1
|
Kumar D, Gupta S, Gupta V, Tanwar R, Chandel A. Engineering the Future of Regenerative Medicines in Gut Health with Stem Cell-Derived Intestinal Organoids. Stem Cell Rev Rep 2025:10.1007/s12015-025-10893-w. [PMID: 40380985 DOI: 10.1007/s12015-025-10893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/19/2025]
Abstract
The advent of intestinal organoids, three-dimensional structures derived from stem cells, has significantly advanced the field of biology by providing robust in vitro models that closely mimic the architecture and functionality of the human intestine. These organoids, generated from induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), or adult stem cells, possess remarkable capabilities for self-renewal, differentiation into diverse intestinal cell types, and functional recapitulation of physiological processes, including nutrient absorption, epithelial barrier integrity, and host-microbe interactions. The utility of intestinal organoids has been extensively demonstrated in disease modeling, drug screening, and personalized medicine. Notable examples include iPSC-derived organoids, which have been effectively employed to model enteric infections, and ESC-derived organoids, which have provided critical insights into fetal intestinal development. Patient-derived organoids have emerged as powerful tools for investigating personalized therapeutics and regenerative interventions for conditions such as inflammatory bowel disease (IBD), cystic fibrosis, and colorectal cancer. Preclinical studies involving transplantation of human intestinal organoids into murine models have shown promising outcomes, including functional integration, epithelial restoration, and immune system interactions. Despite these advancements, several challenges persist, particularly in achieving reproducibility, scalability, and maturation of organoids, which hinder their widespread clinical translation. Addressing these limitations requires the establishment of standardized protocols for organoid generation, culture, storage, and analysis to ensure reproducibility and comparability of findings across studies. Nevertheless, intestinal organoids hold immense promise for transforming our understanding of gastrointestinal pathophysiology, enhancing drug development pipelines, and advancing personalized medicine. By bridging the gap between preclinical research and clinical applications, these organoids represent a paradigm shift in the exploration of novel therapeutic strategies and the investigation of gut-associated diseases.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India.
| | - Sonia Gupta
- Swami Devi Dyal Group of Professional Institute, Panchkula, India
| | - Vrinda Gupta
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
| | - Rajni Tanwar
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
| | - Anchal Chandel
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
| |
Collapse
|
2
|
Gebert JT, Scribano FJ, Engevik KA, Huleatt EM, Eledge MR, Dorn LE, Philip AA, Kawagishi T, Greenberg HB, Patton JT, Hyser JM. Viroporin activity is necessary for intercellular calcium signals that contribute to viral pathogenesis. SCIENCE ADVANCES 2025; 11:eadq8115. [PMID: 39823322 PMCID: PMC11740935 DOI: 10.1126/sciadv.adq8115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, NSP4, induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea. This implicates nonstructural protein 4 (NSP4) as a virulence factor and provides mechanistic insight into its mode of action. Critically, this signaling induces a transcriptional signature characteristic of interferon-independent innate immune activation, which is not observed in response to a mutant NSP4 that does not conduct calcium. This implicates calcium dysregulation as a means of pathogen recognition, a theme broadly applicable to calcium-altering pathogens beyond rotavirus.
Collapse
Affiliation(s)
- J. Thomas Gebert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesca J. Scribano
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristen A. Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan M. Huleatt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael R. Eledge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E. Dorn
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Asha A. Philip
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Takahiro Kawagishi
- Departments of Medicine and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Harry B. Greenberg
- Departments of Medicine and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Alkek Center for Metagenomics & Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Adegboye C, Emeonye C, Wu YS, Kwon J, Oliveira LFS, Raveeniraraj S, O’Connell AE. Necrotizing enterocolitis causes increased ileal goblet cell loss in Wnt2b KO mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631715. [PMID: 39829885 PMCID: PMC11741354 DOI: 10.1101/2025.01.07.631715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
WNT2B is Wnt ligand which is able to support intestinal stem cells (ISC) in culture and support the intestinal epithelium in vivo. We have previously shown that WNT2B is critical for resistance to colitis, but not small intestinal injury, in the adult mouse. WNT2B is thought to coordinate with WNT3 in supporting ISC, and we have also shown that WNT3 expression is low in the early postnatal ileum in mice. Here, we hypothesized that WNT2B may be more critical in the small intestine during early development, and we challenged Wnt2b KO mice and controls with experimental necrotizing enterocolitis (NEC) on postnatal days 5-8. Wnt2b KO mice had similar ileum histology and injury scores to control mice. Molecular analyses showed that Wnt2b KO mice have differences in Lgr5 and Tlr4 expression compared to wild type controls in untreated conditions, but under experimental NEC expression of epithelial markers and inflammatory genes associated with NEC were similar to wild type. Periodic acid Schiff positive cells were lower in the villi of Wnt2b KO mice during NEC, however expression of goblet cell markers was not different compared to wild type mice. We also used an organoid-based NEC model to highlight the epithelium in isolation and also found no impact of WNT2B KO in the setting of NEC. These data further affirm that WNT2B is critical for inflammation responses in the mouse colon, but does not appear to play a major role in the small intestine, no matter the developmental period.
Collapse
Affiliation(s)
- Comfort Adegboye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Chidera Emeonye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Yu-Syuan Wu
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Jaedeok Kwon
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | | | | | - Amy E. O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
- The Manton Center for Orphan Disease Research at Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Ingle H, Molleston JM, Hall PD, Bui D, Wang L, Bhatt KD, Foster L, Antia A, Ding S, Lee S, Fremont DH, Baldridge MT. The neonatal Fc receptor is a cellular receptor for human astrovirus. Nat Microbiol 2024; 9:3321-3331. [PMID: 39578577 PMCID: PMC11970254 DOI: 10.1038/s41564-024-01855-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Human astroviruses (HAstV) are major causes of gastroenteritis, especially in children, and there are no vaccines or antivirals currently available. Little is known about host factors required for their cellular entry. Here we utilized complementary CRISPR-Cas9-based knockout and activation screens to identify neonatal Fc receptor (FcRn) and dipeptidyl-peptidase IV (DPP4) as entry factors for HAstV infection in vitro. Disruption of FcRn or DPP4 reduced HAstV infection in permissive cells and, reciprocally, overexpression of these factors in non-permissive cells was sufficient to promote infection. We observed direct binding of FcRn, but not DPP4, with HAstV virions and the purified spike protein. This suggests that FcRn is a receptor for HAstVs while DPP4 is a cofactor for entry. Inhibitors for DPP4 and FcRn currently in clinical use prevented HAstV infection in cell lines and human enteroids. Our results reveal mechanisms of HAstV entry as well as druggable targets to limit HAstV infection.
