M Wendremaire
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France
- Faculty of Medicine and Pharmacy, University of Burgundy, 21000, Dijon, France
| | - Frédéric Lirussi
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France.
- Laboratory of Pharmacology-Toxicology, Platform PACE, University Hospital Besançon, 25000, Besançon, France.
- Faculty of Medicine and Pharmacy, University of Franche-Comté, 25000, Besançon, France.
| |
Collapse
|
3
|
Hanafy MS, Cui Z. Connexin-Containing Vesicles for Drug Delivery. AAPS J 2024; 26:20. [PMID: 38267725 DOI: 10.1208/s12248-024-00889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Connexin is a transmembrane protein present on the cell membrane of most cell types. Connexins assemble into a hexameric hemichannel known as connexon that pairs with another hemichannel present on a neighboring cell to form gap junction that acts as a channel or pore for the transport of ions and small molecules between the cytoplasm of the two cells. Extracellular vesicles released from connexin-expressing cells could carry connexin hemichannels on their surface and couple with another connexin hemichannel on a distant recipient cell to allow the transfer of the intravesicular content directly into the cytoplasm. Connexin-containing vesicles can be potentially utilized for intracellular drug delivery. In this review, we introduced cell-derived, connexin-containing extracellular vesicles and cell-free connexin-containing liposomes, methods of preparing them, procedures to load cargos in them, factors regulating the connexin hemichannel activity, (potential) applications of connexin-containing vesicles in drug delivery, and finally the challenges and future directions in realizing the promises of this platform delivery system for (intracellular) drug delivery.
Collapse
Affiliation(s)
- Mahmoud S Hanafy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
4
|
Acharya BR, Fang JS, Jeffery ED, Chavkin NW, Genet G, Vasavada H, Nelson EA, Sheynkman GM, Humphries MJ, Hirschi KK. Connexin 37 sequestering of activated-ERK in the cytoplasm promotes p27-mediated endothelial cell cycle arrest. Life Sci Alliance 2023; 6:e202201685. [PMID: 37197981 PMCID: PMC10192821 DOI: 10.26508/lsa.202201685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
Connexin37-mediated regulation of cell cycle modulators and, consequently, growth arrest lack mechanistic understanding. We previously showed that arterial shear stress up-regulates Cx37 in endothelial cells and activates a Notch/Cx37/p27 signaling axis to promote G1 cell cycle arrest, and this is required to enable arterial gene expression. However, how induced expression of a gap junction protein, Cx37, up-regulates cyclin-dependent kinase inhibitor p27 to enable endothelial growth suppression and arterial specification is unclear. Herein, we fill this knowledge gap by expressing wild-type and regulatory domain mutants of Cx37 in cultured endothelial cells expressing the Fucci cell cycle reporter. We determined that both the channel-forming and cytoplasmic tail domains of Cx37 are required for p27 up-regulation and late G1 arrest. Mechanistically, the cytoplasmic tail domain of Cx37 interacts with, and sequesters, activated ERK in the cytoplasm. This then stabilizes pERK nuclear target Foxo3a, which up-regulates p27 transcription. Consistent with previous studies, we found this Cx37/pERK/Foxo3a/p27 signaling axis functions downstream of arterial shear stress to promote endothelial late G1 state and enable up-regulation of arterial genes.
Collapse
Affiliation(s)
- Bipul R Acharya
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jennifer S Fang
- Department of Molecular Biology & Biochemistry, University of California at Irvine, Irvine, CA, USA
| | - Erin D Jeffery
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nicholas W Chavkin
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gael Genet
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Hema Vasavada
- Departments of Medicine and Genetics, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth A Nelson
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Karen K Hirschi
- Department of Cell Biology, Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Departments of Medicine and Genetics, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Cao X, Cai L, Guo D, Zhang D, Zhou X, Xie J. Fibroblast growth factor 8 facilitates cell-cell communication in chondrocytes via p38-MAPK signaling. Tissue Cell 2023; 83:102155. [PMID: 37451010 DOI: 10.1016/j.tice.2023.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/10/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Gap junction intercellular communication (GJIC) is essential for regulating the development of the organism and sustaining the internal environmental homeostasis of multi-cellular tissue. Fibroblast growth factor 8 (FGF8), an indispensable regulator of the skeletal system, is implicated in regulating chondrocyte growth, differentiation, and disease occurrence. However, the influence of FGF8 on GJIC in chondrocytes is not yet known. The study aims to investigate the role of FGF8 on cell-cell communication in chondrocytes and its underlying biomechanism. We found that FGF8 facilitated cell-cell communication in living chondrocytes by the up-regulation of connexin43 (Cx43), the major fundamental component unit of gap junction channels in chondrocytes. FGF8 activated p38-MAPK signaling to increase the expression of Cx43 and promote the cell-cell communication. Inhibition of p38-MAPK signaling impaired the increase of Cx43 expression and cell-cell communication induced by FGF8, indicating the importance of p38-MAPK signaling. These results help to understand the role of FGF8 on cell communication and provide a potential cue for the treatment of cartilage diseases.
Collapse
Affiliation(s)
- Xiaoling Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lang Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Guo D, Kan S, Zhang L, Niu Z, Duan M, Liu Y, Pu X, Bai M, Pi C, Zhang D, Zhou C, Xie J. IL-10 enhances cell-to-cell communication in chondrocytes via STAT3 signaling pathway. Cell Signal 2023; 105:110605. [PMID: 36681291 DOI: 10.1016/j.cellsig.2023.110605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Gap junction intercellular communication (GJIC) allows the transfer of material, message and energy between cells, which influences cell behaviors including cell proliferation, migration, differentiation and apoptosis and determines cell fate. Interleukin-10 (IL-10), a versatile cytokine, attracts more and more attention in the cartilage pathology such as osteoarthritis (OA) due to its potential in anti-inflammation and wound repair. However, whether IL-10 can mediate GJIC in chondrocytes remains elusive. In the current study, we aimed to explore the role of IL-10 on GJIC and its underlying mechanism. We found that IL-10 can promote GJIC in living chondrocytes. IL-10-enhanced GJIC in chondrocytes was dependent on the up-regulation of connexin 43 (Cx43). Knockdown experiment based on siRNA interference then confirmed that IL-10-enhanced GJIC required participation of IL-10 receptor 1 (IL-10R1). IL-10 activated signal transducer and activator of transcription 3 (STAT3) signaling and promoted the nuclear accumulation of p-STAT3 through IL-10 receptor 1. Inhibitor experiment further confirmed the importance of STAT3 signaling in IL-10-mediated GJIC. Taking together, our results provided a thorough process of IL-10-modulated cell-to-cell communication in chondrocytes and established a bridge between inflammatory factor, IL-10, and GJIC, which can increase our understanding about the physiology and pathology of cartilage.
