1
|
Khairallah M, Abroug N, Smit D, Chee SP, Nabi W, Yeh S, Smith JR, Ksiaa I, Cunningham E. Systemic and Ocular Manifestations of Arboviral Infections: A Review. Ocul Immunol Inflamm 2024; 32:2190-2208. [PMID: 38441549 DOI: 10.1080/09273948.2024.2320724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE To provide an overview of pre-selected emerging arboviruses (arthropod-borne viruses) that cause ocular inflammation in humans. METHODS A comprehensive review of the literature published between 1997 and 2023 was conducted in PubMed database. We describe current insights into epidemiology, systemic and ocular manifestations, diagnosis, treatment, and prognosis of arboviral diseases including West Nile fever, Dengue fever, Chikungunya, Rift Valley fever, Zika, and Yellow fever. RESULTS Arboviruses refer to a group of ribonucleic acid viruses transmitted to humans by the bite of hematophagous arthropods, mainly mosquitoes. They mostly circulate in tropical and subtropical zones and pose important public health challenges worldwide because of rising incidence, expanding geographic range, and occurrence of prominent outbreaks as a result of climate change, travel, and globalization. The clinical signs associated with infection from these arboviruses are often inapparent, mild, or non-specific, but they may include serious, potentially disabling or life-threatening complications. A wide spectrum of ophthalmic manifestations has been described including conjunctival involvement, anterior uveitis, intermediate uveitis, various forms of posterior uveitis, maculopathy, optic neuropathy, and other neuro-ophthalmic manifestations. Diagnosis of arboviral diseases is confirmed with either real time polymerase chain reaction or serology. Management involves supportive care as there are currently no specific antiviral drug options. Corticosteroids are often used for the treatment of associated ocular inflammation. Most patients have a good visual prognosis, but there may be permanent visual impairment due to ocular structural complications in some. Community-based integrated mosquito management programs and personal protection measures against mosquito bites are the best ways to prevent human infection and disease. CONCLUSION Emerging arboviral diseases should be considered in the differential diagnosis of ocular inflammatory conditions in patients living in or returning from endemic regions. Early clinical consideration followed by confirmatory testing can limit or prevent unnecessary treatments for non-arboviral causes of ocular inflammation. Prevention of these infections is crucial.
Collapse
Affiliation(s)
- Moncef Khairallah
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Nesrine Abroug
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Derrick Smit
- Division of Ophthalmology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Soon-Phaik Chee
- Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Eye & Retina Surgeons, Singapore, Singapore
| | - Wijden Nabi
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Steven Yeh
- Department of Ophthalmology, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Imen Ksiaa
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Emmett Cunningham
- The Department of Ophthalmology, California Pacific Medical Center, San Francisco, California, USA
- The Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- The Francis I. Proctor Foundation, UCSF School of Medicine, San Francisco, California, USA
| |
Collapse
|
2
|
Fonzo M, Bertoncello C, Tudor L, Miccolis L, Serpentino M, Petta D, Amoruso I, Baldovin T, Trevisan A. Do we protect ourselves against West Nile Virus? A systematic review on knowledge, attitudes, and practices and their determinants. J Infect Public Health 2024; 17:868-880. [PMID: 38555655 DOI: 10.1016/j.jiph.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND West Nile virus (WNV) is a mosquito-borne flavivirus. In humans, 80% of infections are asymptomatic, while approximately 20% experience influenza-like symptoms. Fewer than 1% develop the neuroinvasive form which can lead to encephalitis, meningitis, acute flaccid paralysis, and even death. The global spread of the virus to areas where it was not previously present has become a growing concern. Since the 2000 s, there have been numerous outbreaks affecting local and travelling populations worldwide. Given the lack of a vaccine, preventative measures are primarily focused on surveillance, vector control, and the use of personal protective behaviours (PPBs). The importance of PPBs is central to public health recommendations. However, translating these messages into coherent action by the public can prove challenging, as the uptake of such measures is inevitably influenced by socio-economic factors, awareness, knowledge, and risk perception. METHODS A PRISMA-based systematic research was conducted on EMBASE, PubMed/MEDLINE, and Web of Science databases. PROSPERO registration number CRD42023459714. Quality of studies included in the final stage was evaluated using the Critical Appraisal Checklist for Cross-Sectional Study (CEBMa). RESULTS 2963 articles were screened, and 17 studies were included in the final round. Out of these, six were deemed of high quality, ten were of medium quality, and one was of low quality. In almost all studies considered, both awareness and knowledge of WNV transmission were above 90%, while concern about WNV ranged from 50% to 80%. Concern about the safety of repellents, either with or without DEET, ranged from 27% to 70%. The percentage of people actually using repellents ranged from 30% to 75%, with the lowest usage reported among individuals over 60 years old (29%) and pregnant women (33%), and the highest among students aged 9-11 (75%). Concern for West Nile Virus (WNV) was consistently linked to an increase in taking preventative measures, including the use of repellents, by two to four times across studies. The school-based intervention was effective in increasing the practice of removing standing water (AOR=4.6; 2.7-8.0) and wearing long clothing (AOR=2.4; 95%CI: 1.3-4.3), but did not have a significant impact on the use of repellents. CONCLUSIONS The present systematic review provides an overview of the knowledge, attitudes, and practices (KAP) of WNV and their determinants. While concern about West Nile Virus (WNV) and its effects can be a significant motivator, it is important to promote evidence-based personal protective behaviours (PPBs) to counter unwarranted fears. For example, the use of repellents among the most vulnerable age groups. Given the geographical expansion of WNV, it is necessary to target the entire population preventively, including those who are difficult to reach and areas not yet endemic. The findings of this investigation could have significant implications for public health and support well-informed and effective communication strategies and interventions.