Collapse
Affiliation(s)
- Harshad Ingle
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Jerome M Molleston
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Paige D Hall
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Duyen Bui
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Leran Wang
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Karan D Bhatt
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Lynne Foster
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
5
|
Li Y, Guo Y, Geng C, Song S, Yang W, Li X, Wang C. Vitamin D/vitamin D receptor protects intestinal barrier against colitis by positively regulating Notch pathway. Front Pharmacol 2024; 15:1421577. [PMID: 39130644 PMCID: PMC11310051 DOI: 10.3389/fphar.2024.1421577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Vitamin D/Vitamin D receptor (VD/VDR) signaling and the Notch pathway are involved in intestinal barrier restoration in colitis; however, their relationship and underlying mechanism are largely unknown. Therefore, this study aimed to investigate the role and mechanism of VD/VDR and the Notch pathways in intestinal barrier protection. Methods Genetic Vdr knockout (VDR KO) and VD deficient (VDd) mice were established, and colitis was induced by feeding 2.5% dextran sodium sulfate (DSS) water. Mechanistic studies, including real-time PCR, immunofluorescence, Western blotting and dual-luciferase reporter assays, were performed on cultured Caco-2 cells and intestinal organoids. Results VD deficiency and VDR genetical KO increased the severity of DSS-induced colitis in mice, which presented a higher disease activity index score, increased intestinal permeability, and more severe intestinal histological damage than controls, accompanied by decreased and disrupted claudin-1 and claudin-3. Moreover, inhibition of Notch pathway by LY411,575 aggravated the severity of DSS-induced colitis and intestinal injury. In Caco-2 cells and intestinal organoids, the expression of Notch-1, N1ICD and Hes1 decreased upon downregulation or KO of VDR but increased upon paricalcitol (PAR, a VDR agonist) treatment. Meanwhile, PAR rescued claudin-1 and claudin-3 impairments that resulted from TNF-α exposure but failed to restore claudin-3 upon Notch inhibition. The dual-luciferase reporter assay further suggested that VD/VDR positively regulated the Notch signaling pathway by modulating Notch-1 transcription. Conclusion VD/VDR positively modulates Notch activation by promoting Notch-1 transcription to maintain intestinal tight junction integrity and barrier function. This highlights the VD/VDR-Notch pathway as a potential new therapeutic target for protecting the intestinal barrier against ulcerative colitis.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Ingle H, Molleston JM, Hall PD, Bui D, Wang L, Foster L, Antia A, Ding S, Lee S, Fremont DH, Baldridge MT. The neonatal Fc receptor and DPP4 are human astrovirus receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603331. [PMID: 39026791 PMCID: PMC11257635 DOI: 10.1101/2024.07.12.603331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Human astroviruses (HAstV) are major global causes of gastroenteritis, but little is known about host factors required for their cellular entry. Here, we utilized complementary CRISPR-Cas9-based knockout and activation screening approaches and identified neonatal Fc receptor (FcRn) and dipeptidyl-peptidase IV (DPP4) as entry factors for HAstV infection of human intestinal epithelial cells. Disruption of FcRn or DPP4 reduced HAstV infection in permissive cells and, reciprocally, overexpression of these factors in non-permissive cells was sufficient to promote infection. We observed direct binding between FcRn and HAstV virions as well as purified spike protein. Finally, inhibitors for DPP4 and FcRn currently in clinical use prevent HAstV infection in cell lines and primary human enteroids. Thus, our results reveal mechanisms of HAstV entry as well as druggable targets. One-Sentence Summary Targeting FcRn or DPP4 using available therapies effectively prevents human astrovirus infection in human enteroid cultures.
Collapse
|
7
|
Wang Y, Han J, Yang G, Zheng S, Zhou G, Liu X, Cao X, Li G, Zhang B, Xie Z, Li L, Zhang M, Li X, Chen M, Zhang S. Therapeutic potential of the secreted Kazal-type serine protease inhibitor SPINK4 in colitis. Nat Commun 2024; 15:5874. [PMID: 38997284 PMCID: PMC11245600 DOI: 10.1038/s41467-024-50048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Mucus injury associated with goblet cell (GC) depletion constitutes an early event in inflammatory bowel disease (IBD). Using single-cell sequencing to detect critical events in mucus dysfunction, we discover that the Kazal-type serine protease inhibitor SPINK4 is dynamically regulated in colitic intestine in parallel with disease activities. Under chemically induced colitic conditions, the grim status in Spink4-conditional knockout mice is successfully rescued by recombinant murine SPINK4. Notably, its therapeutic potential is synergistic with existing TNF-α inhibitor infliximab in colitis treatment. Mechanistically, SPINK4 promotes GC differentiation using a Kazal-like motif to modulate EGFR-Wnt/β-catenin and -Hippo pathways. Microbiota-derived diacylated lipoprotein Pam2CSK4 triggers SPINK4 production. We also show that monitoring SPINK4 in circulation is a reliable noninvasive technique to distinguish IBD patients from healthy controls and assess disease activity. Thus, SPINK4 serves as a serologic biomarker of IBD and has therapeutic potential for colitis via intrinsic EGFR activation in intestinal homeostasis.
Collapse
Affiliation(s)
- Ying Wang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jing Han
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
- Division of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, P. R. China
| | - Guang Yang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, P. R. China
| | - Xiaocang Cao
- Department of Hepato-Gastroenterology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, P. R. China
| | - Guang Li
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, P. R. China
| | - Bowen Zhang
- College of Life Sciences, Beijing Normal University, Beijing, P. R. China
| | - Zhuo Xie
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Mudan Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoling Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.