Collapse
Affiliation(s)
- Daimo Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyi Kan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Jambor T, Knizatova N, Greifova H, Kovacik A, Lukac N. Toxicity of bisphenol A and its replacements in the mice Leydig cells in vitro. Physiol Res 2023; 72:71-86. [PMID: 36545881 PMCID: PMC10069807 DOI: 10.33549/physiolres.934989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
The aim of the study was to examine the potential impacts of bisphenol A (BPA) and its analogues BPB, BPF, and BPS on mice TM3 Leydig cells, with respect to basal cell viability parameters such as metabolic activity, cell membrane integrity, and lysosomal activity after 48-h exposure. In addition, monitoring of potential bisphenol´s actions included evaluation of ROS production and gap junctional intercellular communication (GJIC) complemented by determination of testosterone secretion. Obtained results revealed significant inhibition in mitochondrial activity started at 10 microg/ml of bisphenols after 48-h exposure. Cell membrane integrity was significantly decreased at 5 microg/ml of BPA and BPF and 10, 25, and 50 microg/ml of BPA and BPS. The lysosomal activity was significantly affected at 10, 25, and 50 microg/ml of applied bisphenols. A significant overproduction of ROS was recorded mainly at 5 and 10 microg/ml of tested compounds. In addition, significant inhibition of GJIC was observed at 5 microg/ml of BPB followed by a progressive decline at higher applied doses. In the case of testosterone production, a significant decline was confirmed at 10, 25 and 50 microg/ml.
Collapse
Affiliation(s)
- T Jambor
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | |
Collapse
|
8
|
Menzele A, Aboalgasm H, Ballo R, Gwanyanya A. Hyperglycaemia-induced impairment of the autorhythmicity and gap junction activity of mouse embryonic stem cell-derived cardiomyocyte-like cells. Histochem Cell Biol 2022; 159:329-337. [PMID: 36547741 DOI: 10.1007/s00418-022-02170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus with hyperglycaemia is a major risk factor for malignant cardiac dysrhythmias. However, the underlying mechanisms remain unclear, especially during the embryonic developmental phase of the heart. This study investigated the effect of hyperglycaemia on the pulsatile activity of stem cell-derived cardiomyocytes. Mouse embryonic stem cells (mESCs) were differentiated into cardiac-like cells through embryoid body (EB) formation, in either baseline glucose or high glucose conditions. Action potentials (APs) were recorded using a voltage-sensitive fluorescent dye and gap junction activity was evaluated using scrape-loading lucifer yellow dye transfer assay. Molecular components were detected using immunocytochemistry and immunoblot analyses. High glucose decreased the spontaneous beating rate of EBs and shortened the duration of onset of quinidine-induced asystole. Furthermore, it altered AP amplitude, but not AP duration, and had no impact on neither the expression of the hyperpolarisation-activated cyclic nucleotide-gated isoform 4 (HCN4) channel nor on the EB beating rate response to ivabradine nor isoprenaline. High glucose also decreased both the intercellular spread of lucifer yellow within an EB and the expression of the cardiac gap junction protein connexin 43 as well as upregulated the expression of transforming growth factor beta 1 (TGF-β1) and phosphorylated Smad3. High glucose suppressed the autorhythmicity and gap junction conduction of mESC-derived cardiomyocytes, via mechanisms probably involving TGF-β1/Smad3 signalling. The results allude to glucotoxicity related proarrhythmic effects, with potential clinical implications in foetal diabetic cardiac disease.
Collapse
Affiliation(s)
- Amanda Menzele
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Hamida Aboalgasm
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Robea Ballo
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
9
|
Jambor T, Zajickova T, Arvay J, Ivanisova E, Tirdilova I, Knizatova N, Greifova H, Kovacik A, Galova E, Lukac N. Exceptional Properties of Lepidium sativum L. Extract and Its Impact on Cell Viability, Ros Production, Steroidogenesis, and Intracellular Communication in Mice Leydig Cells In Vitro. Molecules 2022; 27:5127. [PMID: 36014360 PMCID: PMC9412889 DOI: 10.3390/molecules27165127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence of reproductive dysfunction in males has risen in the last few years, and alternative therapies are gradually gaining in popularity. Our in vitro study aimed to evaluate the potential impact of Lepidium sativum L. on mice TM3 Leydig cells, concerning basal parameters such as cell viability, cell membrane integrity, and lysosomal activity, after 24 h and 48 h exposure. Moreover, reactive oxygens species generation, sex-steroid hormone secretion, and intercellular communication were quantified. In the present study, the microgreen extract from Lepidium was rich in ferulic acid, 4-OH benzoic acid, and resveratrol, with a significant antioxidant activity. The results showed that lower experimental doses (62.5-250 µg/mL) could positively affect the observed parameters, with significant differences at 250 µg/mL after 24 h and 48 h, respectively. Potential risks could be associated with higher concentrations, starting at 500 µg/mL, 1000 µg/mL, and 2000 µg/mL of Lepidium. Nevertheless, biochemical quantification indicated a significant antioxidant potential and a rich content of biologically active molecules at the applied doses, and time determined the intracellular response of the cultured model.
Collapse
Affiliation(s)
- Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Terezia Zajickova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Julius Arvay
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Eva Ivanisova
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Ivana Tirdilova
- AgroBioTech Research Centre, Department of Food Technology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Nikola Knizatova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Hana Greifova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Eliska Galova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
10
|
Myles WE, McFadden SA. Analytical methods for assessing retinal cell coupling using cut-loading. PLoS One 2022; 17:e0271744. [PMID: 35853039 PMCID: PMC9295955 DOI: 10.1371/journal.pone.0271744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Electrical coupling between retinal neurons contributes to the functional complexity of visual circuits. “Cut-loading” methods allow simultaneous assessment of cell-coupling between multiple retinal cell-types, but existing analysis methods impede direct comparison with gold standard direct dye injection techniques. In the current study, we both improved an existing method and developed two new approaches to address observed limitations. Each method of analysis was applied to cut-loaded dark-adapted Guinea pig retinae (n = 29) to assess coupling strength in the axonless horizontal cell type (‘a-type’, aHCs). Method 1 was an improved version of the standard protocol and described the distance of dye-diffusion (space constant). Method 2 adjusted for the geometric path of dye-transfer through cut-loaded cells and extracted the rate of dye-transfer across gap-junctions in terms of the coupling coefficient (kj). Method 3 measured the diffusion coefficient (De) perpendicular to the cut-axis. Dye transfer was measured after one of five diffusion times (1–20 mins), or with a coupling inhibitor, meclofenamic acid (MFA) (50–500μM after 20 mins diffusion). The standard protocol fits an exponential decay function to the fluorescence profile of a specified retina layer but includes non-specific background fluorescence. This was improved by measuring the fluorescence of individual cell soma and excluding from the fit non-horizontal cells located at the cut-edge (p<0.001) (Method 1). The space constant (Method 1) increased with diffusion time (p<0.01), whereas Methods 2 (p = 0.54) and 3 (p = 0.63) produced consistent results across all diffusion times. Adjusting distance by the mean cell-cell spacing within each tissue reduced the incidence of outliers across all three methods. Method 1 was less sensitive to detecting changes induced by MFA than Methods 2 (p<0.01) and 3 (p<0.01). Although the standard protocol was easily improved (Method 1), Methods 2 and 3 proved more sensitive and generalisable; allowing for detailed assessment of the tracer kinetics between different populations of gap-junction linked cell networks and direct comparison to dye-injection techniques.