Collapse
Affiliation(s)
- Marco Fonzo
- Hygiene and Public Health Unit, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Chiara Bertoncello
- Hygiene and Public Health Unit, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| | - Liliana Tudor
- Hygiene and Public Health Unit, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Liana Miccolis
- Hygiene and Public Health Unit, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Michele Serpentino
- Hygiene and Public Health Unit, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Daniele Petta
- Hygiene and Public Health Unit, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Irene Amoruso
- Hygiene and Public Health Unit, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Tatjana Baldovin
- Hygiene and Public Health Unit, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Andrea Trevisan
- Hygiene and Public Health Unit, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Zina SM, Hoarau G, Labetoulle M, Khairallah M, Rousseau A. Ocular Manifestations of Flavivirus Infections. Pathogens 2023; 12:1457. [PMID: 38133340 PMCID: PMC10747099 DOI: 10.3390/pathogens12121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Flaviviruses are a group of positive-sense, single-stranded RNA viruses predominantly transmitted by arthropods (mainly mosquitoes) that cause severe endemic infections and epidemics on a global scale. They represent a major cause of systemic morbidity and death and are expanding worldwide. Among this group, dengue fever, the West Nile virus, yellow fever, Japanese Encephalitis, and, recently, the Zika virus have been linked to a spectrum of ocular manifestations. These manifestations encompass subconjunctival hemorrhages and conjunctivitis, anterior and posterior uveitis (inclusive of vitritis, chorioretinitis, and retinal vasculitis), maculopathy, retinal hemorrhages, and optic neuritis. Clinical diagnosis of these infectious diseases is primarily based on epidemiological data, history, systemic symptoms and signs, and the pattern of ocular involvement. Diagnosis confirmation relies on laboratory testing, including RT-PCR and serological testing. Ocular involvement typically follows a self-limited course but can result in irreversible visual impairment. Effective treatments of flavivirus infections are currently unavailable. Prevention remains the mainstay for arthropod vector and zoonotic disease control. Effective vaccines are available only for the yellow fever virus, dengue virus, and Japanese Encephalitis virus. This review comprehensively summarizes the current knowledge regarding the ophthalmic manifestations of the foremost flavivirus-associated human diseases.
Collapse
Affiliation(s)
- Sourour Meziou Zina
- Department of Ophthalmology, Bicêtre Hospital, Public Assistance, Hospitals of Paris, Reference Network for Rare Diseases in Ophthalmology (OPHTARA), 94270 Le Kremlin-Bicêtre, France; (S.M.Z.); (G.H.); (M.L.)
- Department of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia;
| | - Gautier Hoarau
- Department of Ophthalmology, Bicêtre Hospital, Public Assistance, Hospitals of Paris, Reference Network for Rare Diseases in Ophthalmology (OPHTARA), 94270 Le Kremlin-Bicêtre, France; (S.M.Z.); (G.H.); (M.L.)
| | - Marc Labetoulle
- Department of Ophthalmology, Bicêtre Hospital, Public Assistance, Hospitals of Paris, Reference Network for Rare Diseases in Ophthalmology (OPHTARA), 94270 Le Kremlin-Bicêtre, France; (S.M.Z.); (G.H.); (M.L.)
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Infectious Diseases Models for Innovative Therapies (IDMIT), French Alternative Energies and Atomic Commission (CEA), 92260 Fontenay-aux-Roses, France
| | - Moncef Khairallah
- Department of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir 5019, Tunisia;
| | - Antoine Rousseau
- Department of Ophthalmology, Bicêtre Hospital, Public Assistance, Hospitals of Paris, Reference Network for Rare Diseases in Ophthalmology (OPHTARA), 94270 Le Kremlin-Bicêtre, France; (S.M.Z.); (G.H.); (M.L.)
- Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Infectious Diseases Models for Innovative Therapies (IDMIT), French Alternative Energies and Atomic Commission (CEA), 92260 Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Cazzin S, Liechti N, Jandrasits D, Flacio E, Beuret C, Engler O, Guidi V. First Detection of West Nile Virus Lineage 2 in Mosquitoes in Switzerland, 2022. Pathogens 2023; 12:1424. [PMID: 38133307 PMCID: PMC10748287 DOI: 10.3390/pathogens12121424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
West Nile virus (WNV) is one of the most widespread flaviviruses in the world, and in recent years, it has been frequently present in many Mediterranean and Eastern European countries. A combination of different conditions, such as a favourable climate and higher seasonal average temperatures, probably allowed its introduction and spread to new territories. In Switzerland, autochthonous cases of WNV have never been reported, and the virus was not detected in mosquito vectors until 2022, despite an entomological surveillance in place in Canton Ticino, southern Switzerland, since 2010. In 2022, 12 sites were monitored from July to October, using BOX gravid mosquito traps coupled with honey-baited FTA cards. For the first time, we could detect the presence of WNV in FTA cards and mosquitoes in 8 out of the 12 sampling sites monitored, indicating an unexpectedly widespread circulation of the virus throughout the territory. Positive findings were recorded from the beginning of August until mid-October 2022, and whole genome sequencing analysis identified a lineage 2 virus closely related to strains circulating in Northern Italy. The entomological surveillance has proved useful in identifying viral circulation in advance of possible cases of WNV infection in humans or horses.
Collapse
Affiliation(s)
- Stefania Cazzin
- Institute of Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850 Mendrisio, Switzerland; (D.J.); (E.F.); (V.G.)
| | - Nicole Liechti
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland; (N.L.); (C.B.); (O.E.)
| | - Damian Jandrasits
- Institute of Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850 Mendrisio, Switzerland; (D.J.); (E.F.); (V.G.)
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland; (N.L.); (C.B.); (O.E.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Eleonora Flacio
- Institute of Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850 Mendrisio, Switzerland; (D.J.); (E.F.); (V.G.)
| | - Christian Beuret
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland; (N.L.); (C.B.); (O.E.)
| | - Olivier Engler
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland; (N.L.); (C.B.); (O.E.)
| | - Valeria Guidi
- Institute of Microbiology, Department for Environment Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6850 Mendrisio, Switzerland; (D.J.); (E.F.); (V.G.)
| |
Collapse
|
5
|
Ward MJ, Sorek‐Hamer M, Henke JA, Little E, Patel A, Shaman J, Vemuri K, DeFelice NB. A Spatially Resolved and Environmentally Informed Forecast Model of West Nile Virus in Coachella Valley, California. GEOHEALTH 2023; 7:e2023GH000855. [PMID: 38077289 PMCID: PMC10702611 DOI: 10.1029/2023gh000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 01/11/2024]
Abstract
West Nile virus (WNV) is the most significant arbovirus in the United States in terms of both morbidity and mortality. West Nile exists in a complex transmission cycle between avian hosts and the arthropod vector, Culex spp. mosquitoes. Human spillover events occur when humans are bitten by an infected mosquito and predicting these rates of infection and therefore the risk to humans may be associated with fluctuations in environmental conditions. In this study, we evaluate the hydrological and meteorological drivers associated with mosquito biology and viral development to determine if these associations can be used to forecast seasonal mosquito infection rates with WNV in the Coachella Valley of California. We developed and tested a spatially resolved ensemble forecast model of the WNV mosquito infection rate in the Coachella Valley using 17 years of mosquito surveillance data and North American Land Data Assimilation System-2 environmental data. Our multi-model inference system indicated that the combination of a cooler and dryer winter, followed by a wetter and warmer spring, and a cooler than normal summer was most predictive of the prevalence of West Nile positive mosquitoes in the Coachella Valley. The ability to make accurate early season predictions of West Nile risk has the potential to allow local abatement districts and public health entities to implement early season interventions such as targeted adulticiding and public health messaging before human transmission occurs. Such early and targeted interventions could better mitigate the risk of WNV to humans.
Collapse
Affiliation(s)
- Matthew J. Ward
- Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Meytar Sorek‐Hamer
- Universities Space Research Association (USRA) at NASA Ames Research CenterMoffett FieldCAUSA
| | | | - Eliza Little
- Connecticut Department of Public HealthHartfordCTUSA
| | - Aman Patel
- Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Jeffery Shaman
- Columbia Climate SchoolNew YorkNYUSA
- Mailman School of Public HealthNew YorkNYUSA
| | - Krishna Vemuri
- Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Nicholas B. DeFelice
- Environmental Medicine and Public HealthIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
6
|
Bergmann F, Fischer D, Fischer L, Maisch H, Risch T, Dreyer S, Sadeghi B, Geelhaar D, Grund L, Merz S, Groschup MH, Ziegler U. Vaccination of Zoo Birds against West Nile Virus-A Field Study. Vaccines (Basel) 2023; 11:652. [PMID: 36992236 PMCID: PMC10058624 DOI: 10.3390/vaccines11030652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
West Nile virus (WNV) is known to cause disease and death in humans and various animals worldwide. WNV has circulated in Germany since 2018. In 2020, four birds tested positive for the WNV genome at Zoopark Erfurt (Thuringia). Moreover, virus neutralization assays detected neutralizing antibodies (nAb) against WNV in 28 birds. In addition, nAb against WNV and Usutu virus (USUV) were found in 14 birds. To protect valuable animals and to reduce the risk of viral transmission from birds to humans, we performed a field study on WNV vaccination at the zoo. To conduct the study, 61 birds from the zoo were categorized into three groups and subjected to a vaccination regimen, where each bird received either 1.0 mL, 0.5 mL, or 0.3 mL of a commercial inactivated WNV vaccine three times. The vaccinations were administered at three-week intervals, or as per modified vaccination schedules. Furthermore, 52 birds served as non-vaccinated controls. Adverse vaccination reactions were absent. The greatest increase in nAb titres was observed in birds that received 1.0 mL of vaccine. However, pre-existing antibodies to WNV and USUV appeared to have a major effect on antibody development in all groups and in all bird species, whereas sex and age had no effect. After vaccination, no death was detected in vaccinated birds for more than 1 year.