- Division of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, P. R. China.
| |
Collapse
|
8
|
Gao C, Ge H, Kuan SF, Cai C, Lu X, Esni F, Schoen RE, Wang JH, Chu E, Hu J. FAK loss reduces BRAF V600E-induced ERK phosphorylation to promote intestinal stemness and cecal tumor formation. eLife 2024; 13:RP94605. [PMID: 38921956 PMCID: PMC11208045 DOI: 10.7554/elife.94605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a 'just-right' level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vil1-Cre;BRAFLSL-V600E/+;Ptk2fl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a 'just-right' ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.
Collapse
Affiliation(s)
- Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Huaibin Ge
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of PittsburghPittsburghUnited States
| | - Shih-Fan Kuan
- Department of Pathology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Chunhui Cai
- Department of Biomedical Informatics, University of PittsburghPittsburghUnited States
| | - Xinghua Lu
- Department of Biomedical Informatics, University of PittsburghPittsburghUnited States
| | - Farzad Esni
- Department of Surgery, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Robert E Schoen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jing H Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of PittsburghPittsburghUnited States
| | - Edward Chu
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of PittsburghPittsburghUnited States
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| |
Collapse
|
9
|
Llorente C. The Imperative for Innovative Enteric Nervous System-Intestinal Organoid Co-Culture Models: Transforming GI Disease Modeling and Treatment. Cells 2024; 13:820. [PMID: 38786042 PMCID: PMC11119846 DOI: 10.3390/cells13100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
This review addresses the need for innovative co-culture systems integrating the enteric nervous system (ENS) with intestinal organoids. The breakthroughs achieved through these techniques will pave the way for a transformative era in gastrointestinal (GI) disease modeling and treatment strategies. This review serves as an introduction to the companion protocol paper featured in this journal. The protocol outlines the isolation and co-culture of myenteric and submucosal neurons with small intestinal organoids. This review provides an overview of the intestinal organoid culture field to establish a solid foundation for effective protocol application. Remarkably, the ENS surpasses the number of neurons in the spinal cord. Referred to as the "second brain", the ENS orchestrates pivotal roles in GI functions, including motility, blood flow, and secretion. The ENS is organized into myenteric and submucosal plexuses. These plexuses house diverse subtypes of neurons. Due to its proximity to the gut musculature and its cell type complexity, there are methodological intricacies in studying the ENS. Diverse approaches such as primary cell cultures, three-dimensional (3D) neurospheres, and induced ENS cells offer diverse insights into the multifaceted functionality of the ENS. The ENS exhibits dynamic interactions with the intestinal epithelium, the muscle layer, and the immune system, influencing epithelial physiology, motility, immune responses, and the microbiome. Neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), and vasoactive intestinal peptide (VIP), play pivotal roles in these intricate interactions. Understanding these dynamics is imperative, as the ENS is implicated in various diseases, ranging from neuropathies to GI disorders and neurodegenerative diseases. The emergence of organoid technology presents an unprecedented opportunity to study ENS interactions within the complex milieu of the small and large intestines. This manuscript underscores the urgent need for standardized protocols and advanced techniques to unravel the complexities of the ENS and its dynamic relationship with the gut ecosystem. The insights gleaned from such endeavors hold the potential to revolutionize GI disease modeling and treatment paradigms.
Collapse
Affiliation(s)
- Cristina Llorente
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
O'Connell AE, Raveenthiraraj S, Oliveira LFS, Adegboye C, Dasuri VS, Qi W, Khetani RS, Singh A, Sundaram N, Lin J, Nandivada P, Rincón-Cruz L, Goldsmith JD, Thiagarajah JR, Carlone DL, Turner JR, Agrawal PB, Helmrath M, Breault DT. WNT2B Deficiency Causes Enhanced Susceptibility to Colitis Due to Increased Inflammatory Cytokine Production. Cell Mol Gastroenterol Hepatol 2024; 18:101349. [PMID: 38697357 PMCID: PMC11217757 DOI: 10.1016/j.jcmgh.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND & AIMS Humans with WNT2B deficiency have severe intestinal disease, including significant inflammatory injury, highlighting a critical role for WNT2B. We sought to understand how WNT2B contributes to intestinal homeostasis. METHODS We investigated the intestinal health of Wnt2b knock out (KO) mice. We assessed the baseline histology and health of the small intestine and colon, and the impact of inflammatory challenge using dextran sodium sulfate (DSS). We also evaluated human intestinal tissue. RESULTS Mice with WNT2B deficiency had normal baseline histology but enhanced susceptibility to DSS colitis because of an increased early injury response. Although intestinal stem cells markers were decreased, epithelial proliferation was similar to control subjects. Wnt2b KO mice showed an enhanced inflammatory signature after DSS treatment. Wnt2b KO colon and human WNT2B-deficient organoids had increased levels of CXCR4 and IL6, and biopsy tissue from humans showed increased neutrophils. CONCLUSIONS WNT2B is important for regulation of inflammation in the intestine. Absence of WNT2B leads to increased expression of inflammatory cytokines and increased susceptibility to gastrointestinal inflammation, particularly in the colon.
Collapse
Affiliation(s)
- Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts; The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.
| | | | | | - Comfort Adegboye
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Venkata Siva Dasuri
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Wanshu Qi
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Akaljot Singh
- Department of Pediatric, General, and Thoracic Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Nambirajam Sundaram
- Department of Pediatric, General, and Thoracic Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Jasmine Lin
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Prathima Nandivada
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Lorena Rincón-Cruz
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts
| | | | - Jay R Thiagarajah
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts
| | - Diana L Carlone
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology and Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts; The Manton Center for Orphan Disease Research at Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, Florida
| | - Michael Helmrath
- Department of Pediatric, General, and Thoracic Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts; Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
11
|
Gu W, Huang X, Singh PNP, Li S, Lan Y, Deng M, Lacko LA, Gomez-Salinero JM, Rafii S, Verzi MP, Shivdasani RA, Zhou Q. A MTA2-SATB2 chromatin complex restrains colonic plasticity toward small intestine by retaining HNF4A at colonic chromatin. Nat Commun 2024; 15:3595. [PMID: 38678016 PMCID: PMC11055869 DOI: 10.1038/s41467-024-47738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
Plasticity among cell lineages is a fundamental, but poorly understood, property of regenerative tissues. In the gut tube, the small intestine absorbs nutrients, whereas the colon absorbs electrolytes. In a striking display of inherent plasticity, adult colonic mucosa lacking the chromatin factor SATB2 is converted to small intestine. Using proteomics and CRISPR-Cas9 screening, we identify MTA2 as a crucial component of the molecular machinery that, together with SATB2, restrains colonic plasticity. MTA2 loss in the adult mouse colon activated lipid absorptive genes and functional lipid uptake. Mechanistically, MTA2 co-occupies DNA with HNF4A, an activating pan-intestinal transcription factor (TF), on colonic chromatin. MTA2 loss leads to HNF4A release from colonic chromatin, and accumulation on small intestinal chromatin. SATB2 similarly restrains colonic plasticity through an HNF4A-dependent mechanism. Our study provides a generalizable model of lineage plasticity in which broadly-expressed TFs are retained on tissue-specific enhancers to maintain cell identity and prevent activation of alternative lineages, and their release unleashes plasticity.