Collapse
Affiliation(s)
- William E. Myles
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- * E-mail:
| | - Sally A. McFadden
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
11
|
Wu L, Wang Z, He X, Jiang Y, Pan R, Chen S, Chen Y, Han Y, Yu H, Zhang T. GJA1 reverses arsenic-induced EMT via modulating MAPK/ERK signaling pathway. Toxicol Appl Pharmacol 2022; 450:116138. [PMID: 35750204 DOI: 10.1016/j.taap.2022.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 10/18/2022]
Abstract
Arsenic is known as a well-established human carcinogen. Gap Junction Protein Alpha 1 (GJA1) is a multifunction protein that forms gap junction channels and is important for intercellular communication. Recently, its aberrant expression has been shown to associate with cancer recurrence and metastatic spread. However, whether GJA1 plays a role in arsenic carcinogenesis remains unknown. Here, we demonstrated that chronic exposure of human bronchial epithelial BEAS-2B cells to sodium arsenite promoted epithelial-mesenchymal transition (EMT) via increasing the expression of EMT inducer S100A4 and activation of MAPK/ERK signaling. In vitro and in vivo experiments showed that chronic exposure to sodium arsenite reduced GJA1 expression. Forced expression of GJA1 inhibited sodium arsenite-induced EMT via suppressing MAPK/ERK signaling whereas GJA1 knockdown produced an opposite effect. Intriguingly, chronic exposure to sodium arsenite increased autophagy flux. Inhibition of autophagy by pharmacological intervention or genetic deletion of autophagy core gene Beclin-1 upregulated GJA1 expression. These results suggested that GJA1 restrained the carcinogenic effect of sodium arsenite by limiting MAPK/ERK signaling, and GJA1 expression was decreased by arsenic-activated autophagy. In addition, interventions directed at enhancing the level or functional activity of GJA1 could be of preventive and therapeutic interest.
Collapse
Affiliation(s)
- Linqing Wu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zengbin Wang
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoli He
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | | | | | - Shi Chen
- Kindstar Global Medical Special Inspection Group, Wuhan, China
| | - Yizhong Chen
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yanfei Han
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huahui Yu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Tao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
12
|
Dynamics of Connexin 43 Down Modulation in Human Articular Chondrocytes Stimulated by Tumor Necrosis Factor Alpha. Int J Mol Sci 2022; 23:ijms23105575. [PMID: 35628386 PMCID: PMC9142923 DOI: 10.3390/ijms23105575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
Connexin 43 (Cx43) exerts pivotal functions in articular chondrocytes (CH). It is involved in the communication among cells and between cells and the extracellular environment, and it contributes to the maintenance of the correct cell phenotype. The pro-inflammatory cytokine TNFα induces a reduction in Cx43 expression in CH. Here, we studied the dynamics of this decrease in expression. We evaluated Cx43 protein and gene expression and the involvement of C-terminal domain (CTD) cleavage and proteasomal degradation. Treatments able to counteract TNFα action were also examined, together with Gap Junction (GJ) functionality and Cx43 localization. TNFα induced a significant reduction in Cx43 expression already at day 1, and the down modulation reached a peak at day 3 (−46%). The decrease was linked to neither gene expression modulation nor CTD cleavage. Differently, the proteasome inhibitor MG132 reverted TNFα effect, indicating the involvement of proteasomal degradation in Cx43 reduction. In addition, the co-treatment with the anabolic factor TGF-β1 restored Cx43 levels. Cx43 decrease occurred both at the membrane level, where it partially influenced GJ communication, and in the nucleus. In conclusion, TNFα induced a rapid and lasting reduction in Cx43 expression mostly via the proteasome. The down modulation could be reverted by cartilage-protective factors such as MG132 and TGF-β1. These findings suggest a possible involvement of Cx43 perturbation during joint inflammation.
Collapse
|
13
|
Greifová H, Jambor T, Tokárová K, Knížatová N, Lukáč N. In Vitro Effect of Resveratrol Supplementation on Oxidative Balance and Intercellular Communication of Leydig Cells Subjected to Induced Oxidative Stress. Folia Biol (Praha) 2022. [DOI: 10.3409/fb_70-1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many studies have revealed that oxidative stress is a primary factor in the pathogenesis of male reproductive system dysfunctions. The strong antioxidant and cytoprotective effects of resveratrol have previously been demonstrated, but its effect in the context of the male reproduction
remains unconvincing. To observe the biological activity of resveratrol in protecting the male reproductive function, hydrogen peroxide-induced oxidative stress in Leydig cells was used as a cell model. The aim of the present study was to examine if resveratrol could induce changes in the
gap junction intercellular communication (GJIC), nitric oxide production, total oxidant status (TOS) and total antioxidant capacity (TAC) in TM3 Leydig cells subjected to H2O2. The Leydig cells were exposed to a resveratrol treatment (5, 10, 20, 50 and 100 μM) in the
presence or absence of H2O2 (300/600 μM) during a 24 h in vitro culture. The cell lysates to assess TOS and TAC, NO production were quantified in a culture medium using the Griess method, and the Scrape Loading/Dye Transfer (SL/DT) technique was used for the
determination of GJIC in the exposed TM3 Leydig cells. Treatment with higher doses of resveratrol alone led to a significantly increased TOS (p<0.05 with 100 μM) and NO production (p<0.05 with 50 μM and 100 μM), but significantly reduced TAC (p<0.01 with 100 μM) and GJIC
(p<0.05 with 100 μM), while the SL/DT evaluation in the cells exposed to resveratrol at concentrations 5 μM (p<0.05) and 10 μM (p<0.01) revealed a significant stimulation of GJIC. The most potent cytoprotective or stimulatory effect of resveratrol in the cells co-exposed
to oxidative stress (300 μM H2O2) was observed at a concentration of 10 μM in the case of GJIC, which was manifested by a significant increase in the values (p<0.05) compared to the control group treated with H2O2 alone.
Collapse
Affiliation(s)
- Hana Greifová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Jambor
- BioFood Centre, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Katarína Tokárová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Nikola Knížatová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Norbert Lukáč
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
14
|
Sun X, Xiao H, Li S, Chen R, Lin Z, Yang Y, Chen Z, Deng L, Huang H. Connexin32 ameliorates epithelial-to-mesenchymal-transition in diabetic renal tubular via inhibiting NOX4. Pharmacol Res 2022; 176:106084. [PMID: 35051590 DOI: 10.1016/j.phrs.2022.106084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
Abstract
Renal tubulointerstitial fibrosis (RIF), characterized by epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (TECs), is the main cause of diabetic renal fibrosis. Oxidative stress plays a pivotal role in the development of diabetic RIF. Connexin32 (Cx32), prominently expressed in renal TECs, has emerged as an important player in the regulation of oxidative stress. However, the role of Cx32 in diabetic RIF has not been explored yet. Here, we showed that adenovirus-mediated Cx32 overexpression suppressed EMT to ameliorate RIF and renal function in STZ-induced diabetic mice, while knockout (KO) of Cx32 exacerbated RIF in diabetic mice. Moreover, overexpression of Cx32 inhibited EMT and the production of extra cellular matrix (ECM) in high glucose (HG) induced NRK-52E cells, whereas knockdown of Cx32 showed the opposite effects. Furthermore, we showed that NOX4, the main source of ROS in renal tubular, was down-regulated by Cx32. Mechanistically, Cx32 down-regulated the expression of PKC alpha in a carboxyl-terminal-dependent manner, thereby inhibiting the phosphorylation at Thr147 of p22phox triggered by PKC alpha, which ultimately repressed the formation of the p22phox-NOX4 complex to reduce the protein level of NOX4. Thus, we establish Cx32 as a novel target and confirm the protection mechanism in RIF.