Collapse
Affiliation(s)
- Felicitas Bergmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | - Dominik Fischer
- Der Gruene Zoo Wuppertal, Hubertusallee 30, 42117 Wuppertal, Germany
| | - Luisa Fischer
- Wildlife Research Institute, State Agency for Nature, Environment and Consumer Protection North Rhine-Westphalia, Puetzchens Chaussee 228, 53229 Bonn, Germany
| | - Heike Maisch
- Thueringer Zoopark Erfurt, Am Zoopark 1, 99087 Erfurt, Germany
| | - Tina Risch
- Thueringer Zoopark Erfurt, Am Zoopark 1, 99087 Erfurt, Germany
| | - Saskia Dreyer
- Der Gruene Zoo Wuppertal, Hubertusallee 30, 42117 Wuppertal, Germany
| | - Balal Sadeghi
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | | | - Lisa Grund
- Der Gruene Zoo Wuppertal, Hubertusallee 30, 42117 Wuppertal, Germany
| | - Sabine Merz
- Thueringer Zoopark Erfurt, Am Zoopark 1, 99087 Erfurt, Germany
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
7
|
Abstract
Purpose of Review West Nile virus (WNV) is an arbovirus transmitted by mosquitos of the genus Culex. Manifestations of WNV infection range from asymptomatic to devastating neuroinvasive disease leading to flaccid paralysis and death. This review examines WNV epidemiology and ecology, with an emphasis on travel-associated infection. Recent Findings WNV is widespread, including North America and Europe, where its range has expanded in the past decade. Rising temperatures in temperate regions are predicted to lead to an increased abundance of Culex mosquitoes and an increase in their ability to transmit WNV. Although the epidemiologic patterns of WNV appear variable, its geographic distribution most certainly will continue to increase. Travelers are at risk for WNV infection and its complications. Literature review identified 39 cases of documented travel-related WNV disease, the majority of which resulted in adverse outcomes, such as neuroinvasive disease, prolonged recovery period, or death. Summary The prediction of WNV risk is challenging due to the complex interactions of vector, pathogen, host, and environment. Travelers planning to visit endemic areas should be advised regarding WNV risk and mosquito bite prevention. Evaluation of ill travelers with compatible symptoms should consider the diagnosis of WNV for those visiting in endemic areas as well as for those returning from destinations with known WNV circulation.
Collapse
|
8
|
Bougossa R, Chelli J, Arfa S, Machraoui R, Berriche O, Larbi F. Association des manifestations neurologiques rares à West Nile virus chez un patient immunocompétent. Rev Med Interne 2022; 43:381-384. [DOI: 10.1016/j.revmed.2022.03.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 11/29/2022]
|
9
|
Seroepidemiological Survey of West Nile Virus Infections in Horses from Berlin/Brandenburg and North Rhine-Westphalia, Germany. Viruses 2022; 14:v14020243. [PMID: 35215837 PMCID: PMC8877243 DOI: 10.3390/v14020243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Following the introduction of the West Nile virus (WNV) into eastern Germany in 2018, increasing infections have been diagnosed in birds, equines, and humans over time, while the spread of WNV into western Germany remained unclear. We screened 437 equine sera from 2018 to 2020, excluding vaccinated horses, collected from convenience sampled patients in the eastern and western parts of Germany, for WNV-specific antibodies (ELISAs followed by virus/specific neutralization tests) and genomes (RT-qPCRs). Clinical presentations, final diagnoses, and demographic data were also recorded. In the eastern part, a total of eight horses were found WNV seropositive in 2019 (seroprevalence of 8.16%) and 27 in 2020 (13.77%). There were also two clinically unsuspected horses with WNV-specific antibodies in the western part from 2020 (2.63%), albeit travel history-related infections could not be excluded. None of the horse sera contained WNV-specific genomes. Eight horses in eastern Germany carried WNV-IgM antibodies, but only four of these showed typical clinical signs. These results underline the difficulty of detecting a WNV infection in a horse solely based on clinical signs. Thus, WNV circulation is established in the horse population in eastern Germany, but not yet in the western part.