Collapse
Affiliation(s)
- Wei Gu
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- BeiGene Institute, BeiGene (Shanghai) Research & Development Co., Ltd, Shanghai, 200131, China.
| | - Xiaofeng Huang
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Pratik N P Singh
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Sanlan Li
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Ying Lan
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Min Deng
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Lauretta A Lacko
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Human Therapeutic Organoid Core Facility, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jesus M Gomez-Salinero
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Shahin Rafii
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Qiao Zhou
- Division of Regenerative Medicine & Hartman Institute for Organ Regeneration, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Human Therapeutic Organoid Core Facility, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Wang Y, Tan R, Chen YG. Organoid Culture of Different Intestinal Segments from Human and Mouse. Methods Mol Biol 2024. [PMID: 38647862 DOI: 10.1007/7651_2024_542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The intestine comprises distinct segments, each characterized by unique cell populations and functions. Intestinal organoids faithfully replicate the cellular composition and functions of the intestine. Over the past decade, the organoid model has garnered considerable attention for its application in investigation of organ development, renewal and functional performance. While the organoid culture systems for mouse small intestine and human large intestine have widely adopted, a comparison summary for different segments of the human or mouse intestine is lacking. In this study, we present a systematically detailed culture methodology for intestinal organoids, encompassing both the small intestine and the large intestine from humans or mice. This method provides a robust in vitro tool for intestinal research, and expands the possible clinical application of organoids.
Collapse
Affiliation(s)
- Yalong Wang
- Guangzhou National Laboratory, Guangzhou, China
| | - Ronghui Tan
- Guangzhou National Laboratory, Guangzhou, China
| | - Ye-Guang Chen
- Guangzhou National Laboratory, Guangzhou, China.
- The State Key Laboratory of Membrane Biology Tsinghua-Peking Center for Life Sciences School of Life Sciences, Tsinghua University, Beijing, China.
- Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
13
|
Wang Y, Protchenko O, Huber KD, Shakoury-Elizeh M, Ghosh MC, Philpott CC. The iron chaperone poly(rC)-binding protein 1 regulates iron efflux through intestinal ferroportin in mice. Blood 2023; 142:1658-1671. [PMID: 37624904 PMCID: PMC10656723 DOI: 10.1182/blood.2023020504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/28/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is an essential nutrient required by all cells but used primarily for red blood cell production. Because humans have no effective mechanism for ridding the body of excess iron, the absorption of dietary iron must be precisely regulated. The critical site of regulation is the transfer of iron from the absorptive enterocyte to the portal circulation via the sole iron efflux transporter, ferroportin. Here, we report that poly(rC)-binding protein 1 (PCBP1), the major cytosolic iron chaperone, is necessary for the regulation of iron flux through ferroportin in the intestine of mice. Mice lacking PCBP1 in the intestinal epithelium exhibit low levels of enterocyte iron, poor retention of dietary iron in enterocyte ferritin, and excess efflux of iron through ferroportin. Excess iron efflux occurred despite lower levels of ferroportin protein in enterocytes and upregulation of the iron regulatory hormone hepcidin. PCBP1 deletion and the resulting unregulated dietary iron absorption led to poor growth, severe anemia on a low-iron diet, and liver oxidative stress with iron loading on a high-iron diet. Ex vivo culture of PCBP1-depleted enteroids demonstrated no defects in hepcidin-mediated ferroportin turnover. However, measurement of kinetically labile iron pools in enteroids competent or blocked for iron efflux indicated that PCBP1 functioned to bind and retain cytosolic iron and limit its availability for ferroportin-mediated efflux. Thus, PCBP1 coordinates enterocyte iron and reduces the concentration of unchaperoned "free" iron to a low level that is necessary for hepcidin-mediated regulation of ferroportin activity.
Collapse
Affiliation(s)
- Yubo Wang
- Genetics and Metabolism Section, Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Olga Protchenko
- Genetics and Metabolism Section, Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Kari D. Huber
- Genetics and Metabolism Section, Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Minoo Shakoury-Elizeh
- Genetics and Metabolism Section, Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Manik C. Ghosh
- Section on Human Iron Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Caroline C. Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
14
|
Poplaski V, Bomidi C, Kambal A, Nguyen-Phuc H, Di Rienzi SC, Danhof HA, Zeng XL, Feagins LA, Deng N, Vilar E, McAllister F, Coarfa C, Min S, Kim HJ, Shukla R, Britton R, Estes MK, Blutt SE. Human intestinal organoids from Cronkhite-Canada syndrome patients reveal link between serotonin and proliferation. J Clin Invest 2023; 133:e166884. [PMID: 37909332 PMCID: PMC10617781 DOI: 10.1172/jci166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/29/2023] [Indexed: 11/03/2023] Open
Abstract
Cronkhite-Canada Syndrome (CCS) is a rare, noninherited polyposis syndrome affecting 1 in every million individuals. Despite over 50 years of CCS cases, the etiopathogenesis and optimal treatment for CCS remains unknown due to the rarity of the disease and lack of model systems. To better understand the etiology of CCS, we generated human intestinal organoids (HIOs) from intestinal stem cells isolated from 2 patients. We discovered that CCS HIOs are highly proliferative and have increased numbers of enteroendocrine cells producing serotonin (also known as 5-hydroxytryptamine or 5HT). These features were also confirmed in patient tissue biopsies. Recombinant 5HT increased proliferation of non-CCS donor HIOs and inhibition of 5HT production in the CCS HIOs resulted in decreased proliferation, suggesting a link between local epithelial 5HT production and control of epithelial stem cell proliferation. This link was confirmed in genetically engineered HIOs with an increased number of enteroendocrine cells. This work provides a new mechanism to explain the pathogenesis of CCS and illustrates the important contribution of HIO cultures to understanding disease etiology and in the identification of novel therapies. Our work demonstrates the principle of using organoids for personalized medicine and sheds light on how intestinal hormones can play a role in intestinal epithelial proliferation.