Collapse
Affiliation(s)
- Xiaohong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rui Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Beckmann A, Recktenwald J, Ferdinand A, Grißmer A, Meier C. First Responders to Hyperosmotic Stress in Murine Astrocytes: Connexin 43 Gap Junctions Are Subject to an Immediate Ultrastructural Reorganization. BIOLOGY 2021; 10:biology10121307. [PMID: 34943223 PMCID: PMC8698406 DOI: 10.3390/biology10121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Gap junctions are intercellular channels that provide the means for direct transport of small molecules, ions, and water between connected cells. With these functions, gap junctions are essential for the maintenance of astrocytic homeostasis and of particular importance in the context of pathophysiological disbalances. These include the hyperosmolar hyperglycemic syndrome or the pathology after brain trauma. We demonstrate that short-term hyperosmolarity reduces intercellular communication via gap junctions. These functional changes coincide with the transformation of gap junction ultrastructure as evidenced by freeze-fracture replica immunolabeling and transmission electron microscopy. The hyperosmolarity-induced immediate changes in the ultrastructural assembly of connexons, the protein constituents of gap junction channels, have not been described in astrocytes before and are revealing the coherence of structure and function in gap junctions. Phosphorylation of Connexin 43, the main gap junction protein in astrocytes, at amino acid 368 (Serine) might link the two. Abstract In a short-term model of hyperosmotic stress, primary murine astrocytes were stimulated with a hyperosmolar sucrose solution for five minutes. Astrocytic gap junctions, which are mainly composed of Connexin (Cx) 43, displayed immediate ultrastructural changes, demonstrated by freeze–fracture replica immunogold labeling: their area, perimeter, and distance of intramembrane particles increased, whereas particle numbers per area decreased. Ultrastructural changes were, however, not accompanied by changes in Cx43 mRNA expression. In contrast, transcription of the gap junction regulator zonula occludens (ZO) protein 1 significantly increased, whereas its protein expression was unaffected. Phosphorylation of Serine (S) 368 of the Cx43 C–terminus has previously been associated with gap junction disassembly and reduction in gap junction communication. Hyperosmolar sucrose treatment led to enhanced phosphorylation of Cx43S368 and was accompanied by inhibition of gap junctional intercellular communication, demonstrated by a scrape loading-dye transfer assay. Taken together, Cx43 gap junctions are fast reacting elements in response to hyperosmolar challenges and can therefore be considered as one of the first responders to hyperosmolarity. In this process, phosphorylation of Cx43S368 was associated with disassembly of gap junctions and inhibition of their function. Thus, modulation of the gap junction assembly might represent a target in the treatment of brain edema or trauma.
Collapse
|
16
|
Won DH, Hwang DB, Shin YS, Kim SY, Kim C, Hong IS, Kang BC, Che JH, Yun JW. Cellular signaling crosstalk between Wnt signaling and gap junctions inbenzo[a]pyrene toxicity. Cell Biol Toxicol 2021; 39:165-182. [PMID: 34283317 DOI: 10.1007/s10565-021-09630-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
Gap junctional intercellular communication (GJIC) is considered a key biological mechanism to maintain homeostasis in cell differentiation and growth. In addition, as another major signaling pathway associated with cell proliferation and differentiation, Wnt/β-catenin signaling appears to trigger several cellular responses against injury. The purpose of the present study was to investigate the effects of a known toxic agent, benzo[a]pyrene (BaP), on the regulation and interaction between GJIC and Wnt/β-catenin signaling. BaP treatment resulted in GJIC inhibition and decreases the major GJIC protein connexin 43 (Cx43) in WB-F344 rat liver epithelial cells. We also found BaP-mediated downregulation of Wnt/β-catenin signaling related to the PI3K-Akt pathway. To identify the relationship between GJIC and Wnt/β-catenin signaling, we treated WB-F344 cells with the Wnt agonist CHIR99021 and found that it inhibited GJIC while causing a significant reduction in Cx43 expression at both the mRNA and protein levels, through the repression of promoter activity. This Wnt agonist-mediated GJIC inhibition was confirmed using a small interfering RNA directed against the Wnt antagonist Dact2, indicating that Wnt/β-catenin signaling negatively regulates GJIC. Despite the inverse correlation between Wnt/β-catenin signaling and Cx43 promoter activation as indicated by downregulation of β-catenin nuclear translocation and upregulation of Cx43 promoter activation involving HNF3β, BaP treatment decreased the Cx43 protein expression, which was associated with protein degradation, possibly through protein kinase C activation. In conclusion, our results revealed the mechanism of BaP-induced inhibition of GJIC and Wnt/β-catenin signaling. More importantly, linking Wnt/β-catenin signaling to Cx protein expression will have profound implications in understanding the relationships among different major signaling pathways associated with cell proliferation and differentiation in toxicity.
Collapse
Affiliation(s)
- Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Yoo-Sub Shin
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Shin-Young Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, South Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea. .,Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
17
|
Koepple C, Zhou Z, Huber L, Schulte M, Schmidt K, Gloe T, Kneser U, Schmidt VJ, de Wit C. Expression of Connexin43 Stimulates Endothelial Angiogenesis Independently of Gap Junctional Communication In Vitro. Int J Mol Sci 2021; 22:ijms22147400. [PMID: 34299018 PMCID: PMC8306600 DOI: 10.3390/ijms22147400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Connexins (Cx) form gap junctions (GJ) and allow for intercellular communication. However, these proteins also modulate gene expression, growth, and cell migration. The downregulation of Cx43 impairs endothelial cell migration and angiogenetic potential. Conversely, endothelial Cx43 expression is upregulated in an in vivo angiogenesis model relying on hemodynamic forces. We studied the effects of Cx43 expression on tube formation and proliferation in HUVECs and examined its dependency on GJ communication. Expectedly, intercellular communication assessed by dye transfer was linked to Cx43 expression levels in HUVECs and was sensitive to a GJ blockade by the Cx43 mimetic peptide Gap27. The proliferation of HUVECs was not affected by Cx43 overexpression using Cx43 cDNA transfection, siRNA-mediated knockdown of Cx43, or the inhibition of GJ compared to the controls (transfection of an empty vector, scrambled siRNA, and the solvent). In contrast, endothelial tube and sprout formation in HUVECs was minimized after Cx43 knockdown and significantly enhanced after Cx43 overexpression. This was not affected by a GJ blockade (Gap27). We conclude that Cx43 expression positively modulates the angiogenic potential of endothelial cells independent of GJ communication. Since proliferation remained unaffected, we suggest that Cx43 protein may modulate endothelial cell migration, thereby supporting angiogenesis. The modulation of Cx43 expression may represent an exploitable principle for angiogenesis induction in clinical therapy.