Collapse
|
10
|
Abroug N, Khairallah M, Zina S, Ksiaa I, Amor HB, Attia S, Jelliti B, Khochtali S, Khairallah M. Ocular Manifestations of Emerging Arthropod-Borne Infectious Diseases. J Curr Ophthalmol 2021; 33:227-235. [PMID: 34765808 PMCID: PMC8579803 DOI: 10.4103/joco.joco_134_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 11/04/2022] Open
Abstract
Purpose To review the clinical features, diagnosis, treatment modalities, and prognosis of arthropod-borne infectious diseases. Methods This is a narrative review on arthropod-borne infectious diseases including general and ophthalmological aspects of these infectious diseases. A comprehensive literature review between January 1983 and September 2020 was conducted in PubMed database. Epidemiology, clinical features, diagnosis, treatment, and prognosis of arthropod-borne infectious diseases were reviewed. Results Emergent and resurgent arthropod-borne infectious diseases are major causes of systemic morbidity and death that are expanding worldwide. Among them, bacterial and viral agents including rickettsial disease, West Nile virus, Dengue fever, Chikungunya, Rift valley fever, and Zika virus have been associated with an array of ocular manifestations. These include anterior uveitis, retinitis, chorioretinitis, retinal vasculitis, and optic nerve involvement. Proper clinical diagnosis of any of these infectious diseases is primarily based on epidemiological data, history, systemic symptoms and signs, and the pattern of ocular involvement. The diagnosis is confirmed by laboratory tests. Ocular involvement usually has a self-limited course, but it can result in persistent visual impairment. Doxycycline is the treatment of choice for rickettsial disease. There is currently no proven specific treatment for arboviral diseases. Prevention remains the mainstay for arthropod vector and zoonotic disease control. Conclusions Emerging arthropod vector-borne diseases should be considered in the differential diagnosis of uveitis, especially in patient living or with recent travel to endemic countries. Early clinical diagnosis, while laboratory testing is pending, is essential for proper management to prevent systemic and ocular morbidity.
Collapse
Affiliation(s)
- Nesrine Abroug
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia.,Departement of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Molka Khairallah
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia.,Departement of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Sourour Zina
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia.,Departement of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Imen Ksiaa
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia.,Departement of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Hager Ben Amor
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia.,Departement of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Sonia Attia
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia.,Departement of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Bechir Jelliti
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia.,Departement of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Sana Khochtali
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia.,Departement of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Moncef Khairallah
- Department of Ophthalmology, Fattouma Bourguiba University Hospital, Monastir, Tunisia.,Departement of Ophthalmology, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
11
|
Spatiotemporal Analysis of West Nile Virus Epidemic in South Banat District, Serbia, 2017-2019. Animals (Basel) 2021; 11:ani11102951. [PMID: 34679972 PMCID: PMC8533022 DOI: 10.3390/ani11102951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is an arthropod-born pathogen, which is transmitted from wild birds through mosquitoes to humans and animals. At the end of the 20th century, the first West Nile fever (WNF) outbreaks among humans in urban environments in Eastern Europe and the United States were reported. The disease continued to spread to other parts of the continents. In Serbia, the largest number of WNV-infected people was recorded in 2018. This research used spatial statistics to identify clusters of WNV infection in humans and animals in South Banat County, Serbia. The occurrence of WNV infection and risk factors were analyzed using a negative binomial regression model. Our research indicated that climatic factors were the main determinant of WNV distribution and were predictors of endemicity. Precipitation and water levels of rivers had an important influence on mosquito abundance and affected the habitats of wild birds, which are important for maintaining the virus in nature. We found that the maximum temperature of the warmest part of the year and the annual temperature range; and hydrographic variables, e.g., the presence of rivers and water streams were the best environmental predictors of WNF outbreaks in South Banat County.
Collapse
|
12
|
Santos PD, Michel F, Wylezich C, Höper D, Keller M, Holicki CM, Szentiks CA, Eiden M, Muluneh A, Neubauer-Juric A, Thalheim S, Globig A, Beer M, Groschup MH, Ziegler U. Co-infections: Simultaneous detections of West Nile virus and Usutu virus in birds from Germany. Transbound Emerg Dis 2021; 69:776-792. [PMID: 33655706 DOI: 10.1111/tbed.14050] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
The emergence of West Nile virus (WNV) and Usutu virus (USUV) in Europe resulted in significant outbreaks leading to avifauna mortality and human infections. Both viruses have overlapping geographical, host and vector ranges, and are often co-circulating in Europe. In Germany, a nationwide bird surveillance network was established to monitor these zoonotic arthropod-borne viruses in migratory and resident birds. In this framework, co-infections with WNV and USUV were detected in six dead birds collected in 2018 and 2019. Genomic sequencing and phylogenetic analyses classified the detected WNV strains as lineage 2 and the USUV strains as lineages Africa 2 (n = 2), Africa 3 (n = 3) and Europe 2 (n = 1). Preliminary attempts to co-propagate both viruses in vitro failed. However, we successfully cultivated WNV from two animals. Further evidence for WNV-USUV co-infection was obtained by sampling live birds in four zoological gardens with confirmed WNV cases. Three snowy owls had high neutralizing antibody titres against both WNV and USUV, of which two were also positive for USUV-RNA. In conclusion, further reports of co-infections in animals as well as in humans are expected in the future, particularly in areas where both viruses are present in the vector population.