Collapse
Affiliation(s)
- Victoria Poplaski
- Program in Translational Biology and Molecular Medicine
- Department of Molecular Virology and Microbiology, and
| | | | - Amal Kambal
- Department of Molecular Virology and Microbiology, and
| | | | - Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, and
| | - Linda A. Feagins
- Department of Internal Medicine, Center for Inflammatory Bowl Diseases, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Nan Deng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Soyoun Min
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hyun Jung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richa Shukla
- Department of Medicine, Section of Gasteroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert Britton
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, and
- Department of Medicine, Section of Gasteroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston Texas, USA
| | | |
Collapse
|
15
|
Yang C, Xiao W, Wang R, Hu Y, Yi K, Sun X, Wang G, Xu X. Tumor organoid model of colorectal cancer (Review). Oncol Lett 2023; 26:328. [PMID: 37415635 PMCID: PMC10320425 DOI: 10.3892/ol.2023.13914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
The establishment of self-organizing 'mini-gut' organoid models has brought about a significant breakthrough in biomedical research. Patient-derived tumor organoids have emerged as valuable tools for preclinical studies, offering the retention of genetic and phenotypic characteristics of the original tumor. These organoids have applications in various research areas, including in vitro modelling, drug discovery and personalized medicine. The present review provided an overview of intestinal organoids, focusing on their unique characteristics and current understanding. The progress made in colorectal cancer (CRC) organoid models was then delved into, discussing their role in drug development and personalized medicine. For instance, it has been indicated that patient-derived tumor organoids are able to predict response to irinotecan-based neoadjuvant chemoradiotherapy. Furthermore, the limitations and challenges associated with current CRC organoid models were addressed, along with proposed strategies for enhancing their utility in future basic and translational research.
Collapse
Affiliation(s)
- Chi Yang
- Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Wangwen Xiao
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Rui Wang
- School of Pharmacy, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yan Hu
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Ke Yi
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Xuan Sun
- Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Guanghui Wang
- School of Pharmacy, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiaohui Xu
- Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| |
Collapse
|
16
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Yue NN, Zhang Y, Shi RY, Yao J, Wang LS, Liang YJ, Li DF. Stem cell-derived intestinal organoids: a novel modality for IBD. Cell Death Discov 2023; 9:255. [PMID: 37479716 PMCID: PMC10362068 DOI: 10.1038/s41420-023-01556-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The organoids represent one of the greatest revolutions in the biomedical field in the past decade. This three-dimensional (3D) micro-organ cultured in vitro has a structure highly similar to that of the tissue and organ. Using the regeneration ability of stem cells, a 3D organ-like structure called intestinal organoids is established, which can mimic the characteristics of real intestinal organs, including morphology, function, and personalized response to specific stimuli. Here, we discuss current stem cell-based organ-like 3D intestinal models, including understanding the molecular pathophysiology, high-throughput screening drugs, drug efficacy testing, toxicological evaluation, and organ-based regeneration of inflammatory bowel disease (IBD). We summarize the advances and limitations of the state-of-the-art reconstruction platforms for intestinal organoids. The challenges, advantages, and prospects of intestinal organs as an in vitro model system for precision medicine are also discussed. Key applications of stem cell-derived intestinal organoids. Intestinal organoids can be used to model infectious diseases, develop new treatments, drug screens, precision medicine, and regenerative medicine.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
17
|
Tian CM, Zhang Y, Yang MF, Xu HM, Zhu MZ, Yao J, Wang LS, Liang YJ, Li DF. Stem Cell Therapy in Inflammatory Bowel Disease: A Review of Achievements and Challenges. J Inflamm Res 2023; 16:2089-2119. [PMID: 37215379 PMCID: PMC10199681 DOI: 10.2147/jir.s400447] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a group of chronic inflammatory diseases of the gastrointestinal tract. Repeated inflammation can lead to complications, such as intestinal fistula, obstruction, perforation, and bleeding. Unfortunately, achieving durable remission and mucosal healing (MH) with current treatments is difficult. Stem cells (SCs) have the potential to modulate immunity, suppress inflammation, and have anti-apoptotic and pro-angiogenic effects, making them an ideal therapeutic strategy to target chronic inflammation and intestinal damage in IBD. In recent years, hematopoietic stem cells (HSCs) and adult mesenchymal stem cells (MSCs) have shown efficacy in treating IBD. In addition, numerous clinical trials have evaluated the efficiency of MSCs in treating the disease. This review summarizes the current research progress on the safety and efficacy of SC-based therapy for IBD in both preclinical models and clinical trials. We discuss potential mechanisms of SC therapy, including tissue repair, paracrine effects, and the promotion of angiogenesis, immune regulation, and anti-inflammatory effects. We also summarize current SC engineering strategies aimed at enhancing the immunosuppressive and regenerative capabilities of SCs for treating intestinal diseases. Additionally, we highlight current limitations and future perspectives of SC-related therapy for IBD.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
18
|
Zheng L, Duan SL. Molecular regulation mechanism of intestinal stem cells in mucosal injury and repair in ulcerative colitis. World J Gastroenterol 2023; 29:2380-2396. [PMID: 37179583 PMCID: PMC10167905 DOI: 10.3748/wjg.v29.i16.2380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with complex causes. The main pathological changes were intestinal mucosal injury. Leucine-rich repeat-containing G protein coupled receptor 5 (LGR5)-labeled small intestine stem cells (ISCs) were located at the bottom of the small intestine recess and inlaid among Paneth cells. LGR5+ small ISCs are active proliferative adult stem cells, and their self-renewal, proliferation and differentiation disorders are closely related to the occurrence of intestinal inflammatory diseases. The Notch signaling pathway and Wnt/β-catenin signaling pathway are important regulators of LGR5-positive ISCs and together maintain the function of LGR5-positive ISCs. More importantly, the surviving stem cells after intestinal mucosal injury accelerate division, restore the number of stem cells, multiply and differentiate into mature intestinal epithelial cells, and repair the damaged intestinal mucosa. Therefore, in-depth study of multiple pathways and transplantation of LGR5-positive ISCs may become a new target for the treatment of UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| |