Collapse
Affiliation(s)
- Christoph Koepple
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| | - Zizi Zhou
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Lena Huber
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Matthias Schulte
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Kjestine Schmidt
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany;
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), 23562 Lübeck, Germany
| | - Torsten Gloe
- Physiology, Institute of Theoretical Medicine, Universität Augsburg, 86159 Augsburg, Germany;
| | - Ulrich Kneser
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Volker Jürgen Schmidt
- Department for Plastic Surgery and Breast Surgery, Zealand University Hospital (SUH) Roskilde, Copenhagen University, 4000 Roskilde, Denmark
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany;
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), 23562 Lübeck, Germany
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| |
Collapse
|
18
|
Ogazon del Toro A, Jimenez L, Serrano Rubi M, Castillo A, Hinojosa L, Martinez Rendon J, Cereijido M, Ponce A. Prostaglandin E2 Enhances Gap Junctional Intercellular Communication in Clonal Epithelial Cells. Int J Mol Sci 2021; 22:5813. [PMID: 34071686 PMCID: PMC8198183 DOI: 10.3390/ijms22115813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins are a group of lipids that produce diverse physiological and pathological effects. Among them, prostaglandin E2 (PGE2) stands out for the wide variety of functions in which it participates. To date, there is little information about the influence of PGE2 on gap junctional intercellular communication (GJIC) in any type of tissue, including epithelia. In this work, we set out to determine whether PGE2 influences GJIC in epithelial cells (MDCK cells). To this end, we performed dye (Lucifer yellow) transfer assays to compare GJIC of MDCK cells treated with PGE2 and untreated cells. Our results indicated that (1) PGE2 induces a statistically significant increase in GJIC from 100 nM and from 15 min after its addition to the medium, (2) such effect does not require the synthesis of new mRNA or proteins subunits but rather trafficking of subunits already synthesized, and (3) such effect is mediated by the E2 receptor, which, in turn, triggers a signaling pathway that includes activation of adenylyl cyclase and protein kinase A (PKA). These results widen the knowledge regarding modulation of gap junctional intercellular communication by prostaglandins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arturo Ponce
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, CDMX, México C.P. 07360, Mexico; (A.O.d.T.); (L.J.); (M.S.R.); (A.C.); (L.H.); (J.M.R.); (M.C.)
| |
Collapse
|
19
|
Gingrich J, Pu Y, Veiga-Lopez A. A modified parachute assay for assessment of gap junction intercellular communication in placental trophoblast cells. Toxicol Mech Methods 2021; 31:393-399. [PMID: 33784946 DOI: 10.1080/15376516.2021.1904072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Gap junction intercellular communication (GJIC) is a necessary process for placental development. GJIC can be assessed with a parachute assay, where fluorescent dye-loaded donor cells are 'parachuted' onto acceptor cells and dye diffuses to adjacent cells with active GJIC. During co-culture, donor cells can attach, but the assay does not allow their distinction from acceptor cells, which presents as a major limitation. We have developed a modified parachute assay that permits distinction between donor and acceptor cells, using the extravillous trophoblast cell line HTR-8/SVneo and a lentiviral transduction technique. Using PKA activator CW008 as a positive control and 12-o-tetradecanoylphorbol-13-acetate as a negative control, this modified parachute assay reliably detects both enhanced and attenuated GJIC. Importantly, the ease and accuracy of quantification over currently available methods makes this modified assay optimal for automation and represents a useful tool for in vitro placental toxicological testing.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Yong Pu
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Chicago Center for Health and Environment, Chicago, IL, USA
| |
Collapse
|
20
|
Connexin 43 prevents the progression of diabetic renal tubulointerstitial fibrosis by regulating the SIRT1-HIF-1α signaling pathway. Clin Sci (Lond) 2021; 134:1573-1592. [PMID: 32558900 DOI: 10.1042/cs20200171] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Hyperglycemia-induced renal epithelial-to-mesenchymal transition (EMT) is a key pathological factor in diabetic renal tubulointerstitial fibrosis (RIF). Our previous studies have shown that connexin 43 (Cx43) activation attenuated the development of diabetic renal fibrosis. However, whether Cx43 regulates the EMT of renal tubular epithelial cells (TECs) and the pathological process of RIF under the diabetic conditions remains to be elucidated. In the present study, we identified that Cx43 protein expression was down-regulated in the kidney tissues of db/db mice as well as in high glucose (HG)-induced NRK-52E cells. Overexpression of Cx43 improved renal function in db/db spontaneous diabetic model mice, increased SIRT1 levels, decreased hypoxia-inducible factor (HIF)-1α expression, and reduced production of EMT markers and extracellular matrix (ECM) components. Additionally, Cx43 overexpression inhibited the EMT process and reduced the expression of ECM components such as fibronectin (FN), Collagen I, and Collagen IV in HG-induced NRK-52E cells, whereas Cx43 deficiency had the opposite effects. Mechanistically, Cx43 in a carboxyl-terminal signal transduction-dependent manner could up-regulate SIRT1 expression and enhance SIRT1-dependent deacetylation of HIF-1α to reduce HIF-1α activity, which eventually ameliorated renal EMT and diabetic RIF. Our study indicates the essential role of Cx43 in regulating renal EMT and diabetic RIF via regulating the SIRT1-HIF-1α signaling pathway and provides an experimental basis for Cx43 as a potential target for diabetic nephropathy (DN).
Collapse
|
21
|
A Cellular Assay for the Identification and Characterization of Connexin Gap Junction Modulators. Int J Mol Sci 2021; 22:ijms22031417. [PMID: 33572565 PMCID: PMC7866863 DOI: 10.3390/ijms22031417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
Connexin gap junctions (Cx GJs) enable the passage of small molecules and ions between cells and are therefore important for cell-to-cell communication. Their dysfunction is associated with diseases, and small molecules acting as modulators of GJs may therefore be useful as therapeutic drugs. To identify GJ modulators, suitable assays are needed that allow compound screening. In the present study, we established a novel assay utilizing HeLa cells recombinantly expressing Cx43. Donor cells additionally expressing the Gs protein-coupled adenosine A2A receptor, and biosensor cells expressing a cAMP-sensitive GloSensor luciferase were established. Adenosine A2A receptor activation in the donor cells using a selective agonist results in intracellular cAMP production. The negatively charged cAMP migrates via the Cx43 gap junctions to the biosensor cells and can there be measured by the cAMP-dependent luminescence signal. Cx43 GJ modulators can be expected to impact the transfer of cAMP from the donor to the biosensor cells, since cAMP transit is only possible via GJs. The new assay was validated by testing the standard GJ inhibitor carbenoxolon, which showed a concentration-dependent inhibition of the signal and an IC50 value that was consistent with previously reported values. The assay was demonstrated to be suitable for high-throughput screening.