Collapse
Affiliation(s)
- Pauline Dianne Santos
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Friederike Michel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Cora M Holicki
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Aemero Muluneh
- Saxon State Laboratory of Health and Veterinary Affairs, Dresden, Germany
| | | | - Sabine Thalheim
- Berlin-Brandenburg State Laboratory, Frankfurt (Oder), Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,German Centre for Infection Research, partner site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,German Centre for Infection Research, partner site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
13
|
Alom MW, Shehab MN, Sujon KM, Akter F. Exploring E, NS3, and NS5 proteins to design a novel multi-epitope vaccine candidate against West Nile Virus: An in-silico approach. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
14
|
Ocular Manifestations of West Nile Virus. Vaccines (Basel) 2020; 8:vaccines8040641. [PMID: 33147758 PMCID: PMC7711513 DOI: 10.3390/vaccines8040641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Ocular manifestations are a feature of West Nile virus infection. They mostly occur in association with severe neuroinvasive disease. Linear chorioretinitis is suggestive of the diagnosis and may raise diagnostic suspicion when associated with evocative systemic signs, and in an epidemic context. Various other less specific inflammatory ocular manifestations have been reported, including anterior uveitis, occlusive retinal vasculitis, optic neuritis, and diplopia. The pathophysiology of ocular disease remains unclear, but it reflects the neuroinvasiveness of the disease. Although ocular involvement most often resolves without visual sequelae, some patients may have permanent loss of vision, adding to the need for the development of a specific treatment and/or vaccines.
Collapse
|
15
|
Mahendradas P, Kawali A, Luthra S, Srinivasan S, Curi AL, Maheswari S, Ksiaa I, Khairallah M. Post-fever retinitis - Newer concepts. Indian J Ophthalmol 2020; 68:1775-1786. [PMID: 32823394 PMCID: PMC7690479 DOI: 10.4103/ijo.ijo_1352_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Post-fever retinitis (PFR) is an infectious or para-infectious uveitic entity caused by bacterial or viral agents and seen mainly in tropical countries. Systemic symptoms such as joint pain, skin rash are common during the febrile stage. On the basis of only clinical presentation, it is difficult to pin-point the exact etiology for PFR. Serological investigations, polymerase chain reaction, and knowledge of concurrent epidemics in the community may help to identify the etiological organism. Bacterial causes of PFR such as rickettsia and typhoid are treated with systemic antibiotics, with or without systemic steroid therapy, whereas PFR of viral causes such as chikungunya, dengue, West Nile virus, and Zika virus have no specific treatment and are managed with steroids. Nevertheless, many authors have advocated mere observation and the uveitis resolved with its natural course of the disease. In this article, we have discussed the clinical features, pathogenesis, investigations, and management of PFR.
Collapse
Affiliation(s)
- Padmamalini Mahendradas
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Ankush Kawali
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bengaluru, Karnataka, India
| | | | - Sanjay Srinivasan
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Andre L Curi
- National Institute of Infectious Diseases-INI-FIOCRUZ, Rio de Janeiro – Brazil
| | | | - Imen Ksiaa
- Department of Ophthalmology, FattoumaBourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Moncef Khairallah
- Department of Ophthalmology, FattoumaBourguiba University Hospital, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
16
|
Clé M, Eldin P, Briant L, Lannuzel A, Simonin Y, Van de Perre P, Cabié A, Salinas S. Neurocognitive impacts of arbovirus infections. J Neuroinflammation 2020; 17:233. [PMID: 32778106 PMCID: PMC7418199 DOI: 10.1186/s12974-020-01904-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses or arbovirus, are most commonly associated with acute infections, resulting on various symptoms ranging from mild fever to more severe disorders such as hemorrhagic fever. Moreover, some arboviral infections can be associated with important neuroinflammation that can trigger neurological disorders including encephalitis, paralysis, ophthalmological impairments, or developmental defects, which in some cases, can lead to long-term defects of the central nervous system (CNS). This is well illustrated in Zika virus-associated congenital brain malformations but also in West Nile virus-induced synaptic dysfunctions that can last well beyond infection and lead to cognitive deficits. Here, we summarize clinical and mechanistic data reporting on cognitive disturbances triggered by arboviral infections, which may highlight growing public health issues spanning the five continents.