Collapse
|
19
|
O'Connell AE, Raveenthiraraj S, Adegboye C, Qi W, Khetani RS, Singh A, Sundaram N, Emeonye C, Lin J, Goldsmith JD, Thiagarajah JR, Carlone DL, Turner JR, Agrawal PB, Helmrath M, Breault DT. WNT2B Deficiency Causes Increased Susceptibility to Colitis in Mice and Impairs Intestinal Epithelial Development in Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537894. [PMID: 37131772 PMCID: PMC10153278 DOI: 10.1101/2023.04.21.537894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background and aims WNT2B is a canonical Wnt ligand previously thought to be fully redundant with other Wnts in the intestinal epithelium. However, humans with WNT2B deficiency have severe intestinal disease, highlighting a critical role for WNT2B. We sought to understand how WNT2B contributes to intestinal homeostasis. Methods We investigated the intestinal health of Wnt2b knock out (KO) mice. We assessed the impact of inflammatory challenge to the small intestine, using anti-CD3χ antibody, and to the colon, using dextran sodium sulfate (DSS). In addition, we generated human intestinal organoids (HIOs) from WNT2B-deficient human iPSCs for transcriptional and histological analyses. Results Mice with WNT2B deficiency had significantly decreased Lgr5 expression in the small intestine and profoundly decreased expression in the colon, but normal baseline histology. The small intestinal response to anti-CD3χ antibody was similar in Wnt2b KO and wild type (WT) mice. In contrast, the colonic response to DSS in Wnt2b KO mice showed an accelerated rate of injury, featuring earlier immune cell infiltration and loss of differentiated epithelium compared to WT. WNT2B-deficient HIOs showed abnormal epithelial organization and an increased mesenchymal gene signature. Conclusion WNT2B contributes to maintenance of the intestinal stem cell pool in mice and humans. WNT2B deficient mice, which do not have a developmental phenotype, show increased susceptibility to colonic injury but not small intestinal injury, potentially due to a higher reliance on WNT2B in the colon compared to the small intestine.WNT2B deficiency causes a developmental phenotype in human intestine with HIOs showing a decrease in their mesenchymal component and WNT2B-deficient patients showing epithelial disorganization. Data Transparency Statement All RNA-Seq data will be available through online repository as indicated in Transcript profiling. Any other data will be made available upon request by emailing the study authors.
Collapse
|
20
|
Nighot M, Liao PL, Morris N, McCarthy D, Dharmaprakash V, Ullah Khan I, Dalessio S, Saha K, Ganapathy AS, Wang A, Ding W, Yochum G, Koltun W, Nighot P, Ma T. Long-Term Use of Proton Pump Inhibitors Disrupts Intestinal Tight Junction Barrier and Exaggerates Experimental Colitis. J Crohns Colitis 2023; 17:565-579. [PMID: 36322638 PMCID: PMC10115233 DOI: 10.1093/ecco-jcc/jjac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Proton pump inhibitors [PPIs] are widely used to treat a number of gastro-oesophageal disorders. PPI-induced elevation in intragastric pH may alter gastrointestinal physiology. The tight junctions [TJs] residing at the apical intercellular contacts act as a paracellular barrier. TJ barrier dysfunction is an important pathogenic factor in inflammatory bowel disease [IBD]. Recent studies suggest that PPIs may promote disease flares in IBD patients. The role of PPIs in intestinal permeability is not clear. AIM The aim of the present study was to study the effect of PPIs on the intestinal TJ barrier function. METHODS Human intestinal epithelial cell culture and organoid models and mouse IBD models of dextran sodium sulphate [DSS] and spontaneous enterocolitis in IL-10-/- mice were used to study the role of PPIs in intestinal permeability. RESULTS PPIs increased TJ barrier permeability via an increase in a principal TJ regulator, myosin light chain kinase [MLCK] activity and expression, in a p38 MAPK-dependent manner. The PPI-induced increase in extracellular pH caused MLCK activation via p38 MAPK. Long-term PPI administration in mice exaggerated the increase in intestinal TJ permeability and disease severity in two independent models of DSS colitis and IL-10-/- enterocolitis. The TJ barrier disruption by PPIs was prevented in MLCK-/- mice. Human database studies revealed increased hospitalizations associated with PPI use in IBD patients. CONCLUSIONS Our results suggest that long-term use of PPIs increases intestinal TJ permeability and exaggerates experimental colitis via an increase in MLCK expression and activity.
Collapse
Affiliation(s)
- Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Pei-Luan Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Nathan Morris
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Dennis McCarthy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Viszwapriya Dharmaprakash
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Inam Ullah Khan
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Shannon Dalessio
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
21
|
Inui T, Yamashita T, Tomita J, Yokota J, Kishimoto W, Nakase H, Mizuguchi H. Comparison of human biopsy-derived and human iPS cell-derived intestinal organoids established from a single individual. Drug Metab Pharmacokinet 2023; 48:100482. [PMID: 36653202 DOI: 10.1016/j.dmpk.2022.100482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 10/29/2022] [Indexed: 11/08/2022]
Abstract
Rodent-derived intestinal tissues or human colon cancer-derived Caco-2 cells are widely used for in vitro pharmacokinetic tests. However, both entail problems such as species differences from humans and low expression levels of specific pharmacokinetic-related factors, respectively. To solve these problems, many groups, including ours, have been focusing on human biopsy-derived intestinal organoids (b-IOs) and human iPS cell-derived intestinal organoids (i-IOs). However, no reports directly compare the two. Therefore, we established both from a single individual and conducted a comparative study. b-IOs had a shorter doubling time than i-IOs: about 59 h vs 148 h. b-IOs also had higher gene expression levels of major drug transporters and drug-metabolizing enzymes than i-IOs. To evaluate their applicability to pharmacokinetics, both organoids were two-dimensionally cultured. Although the b-IO monolayer had a lower transepithelial electrical resistance than the i-IO monolayer, it had higher gene expression levels of many drug transporters and major drug-metabolizing enzymes than the i-IO monolayer. RNA-seq analysis showed that the i-IOs monolayer had a more complex structure than the b-IOs monolayer because the former contained neuronal and vascular endothelial cells. This study provides basic information for pharmacokinetic applications of human biopsy-derived and human iPS cell-derived intestinal organoids.