Collapse
|
22
|
Zhou Y, Li H, Lin C, Mao Y, Rao J, Lou Y, Yang X, Xu X, Jin F. Perfluorooctanoic acid (PFOA) inhibits the gap junction intercellular communication and induces apoptosis in human ovarian granulosa cells. Reprod Toxicol 2020; 98:125-133. [PMID: 32971237 DOI: 10.1016/j.reprotox.2020.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 01/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) has attracted widespread research attention as it is very stable, bioaccumulates, and causes reproductive toxicity. Data from several animal experiments and epidemiological studies indicate that female fertility may decline because of ovarian granulosa cell (GC) apoptosis as oocyte quality is positively associated with effective gap junctional intercellular communication (GJIC) between GCs. To the best of our knowledge, however, no previous trials have been conducted or reported on the effects of PFOA exposure on apoptosis induction in human GCs. Moreover, the roles of GJIC in GC survival and in the induction of apoptosis in GCs by PFOA remain unclear. To test this, we cultured human GCs in vitro and treated them with 0 μM, 0.3 μM, 3 μM, or 30 μM PFOA for 24 h. We also treated a human ovarian GC line (KGN) with various combinations of PFOA, retinoic acid (RA, 10 μM), and carbenoxolone disodium (CBX, 50 mM). Our findings showed that PFOA lowered human GC viability and increased apoptosis. The effects of CBX resemble those of PFOA. The combination of PFOA and CBX enhances the inhibition of GJIC by PFOA and promotes apoptosis. The effects of RA are the opposite to those of PFOA. The combination of RA and PFOA mitigates PFOA-induced GJIC inhibition and reduces apoptosis. The observed expression levels of apoptosis-related proteins were consistent with the aforementioned findings. Hence, our study demonstrated that PFOA may induce human ovarian GC apoptosis by inhibiting GJIC.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongping Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuanping Lin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinpeng Rao
- Reproductive Medical Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiyun Lou
- Department of Gynecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Xinyun Yang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - XiangRong Xu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Chang-Graham AL, Perry JL, Engevik MA, Engevik KA, Scribano FJ, Gebert JT, Danhof HA, Nelson JC, Kellen JS, Strtak AC, Sastri NP, Estes MK, Britton RA, Versalovic J, Hyser JM. Rotavirus induces intercellular calcium waves through ADP signaling. Science 2020; 370:370/6519/eabc3621. [PMID: 33214249 PMCID: PMC7957961 DOI: 10.1126/science.abc3621] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/16/2020] [Indexed: 01/14/2023]
Abstract
Rotavirus causes severe diarrheal disease in children by broadly dysregulating intestinal homeostasis. However, the underlying mechanism(s) of rotavirus-induced dysregulation remains unclear. We found that rotavirus-infected cells produce paracrine signals that manifested as intercellular calcium waves (ICWs), observed in cell lines and human intestinal enteroids. Rotavirus ICWs were caused by the release of extracellular adenosine 5'-diphosphate (ADP) that activated P2Y1 purinergic receptors on neighboring cells. ICWs were blocked by P2Y1 antagonists or CRISPR-Cas9 knockout of the P2Y1 receptor. Blocking the ADP signal reduced rotavirus replication, inhibited rotavirus-induced serotonin release and fluid secretion, and reduced diarrhea severity in neonatal mice. Thus, rotavirus exploited paracrine purinergic signaling to generate ICWs that amplified the dysregulation of host cells and altered gastrointestinal physiology to cause diarrhea.
Collapse
Affiliation(s)
- Alexandra L. Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Jacob L. Perry
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Melinda A. Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, USA,Department of Pathology, Texas Children’s Hospital, USA
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Francesca J. Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - J. Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Joel C. Nelson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA
| | - Joseph S. Kellen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Alicia C. Strtak
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - Narayan P. Sastri
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA,Department of Medicine, Gastroenterology and Hepatology, Baylor College of Medicine, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, USA,Department of Pathology, Texas Children’s Hospital, USA
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, USA,Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, USA,Corresponding author. Correspondence and requests for materials should be addressed to J.H.
| |
Collapse
|
24
|
Visualization and quantification of dynamic intercellular coupling in human embryonic stem cells using single cell sonoporation. Sci Rep 2020; 10:18253. [PMID: 33106521 PMCID: PMC7589565 DOI: 10.1038/s41598-020-75347-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022] Open
Abstract
Gap junctions (GJs), which are proteinaceous channels, couple adjacent cells by permitting direct exchange of intracellular molecules with low molecular weights. GJ intercellular communication (GJIC) plays a critical role in regulating behaviors of human embryonic stem cells (hESCs), affecting their proliferation and differentiation. Here we report a novel use of sonoporation that enables single cell intracellular dye loading and dynamic visualization/quantification of GJIC in hESC colonies. By applying a short ultrasound pulse to excite single microbubbles tethered to cell membranes, a transient pore on the cell membrane (sonoporation) is generated which allows intracellular loading of dye molecules and influx of Ca2+ into single hESCs. We employ live imaging for continuous visualization of intercellular dye transfer and Ca2+ diffusion in hESC colonies. We quantify cell–cell permeability based on dye diffusion using mass transport models. Our results reveal heterogeneous intercellular connectivity and a variety of spatiotemporal characteristics of intercellular Ca2+ waves in hESC colonies induced by sonoporation of single cells.
Collapse
|
25
|
Brózman O, Novák J, Bauer AK, Babica P. Airborne PAHs inhibit gap junctional intercellular communication and activate MAPKs in human bronchial epithelial cell line. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103422. [PMID: 32492535 PMCID: PMC7486243 DOI: 10.1016/j.etap.2020.103422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Inhalation exposures to polycyclic aromatic hydrocarbons (PAHs) have been associated with various adverse health effects, including chronic lung diseases and cancer. Using human bronchial epithelial cell line HBE1, we investigated the effects of structurally different PAHs on tissue homeostatic processes, namely gap junctional intercellular communication (GJIC) and MAPKs activity. Rapid (<1 h) and sustained (up to 24 h) inhibition of GJIC was induced by low/middle molecular weight (MW) PAHs, particularly by those with a bay- or bay-like region (1- and 9-methylanthracene, fluoranthene), but also by fluorene and pyrene. In contrast, linear low MW (anthracene, 2-methylanthracene) or higher MW (chrysene) PAHs did not affect GJIC. Fluoranthene, 1- and 9-methylanthracene induced strong and sustained activation of MAPK ERK1/2, whereas MAPK p38 was activated rather nonspecifically by all tested PAHs. Low/middle MW PAHs can disrupt tissue homeostasis in human airway epithelium via structure-dependent nongenotoxic mechanisms, which can contribute to their human health hazards.
Collapse
Affiliation(s)
- Ondřej Brózman
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - Alison K Bauer
- Department of Environmental and Occupational Health, University of Colorado, Anschutz Medical Center, Aurora, Colorado 80045, USA.
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| |
Collapse
|
26
|
Toxicologic Evaluation for Amorphous Silica Nanoparticles: Genotoxic and Non-Genotoxic Tumor-Promoting Potential. Pharmaceutics 2020; 12:pharmaceutics12090826. [PMID: 32872498 PMCID: PMC7559769 DOI: 10.3390/pharmaceutics12090826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
Amorphous silica nanoparticles (SiO2NPs) have been widely used in medicine including targeted drug/DNA delivery, cancer therapy, and enzyme immobilization. Nevertheless, SiO2NPs should be used with caution due to safety concerns associated with unique physical and chemical characteristics. The objective of this study was to determine the effects of SiO2NPs on genotoxic and non-genotoxic mechanisms associated with abnormal gap junctional intercellular communication (GJIC) in multistage carcinogenesis. The SiO2NPs exhibited negative responses in standard genotoxicity tests including the Ames test, chromosome aberration assay, and micronucleus assay. In contrast, the SiO2NPs significantly induced DNA breakage in comet assay. Meanwhile, SiO2NPs inhibited GJIC based on the results of scrape/loading dye transfer assay for the identification of non-genotoxic tumor-promoting potential. The reduction in expression and plasma membrane localization of Cx43 was detected following SiO2NP treatment. Particularly, SiO2NP treatment increased Cx43 phosphorylation state, which was significantly attenuated by inhibitors of extracellular signal-regulated kinases 1/2 (ERK1/2) and threonine and tyrosine kinase (MEK), but not by protein kinase C (PKC) inhibitor. Taken together, in addition to a significant increase in DNA breakage, SiO2NP treatment resulted in GJIC dysregulation involved in Cx43 phosphorylation through the activation of mitogen-activated protein kinase (MAPK) signaling. Overall findings of the genotoxic and non-genotoxic carcinogenic potential of SiO2NPs provide useful toxicological information for clinical application at an appropriate dose.