Collapse
Affiliation(s)
- Marion Clé
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Patrick Eldin
- Institute of Research in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Laurence Briant
- Institute of Research in Infectiology of Montpellier, CNRS, University of Montpellier, Montpellier, France
| | - Annie Lannuzel
- Neurology Unit, INSERM CIC 1424, Guadeloupe University Hospital, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
- INSERM U1127, CNRS, UMR7225, Brain and Spine Institute, Sorbonne University Medical School, Paris, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, CHU Montpellier, Montpellier, France
| | - André Cabié
- INSERM CIC 1424, Infectious Disease and Tropical Medicine Unit, Martinique University Hospital, Université des Antilles EA4537, Martinique, France.
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Français du Sang, Montpellier, France.
| |
Collapse
|
17
|
Echavarria-Consuegra L, Smit JM, Reggiori F. Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses. Open Biol 2020; 9:190009. [PMID: 30862253 PMCID: PMC6451359 DOI: 10.1098/rsob.190009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arboviruses that are transmitted to humans by mosquitoes represent one of the most important causes of febrile illness worldwide. In recent decades, we have witnessed a dramatic re-emergence of several mosquito-borne arboviruses, including dengue virus (DENV), West Nile virus (WNV), chikungunya virus (CHIKV) and Zika virus (ZIKV). DENV is currently the most common mosquito-borne arbovirus, with an estimated 390 million infections worldwide annually. Despite a global effort, no specific therapeutic strategies are available to combat the diseases caused by these viruses. Multiple cellular pathways modulate the outcome of infection by either promoting or hampering viral replication and/or pathogenesis, and autophagy appears to be one of them. Autophagy is a degradative pathway generally induced to counteract viral infection. Viruses, however, have evolved strategies to subvert this pathway and to hijack autophagy components for their own benefit. In this review, we will focus on the role of autophagy in mosquito-borne arboviruses with emphasis on DENV, CHIKV, WNV and ZIKV, due to their epidemiological importance and high disease burden.
Collapse
Affiliation(s)
- Liliana Echavarria-Consuegra
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Jolanda M Smit
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Fulvio Reggiori
- 2 Department of Cell Biology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
18
|
Hemida MG, Perera RAPM, Chu DKW, Ko RLW, Alnaeem AA, Peiris M. West Nile virus infection in horses in Saudi Arabia (in 2013-2015). Zoonoses Public Health 2018; 66:248-253. [DOI: 10.1111/zph.12532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/24/2018] [Accepted: 09/29/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Maged G. Hemida
- Department of Microbiology and Parasitology, College of Veterinary Medicine; King Faisal University; Al-Hasa Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine; Kafrelsheikh University; Kafrelsheikh Egypt
| | | | - Daniel K. W. Chu
- School of Public Health; The University of Hong Kong; Hong Kong China
| | - Ronald L. W. Ko
- School of Public Health; The University of Hong Kong; Hong Kong China
| | - Abdelmohsen A. Alnaeem
- Department of Clinical studies, College of Veterinary Medicine; King Faisal University; Al-Hasa Saudi Arabia
| | - Malik Peiris
- School of Public Health; The University of Hong Kong; Hong Kong China
| |
Collapse
|
19
|
Zehender G, Veo C, Ebranati E, Carta V, Rovida F, Percivalle E, Moreno A, Lelli D, Calzolari M, Lavazza A, Chiapponi C, Baioni L, Capelli G, Ravagnan S, Da Rold G, Lavezzo E, Palù G, Baldanti F, Barzon L, Galli M. Reconstructing the recent West Nile virus lineage 2 epidemic in Europe and Italy using discrete and continuous phylogeography. PLoS One 2017; 12:e0179679. [PMID: 28678837 PMCID: PMC5497961 DOI: 10.1371/journal.pone.0179679] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/04/2017] [Indexed: 11/24/2022] Open
Abstract
West Nile virus lineage 2 (WNV-2) was mainly confined to sub-Saharan Africa until the early 2000s, when it was identified for the first time in Central Europe causing outbreaks of human and animal infection. The aim of this study was to reconstruct the origin and dispersion of WNV-2 in Central Europe and Italy on a phylodynamic and phylogeographical basis. To this aim, discrete and continuous space phylogeographical models were applied to a total of 33 newly characterised full-length viral genomes obtained from mosquitoes, birds and humans in Northern Italy in the years 2013–2015 aligned with 64 complete sequences isolated mainly in Europe. The European isolates segregated into two highly significant clades: a small one including three sequences and a large clade including the majority of isolates obtained in Central Europe since 2004. Discrete phylogeographical analysis showed that the most probable location of the root of the largest European clade was in Hungary a mean 12.78 years ago. The European clade bifurcated into two highly supported subclades: one including most of the Central/East European isolates and the other encompassing all of the isolates obtained in Greece. The continuous space phylogeographical analysis of the Italian clade showed that WNV-2 entered Italy in about 2008, probably by crossing the Adriatic sea and reaching a central area of the Po Valley. The epidemic then spread simultaneously eastward, to reach the region of the Po delta in 2013, and westward to the border area between Lombardy and Piedmont in 2014; later, the western strain changed direction southward, and reached the central area of the Po valley once again in 2015. Over a period of about seven years, the virus spread all over an area of northern Italy by following the Po river and its main tributaries.