Collapse
Affiliation(s)
- Tatsuya Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Junya Tomita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Wataru Kishimoto
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Hyogo, 650-0047, Japan.
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Sapporo, Hokkaido, 060-8556, Japan.
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan; Laboratory of Functional Organoid for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 567-0085, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Geiser P, van Rijn JM, Sellin ME. Time-Lapse Imaging of Inflammasome-Dependent Cell Death and Extrusion in Enteroid-Derived Intestinal Epithelial Monolayers. Methods Mol Biol 2023; 2641:203-221. [PMID: 37074653 DOI: 10.1007/978-1-0716-3040-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Inflammasome-induced cell death is an epithelium-intrinsic innate immune response to pathogenic onslaught on epithelial barriers, caused by invasive microbes such as Salmonella Typhimurium (S.Tm). Pattern recognition receptors detect pathogen- or damage-associated ligands and elicit inflammasome formation. This ultimately restricts bacterial loads within the epithelium, limits breaching of the barrier, and prevents detrimental inflammatory tissue damage. Pathogen restriction is mediated via the specific extrusion of dying intestinal epithelial cells (IECs) from the epithelial tissue, accompanied by membrane permeabilization at some stage of the process. These inflammasome-dependent mechanisms can be studied in real time in intestinal epithelial organoids (enteroids), which allow imaging at high temporal and spatial resolution in a stable focal plane when seeded as 2D monolayers. The protocols described here involve the establishment of murine and human enteroid-derived monolayers, as well as time-lapse imaging of IEC extrusion and membrane permeabilization following inflammasome activation by S.Tm infection. The protocols can be adapted to also study other pathogenic insults or combined with genetic and pharmacological manipulation of the involved pathways.
Collapse
Affiliation(s)
- Petra Geiser
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jorik M van Rijn
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Current address: Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Abstract
Our understanding of the biology of the intestinal epithelium has advanced since the establishment of an organoid culture system. Although organoids have enabled investigation of the mechanism of self-renewal of human intestinal stem cells in vitro, it remains difficult to clarify the behavior of human normal and diseased intestinal epithelium in vivo. Recently, we developed a xenotransplantation system in which human intestinal organoids are engrafted onto epithelium-depleted mouse colons. This xenograft recapitulated the original tissue structures. Upon xenotransplantation, normal colon organoids developed normal colon crypt structures without tumorigenesis, whereas tumor-derived organoids formed colonic tumors resembling the original tumors. The non-tumorigenicity of human intestinal organoids highlights the safety of organoid-based regenerative medicine. As an example of regenerative medicine for short bowel syndrome, we devised a unique organ-repurposing approach to convert colons into small intestines by organoid transplantation. In this approach, the transplanted rat small intestinal organoids not only engrafted onto the rat colons but also remodeled the colon subepithelial structures into a small intestine-like conformation. Luminal flow accelerated the maturation of villi in the small intestine, which promoted the formation of a lymphovascular network mimicking lacteals. In this review, we provide an overview of recent advances in gastrointestinal organoid transplantation and share our understanding of human disease biology and regenerative medicine derived from these studies.
Collapse
|
24
|
Mahdieh Z, Cherne MD, Fredrikson JP, Sidar B, Sanchez HS, Chang CB, Bimczok D, Wilking JN. Granular Matrigel: restructuring a trusted extracellular matrix material for improved permeability. Biomed Mater 2022; 17:045020. [PMID: 35609584 DOI: 10.1088/1748-605x/ac7306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Matrigel is a polymeric extracellular matrix material produced by mouse cancer cells. Over the past four decades, Matrigel has been shown to support a wide variety of two- and three-dimensional cell and tissue culture applications including organoids. Despite widespread use, transport of molecules, cells, and colloidal particles through Matrigel can be limited. These limitations restrict cell growth, viability, and function and limit Matrigel applications. A strategy to improve transport through a hydrogel without modifying the chemistry or composition of the gel is to physically restructure the material into microscopic microgels and then pack them together to form a porous material. These 'granular' hydrogels have been created using a variety of synthetic hydrogels, but granular hydrogels composed of Matrigel have not yet been reported. Here we present a drop-based microfluidics approach for structuring Matrigel into a three-dimensional, mesoporous material composed of packed Matrigel microgels, which we call granular Matrigel. We show that restructuring Matrigel in this manner enhances the transport of colloidal particles and human dendritic cells (DCs) through the gel while providing sufficient mechanical support for culture of human gastric organoids (HGOs) and co-culture of human DCs with HGOs.
Collapse
Affiliation(s)
- Zahra Mahdieh
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Michelle D Cherne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Jacob P Fredrikson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Barkan Sidar
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Humberto S Sanchez
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Connie B Chang
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - James N Wilking
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| |
Collapse
|
25
|
Paneth cell maturation is related to epigenetic modification during neonatal-weaning transition. Histochem Cell Biol 2022; 158:5-13. [PMID: 35469099 DOI: 10.1007/s00418-022-02110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
Abstract
Paneth cells are antimicrobial peptide-secreting epithelial cells located at the bottom of the intestinal crypts of Lieberkühn. The crypts begin to form around postnatal day 7 (P7) mice, and Paneth cells usually appear within the first 2 weeks. Paneth cell dysfunction has been reported to correlate with Crohn's disease-like inflammation, showing narrow crypts or loss of crypt architecture in mice. The morphology of dysfunctional Paneth cells is similar to that of Paneth/goblet intermediate cells. However, it remains unclear whether the formation of the crypt is related to the maturation of Paneth cells. In this study, we investigated the histological changes including epigenetic modification in the mouse ileum postnatally and assessed the effect of the methyltransferase inhibitor on epithelium development using an organoid culture. The morphological and functional maturation of Paneth cells occurred in the first 2 weeks and was accompanied by histone H3 lysine 27 (H3K27) trimethylation, although significant differences in DNA methylation or other histone H3 trimethylation were not observed. Inhibition of H3K27 trimethylation in mouse ileal organoids suppressed crypt formation and Paneth cell maturation, until around P10. Overall, our findings show that post-transcriptional modification of histones, particularly H3K27 trimethylation, leads to the structural and functional maturation of Paneth cells during postnatal development.