Collapse
|
27
|
Calhoun PJ, Phan AV, Taylor JD, James CC, Padget RL, Zeitz MJ, Smyth JW. Adenovirus targets transcriptional and posttranslational mechanisms to limit gap junction function. FASEB J 2020; 34:9694-9712. [PMID: 32485054 DOI: 10.1096/fj.202000667r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 01/19/2023]
Abstract
Adenoviruses are responsible for a spectrum of pathogenesis including viral myocarditis. The gap junction protein connexin43 (Cx43, gene name GJA1) facilitates rapid propagation of action potentials necessary for each heartbeat. Gap junctions also propagate innate and adaptive antiviral immune responses, but how viruses may target these structures is not understood. Given this immunological role of Cx43, we hypothesized that gap junctions would be targeted during adenovirus type 5 (Ad5) infection. We find reduced Cx43 protein levels due to decreased GJA1 mRNA transcripts dependent upon β-catenin transcriptional activity during Ad5 infection, with early viral protein E4orf1 sufficient to induce β-catenin phosphorylation. Loss of gap junction function occurs prior to reduced Cx43 protein levels with Ad5 infection rapidly inducing Cx43 phosphorylation events consistent with altered gap junction conductance. Direct Cx43 interaction with ZO-1 plays a critical role in gap junction regulation. We find loss of Cx43/ZO-1 complexing during Ad5 infection by co-immunoprecipitation and complementary studies in human induced pluripotent stem cell derived-cardiomyocytes reveal Cx43 gap junction remodeling by reduced ZO-1 complexing. These findings reveal specific targeting of gap junction function by Ad5 leading to loss of intercellular communication which would contribute to dangerous pathological states including arrhythmias in infected hearts.
Collapse
Affiliation(s)
- Patrick J Calhoun
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Allen V Phan
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | | | - Carissa C James
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Rachel L Padget
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Michael J Zeitz
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - James W Smyth
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
28
|
Dydowiczová A, Brózman O, Babica P, Sovadinová I. Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci Rep 2020; 10:730. [PMID: 31959888 PMCID: PMC6971000 DOI: 10.1038/s41598-020-57536-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/31/2019] [Indexed: 12/28/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) is a vital cellular process required for maintenance of tissue homeostasis. In vitro assessment of GJIC represents valuable phenotypic endpoint that could be effectively utilized as an integral component in modern toxicity testing, drug screening or biomedical in vitro research. However, currently available methods for quantifying GJIC with higher-throughputs typically require specialized equipment, proprietary software and/or genetically engineered cell models. To overcome these limitations, we present here an innovative adaptation of traditional, fluorescence microscopy-based scrape loading-dye transfer (SL-DT) assay, which has been optimized to simultaneously evaluate GJIC, cell density and viability. This multiparametric method was demonstrated to be suitable for various multiwell microplate formats, which facilitates an automatized image acquisition. The assay workflow is further assisted by an open source-based software tools for batch image processing, analysis and evaluation of GJIC, cell density and viability. Our results suggest that this approach provides a simple, fast, versatile and cost effective way for in vitro high-throughput assessment of GJIC and other related phenotypic cellular events, which could be included into in vitro screening and assessment of pharmacologically and toxicologically relevant compounds.
Collapse
Affiliation(s)
- Aneta Dydowiczová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Ondřej Brózman
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500, Brno, Czech Republic.
| |
Collapse
|
29
|
Wang Q, Zhou C, Zhang D, Zou J, Liu W, Cai L, Cui Y, Lai W, Xie J. The involvement of the ERK-MAPK pathway in TGF-β1-mediated connexin43-gap junction formation in chondrocytes. Connect Tissue Res 2019; 60:477-486. [PMID: 30897973 DOI: 10.1080/03008207.2019.1593394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Purposes: Gap junction intercellular communication (GJIC) exhibits a key role in maintaining the homeostasis of articular cartilage. Connexin43 (Cx43) protein is predominant in the structures that form gap junctions. We aim to determine the potential underlying mechanisms of TGF-β1 (Transforming growth factor-β1)-regulated cell communication in chondrocytes. Materials and methods: After exposure of chondrocytes to recombinant TGF-β1, quantitative real-time PCR was used to detect expression levels of Cx43 mRNA. Western blot analysis was used to check Cx43 and mitogen-activated protein kinase (MAPK) family components. Immunofluorescence staining was performed to confirm ERK-MAPK pathway activation and Cx43 protein distribution. MAPK inhibitors (ERK inhibitor U0126, JNK inhibitor SP 600125 and P38 inhibitor SP 203580) were applied to verify the specificity effects of ERK-MAPK pathway. GJIC between chondrocytes were evaluated using Scrape loading/dye transfer (SLDT) assay. Results: It was first found that TGF-β1modulatedthe Cx43protein expressions and its sub-cellular distribution. TGF-β1 promoted gap junction intercellular communication (GJIC) formations in chondrocytes, especially in a higher cell intensity. ERK-MAPK signaling pathway was activated in TGF-β1-mediated gap junctions among chondrocytes. Furthermore, the inhibitor of ERK attenuated the increases of Cx43 expressions and functional gap junction formations induced by TGF-β1, while cross-talk between ERK-MAPK and Smad signal pathways exists shown in the process. Conclusions: This study provides evidence to show the importance of the ERK-MAPK pathway in TGF-β1-mediated Cx43 expression and functional gap junction formation.
Collapse
Affiliation(s)
- Qingxuan Wang
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Chenchen Zhou
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Demao Zhang
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Jing Zou
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Wenjing Liu
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Linyi Cai
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Yujia Cui
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Wenli Lai
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| | - Jing Xie
- a State Key Laboratory of Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu , China
| |
Collapse
|
30
|
Lindemann A, Patel AA, Silver NL, Tang L, Liu Z, Wang L, Tanaka N, Rao X, Takahashi H, Maduka NK, Zhao M, Chen TC, Liu W, Gao M, Wang J, Frank SJ, Hittelman WN, Mills GB, Myers JN, Osman AA. COTI-2, A Novel Thiosemicarbazone Derivative, Exhibits Antitumor Activity in HNSCC through p53-dependent and -independent Mechanisms. Clin Cancer Res 2019; 25:5650-5662. [PMID: 31308060 DOI: 10.1158/1078-0432.ccr-19-0096] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE TP53 mutations are highly prevalent in head and neck squamous cell carcinoma (HNSCC) and associated with increased resistance to conventional treatment primarily consisting of chemotherapy and radiation. Restoration of wild-type p53 function in TP53-mutant cancer cells represents an attractive therapeutic approach and has been explored in recent years. In this study, the efficacy of a putative p53 reactivator called COTI-2 was evaluated in HNSCC cell lines with different TP53 status.Experimental Design: Clonogenic survival assays and an orthotopic mouse model of oral cancer were used to examine in vitro and in vivo sensitivity of HNSCC cell lines with either wild-type, null, or mutant TP53 to COTI-2 alone, and in combination with cisplatin and/or radiation. Western blotting, cell cycle, live-cell imaging, RNA sequencing, reverse-phase protein array, chromatin immunoprecipitation, and apoptosis analyses were performed to dissect molecular mechanisms. RESULTS COTI-2 decreased clonogenic survival of HNSCC cells and potentiated response to cisplatin and/or radiation in vitro and in vivo irrespective of TP53 status. Mechanistically, COTI-2 normalized wild-type p53 target gene expression and restored DNA-binding properties to the p53-mutant protein in HNSCC. In addition, COTI-2 induced DNA damage and replication stress responses leading to apoptosis and/or senescence. Furthermore, COTI-2 lead to activation of AMPK and inhibition of the mTOR pathways in vitro in HNSCC cells. CONCLUSIONS COTI-2 inhibits tumor growth in vitro and in vivo in HNSCC likely through p53-dependent and p53-independent mechanisms. Combination of COTI-2 with cisplatin or radiation may be highly relevant in treating patients with HNSCC harboring TP53 mutations.