Collapse
Affiliation(s)
- Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
- * E-mail:
| | - Carla Veo
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Erika Ebranati
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Valentina Carta
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| | - Francesca Rovida
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ana Moreno
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Davide Lelli
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Mattia Calzolari
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Reggio Emilia, Italy
| | - Antonio Lavazza
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Brescia, Italy
| | - Chiara Chiapponi
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Parma, Italy
| | - Laura Baioni
- Experimental Zooprophylactic Institute of Lombardy and Emilia-Romagna (IZSLER), Parma, Italy
| | - Gioia Capelli
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Silvia Ravagnan
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Graziana Da Rold
- Experimental Zooprophylactic Institute of Venice, Legnaro, Padua, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences "L.Sacco", University of Milan, Milano, Italy
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, Milano, Italy
| |
Collapse
|
20
|
Promiscuous viruses-how do viruses survive multiple unrelated hosts? Curr Opin Virol 2017; 23:125-129. [PMID: 28577474 DOI: 10.1016/j.coviro.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
Abstract
Arthropod-borne viruses (arboviruses) require efficient replication in taxonomically divergent hosts in order to perpetuate in nature. This review discusses recent advances in our understanding of the phylogenetic position of arthropod-borne viruses relative to insect-specific viruses, which appear to be more common and ecological requirements for successful adoption of the 'arbovirus phenotype.' Several molecular and other mechanisms that permit replication in divergent hosts are also discussed.
Collapse
|
21
|
Phongphaew W, Kobayashi S, Sasaki M, Carr M, Hall WW, Orba Y, Sawa H. Valosin-containing protein (VCP/p97) plays a role in the replication of West Nile virus. Virus Res 2016; 228:114-123. [PMID: 27914931 PMCID: PMC7114552 DOI: 10.1016/j.virusres.2016.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022]
Abstract
Inhibition of VCP by chemical inhibitors decreased WNV infection in a dose-dependent manner. Knockdown of endogenous VCP level using siRNA suppressed WNV infection. Depletion of VCP levels suppressed WNV infection at the early stages of WNV replication cycle. Depletion of VCP levels lowered nascent WNV genomic RNA. VCP participates in early stages and viral genomic RNA replication.
Valosin-containing protein (VCP) is classified as a member of the type II AAA+ ATPase protein family. VCP functions in several cellular processes, including protein degradation, membrane fusion, vesicular trafficking and disassembly of stress granules. Moreover, VCP is considered to play a role in the replication of several viruses, albeit through different mechanisms. In the present study, we have investigated the role of VCP in West Nile virus (WNV) infection. Endogenous VCP expression was inhibited using either VCP inhibitors or by siRNA knockdown. It could be shown that the inhibition of endogenous VCP expression significantly inhibited WNV infection. The entry assay revealed that silencing of endogenous VCP caused a significant reduction in the expression levels of WNV-RNA compared to control siRNA-treated cells. This indicates that VCP may play a role in early steps either the binding or entry steps of the WNV life cycle. Using WNV virus like particles and WNV-DNA-based replicon, it could be demonstrated that perturbation of VCP expression decreased levels of newly synthesized WNV genomic RNA. These findings suggest that VCP is involved in early steps and during genome replication of the WNV life cycle.
Collapse
Affiliation(s)
- Wallaya Phongphaew
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Shintaro Kobayashi
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michael Carr
- Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Center for Research in Infectious Diseases, University College of Dublin, Belfield, Dublin 4, Dublin, Ireland; Global Virus Network (GVN), The Institute of Human Virology, University of Maryland, 22S. Greene Street, Baltimore, MD 21201, USA
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Global Institution for Collaborative Researches and Education (GI-CoRE), Global Station for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan; Global Virus Network (GVN), The Institute of Human Virology, University of Maryland, 22S. Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
22
|
Londono-Renteria B, Troupin A, Colpitts TM. Arbovirosis and potential transmission blocking vaccines. Parasit Vectors 2016; 9:516. [PMID: 27664127 PMCID: PMC5035468 DOI: 10.1186/s13071-016-1802-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Infectious diseases caused by arboviruses (viruses transmitted by arthropods) are undergoing unprecedented epidemic activity and geographic expansion. With the recent introduction of West Nile virus (1999), chikungunya virus (2013) and Zika virus (2015) to the Americas, stopping or even preventing the expansion of viruses into susceptible populations is an increasing concern. With a few exceptions, available vaccines protecting against arboviral infections are nonexistent and current disease prevention relies on vector control interventions. However, due to the emergence of and rapidly spreading insecticide resistance, different disease control methods are needed. A feasible method of reducing emerging tropical diseases is the implementation of vaccines that prevent or decrease viral infection in the vector. These vaccines are designated ‘transmission blocking vaccines’, or TBVs. Here, we summarize previous TBV work, discuss current research on arboviral TBVs and present several promising TBV candidates.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA.
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|