Collapse
Affiliation(s)
- Antje Lindemann
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ameeta A Patel
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natalie L Silver
- Department of Otolaryngology, Division of Head and Neck Oncologic Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Lin Tang
- Department of Cellular and Molecular Medicine, The University of Arizona Health Sciences, College of Medicine, Tucson, Arizona
| | - Zhiyi Liu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Noriaki Tanaka
- Department of Dentistry and Oral Surgery, Osaka Police Hospital, Osaka, Japan
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hideaki Takahashi
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nakachi K Maduka
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tseng-Cheng Chen
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - WeiWei Liu
- Department of Oral Surgery, School of Stomatology, Jilin University, Changchun, Jilin, China
| | - Meng Gao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Walter N Hittelman
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer, Houston, Texas
| | - Gordon B Mills
- Oregon Health & Science University, Knight Cancer Institute, Portland, Oregon
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Abdullah A Osman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
31
|
Kubincová P, Sychrová E, Raška J, Basu A, Yawer A, Dydowiczová A, Babica P, Sovadinová I. Polycyclic Aromatic Hydrocarbons and Endocrine Disruption: Role of Testicular Gap Junctional Intercellular Communication and Connexins. Toxicol Sci 2019; 169:70-83. [DOI: 10.1093/toxsci/kfz023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Ambient air pollution and smoking are well-documented risk factors for male infertility. Prevalent air pollutants and cigarette smoke components, polycyclic aromatic hydrocarbons (PAHs), are environmental and occupational toxicants that act as chemicals disrupting endocrine regulation and reproductive potential in males. Testicular gap junctional intercellular communication (GJIC) is critical for normal development and function of testicular tissue, thus we assessed GJIC as a process potentially targeted by PAHs in testes. Lower MW PAHs with a bay or bay-like region rapidly dysregulated GJIC in Leydig TM3 cells by relocalization of major testicular gap junctional protein connexin 43 (Cx43) from plasma membrane to cytoplasm. This was associated with colocalization between Cx43 and ubiquitin in intracellular compartments, but without any effect on Cx43 degradation rate or steady-state Cx43 mRNA levels. A longer exposure to active PAHs decreased steady-state levels of full-length Cx43 protein and its 2 N-truncated isoforms. Inhibition of GJIC by PAHs, similarly to a prototypic GJIC-inhibitor TPA, was mediated via the MAP kinase-Erk1/2 and PKC pathways. Polycyclic aromatic hydrocarbon-induced GJIC dysregulation in testes was cell-type-specific because neither PAH dysregulated GJIC in Sertoli TM4 cells, despite PAHs were rapidly taken up by both Leydig TM3 as well as Sertoli TM4 cells. Because TPA effectively dysregulated GJIC in both testicular cell types, a unique regulator of GJIC targeted by PAHs might exist in Leydig TM3 cells. Our results indicate that PAHs could be a potential etiological agent contributing to reproductive dysfunctions in males through an impairment of testicular GJIC and junctional and/or nonjunctional functions of Cx43.
Collapse
Affiliation(s)
- Petra Kubincová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Eliška Sychrová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Jan Raška
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Amrita Basu
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Affiefa Yawer
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Aneta Dydowiczová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| |
Collapse
|
32
|
Li X, Yu L, Gao J, Bi X, Zhang J, Xu S, Wang M, Chen M, Qiu F, Fu G. Apelin Ameliorates High Glucose-Induced Downregulation of Connexin 43 via AMPK-Dependent Pathway in Neonatal Rat Cardiomyocytes. Aging Dis 2018; 9:66-76. [PMID: 29392082 PMCID: PMC5772859 DOI: 10.14336/ad.2017.0426] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
Diabetes Mellitus is a common disorder, with increasing risk of cardiac arrhythmias. Studies have shown that altered connexin expression and gap junction remodeling under hyperglycemia contribute to the high prevalence of cardiac arrhythmias and even sudden death. Connexin 43 (Cx43), a major protein that assembles to form cardiac gap junctions, has been found to be downregulated under high glucose conditions, along with inhibition of gap junctional intercellular communication (GJIC). While, apelin, a beneficial adipokine, increases Cx43 protein expression in mouse and human embryonic stem cells during cardiac differentiation. However, it remains unknown whether apelin influences GJIC capacity in cardiomyocytes. Here, using Western blotting and dye transfer assays, we found that Cx43 protein expression was reduced and GJIC was impaired after treatment with high glucose, which, however, could be abrogated after apelin treatment for 48 h. We also found that apelin increased Cx43 expression under normal glucose. Real-time PCR showed that the Cx43 mRNA was not significantly affected under high glucose conditions in the presence of apelin or high glucose and apelin. High glucose decreased the phosphorylation of AMPKα; however, apelin activated AMPKα. Interestingly, we found that Cx43 expression was increased after treatment with AICAR, an activator of AMPK signaling. AMPKα inhibition mediated with transfection of siRNA-AMPKα1 and siRNA-AMPKα2 abolished the protective effect of apelin on Cx43 expression. Our data suggest that apelin attenuates high glucose-induced Cx43 downregulation and improves the loss of functional gap junctions partly through the AMPK pathway.
Collapse
Affiliation(s)
- Xiaoting Li
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Yu
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Gao
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xukun Bi
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juhong Zhang
- 2Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiming Xu
- 3Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meihui Wang
- 4Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengmeng Chen
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fuyu Qiu
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guosheng Fu
- 1Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
33
|
Forsberg D, Thonabulsombat C, Jäderstad J, Jäderstad LM, Olivius P, Herlenius E. Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures. ACTA ACUST UNITED AC 2017; 42:2D.13.1-2D.13.30. [PMID: 28806855 DOI: 10.1002/cpsc.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David Forsberg
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Charoensri Thonabulsombat
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Section of Otorhinolaryngology, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.,Center for Hearing and Communication Research, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.,Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Johan Jäderstad
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Linda Maria Jäderstad
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Petri Olivius
- Department of Clinical Sciences, Intervention and Technology (CLINTEC), Section of Otorhinolaryngology, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden.,Center for Hearing and Communication Research, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|