Collapse
|
26
|
Gu W, Wang H, Huang X, Kraiczy J, Singh PNP, Ng C, Dagdeviren S, Houghton S, Pellon-Cardenas O, Lan Y, Nie Y, Zhang J, Banerjee KK, Onufer EJ, Warner BW, Spence J, Scherl E, Rafii S, Lee RT, Verzi MP, Redmond D, Longman R, Helin K, Shivdasani RA, Zhou Q. SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell 2022; 29:101-115.e10. [PMID: 34582804 PMCID: PMC8741647 DOI: 10.1016/j.stem.2021.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023]
Abstract
Adult stem cells maintain regenerative tissue structure and function by producing tissue-specific progeny, but the factors that preserve their tissue identities are not well understood. The small and large intestines differ markedly in cell composition and function, reflecting their distinct stem cell populations. Here we show that SATB2, a colon-restricted chromatin factor, singularly preserves LGR5+ adult colonic stem cell and epithelial identity in mice and humans. Satb2 loss in adult mice leads to stable conversion of colonic stem cells into small intestine ileal-like stem cells and replacement of the colonic mucosa with one that resembles the ileum. Conversely, SATB2 confers colonic properties on the mouse ileum. Human colonic organoids also adopt ileal characteristics upon SATB2 loss. SATB2 regulates colonic identity in part by modulating enhancer binding of the intestinal transcription factors CDX2 and HNF4A. Our study uncovers a conserved core regulator of colonic stem cells able to mediate cross-tissue plasticity in mature intestines.
Collapse
Affiliation(s)
- Wei Gu
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Hua Wang
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 430 E 67th Street, New York, NY, 10065, USA
| | - Xiaofeng Huang
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Judith Kraiczy
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Pratik N. P. Singh
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Charles Ng
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Sean Houghton
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Ying Lan
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Yaohui Nie
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jiaoyue Zhang
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kushal K Banerjee
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Emily J. Onufer
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO, 63110, USA
| | - Brad W. Warner
- Division of Pediatric Surgery, Department of Surgery, Washington University School of Medicine, 660 S Euclid Avenue, St. Louis, MO, 63110, USA
| | - Jason Spence
- Department of Internal Medicine, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Ellen Scherl
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Shahin Rafii
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Michael P. Verzi
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - David Redmond
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Randy Longman
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, 1283 York Avenue, New York, NY, 10065, USA
| | - Kristian Helin
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, 430 E 67th Street, New York, NY, 10065, USA,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200 Denmark,The Novo Nordisk Foundation for Stem Cell Biology (Danstem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Ramesh A. Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Qiao Zhou
- Division of Regenerative Medicine & Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA,Lead Contact ()
| |
Collapse
|
27
|
Cambra HM, Tallapragada NP, Mannam P, Breault DT, Klein AM. Triple-Decker Sandwich Cultures of Intestinal Organoids for Long-Term Live Imaging, Uniform Perturbation, and Statistical Sampling. Curr Protoc 2022; 2:e330. [PMID: 35030297 PMCID: PMC9006308 DOI: 10.1002/cpz1.330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three-dimensional organoid cultures enable the study of stem cell and tissue biology ex vivo, providing improved access to cells for perturbation and live imaging. Typically, organoids are grown in hydrogel domes that are simple to prepare but that lead to non-uniform tissue growth and viability. We recently developed a simple alternative culture method to embed intestinal organoids in multilayered hydrogels, called "triple-decker sandwiches," that align organoids in a common z-plane with uniform access to medium. This culture configuration improves the growth and survival of organoids over a wide working area and facilitates long-term confocal imaging and molecular perturbation. Here, we present protocols for preparing organoids in triple-decker sandwich cultures and using them for live imaging, immunostaining, and single-cell RNA sequencing. We have tested our methods on mouse and human intestinal organoids and expect them to be useful for other highly proliferative three-dimensional cell cultures. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Pre-coating plates with PolyHEMA to prepare them for triple-decker sandwich culture Support Protocol 1: Preparing PolyHEMA solution to coat glass-bottom dishes Basic Protocol 2: Embedding intestinal organoids in triple-decker sandwiches Alternate Protocol 1: Seeding single cells or organoids at low density in triple-decker sandwiches Support Protocol 2: Embedding intestinal organoids in hydrogel domes Support Protocol 3: Production of Wnt3a-conditioned medium Support Protocol 4: Production of Rspo1-conditioned medium Basic Protocol 3: Live imaging of mouse intestinal organoids in triple-decker sandwich cultures Alternate Protocol 2: Live imaging of vital dye-treated mouse intestinal organoids in triple-decker sandwich cultures Basic Protocol 4: Immunofluorescence imaging of mouse organoids liberated from triple-decker sandwich cultures Alternate Protocol 3: Liberating and fixing mouse intestinal organoids from dome cultures Support Protocol 5: Measuring cell proliferation by EdU staining of mouse intestinal organoids Basic Protocol 5: Single-cell RNA sequencing and analysis of mouse intestinal organoids.
Collapse
Affiliation(s)
- Hailey M. Cambra
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Naren P. Tallapragada
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Prabhath Mannam
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA,Harvard Stem Cell Institute, Harvard University, Boston, MA 02139, USA
| | - Allon M. Klein
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA,Lead contact,Correspondence:
| |
Collapse
|
28
|
Cai C, Itzel T, Gaitantzi H, de la Torre C, Birgin E, Betge J, Gretz N, Teufel A, Rahbari NN, Ebert MP, Breitkopf-Heinlein K. Identification of liver-derived bone morphogenetic protein (BMP)-9 as a potential new candidate for treatment of colorectal cancer. J Cell Mol Med 2021; 26:343-353. [PMID: 34841646 PMCID: PMC8743662 DOI: 10.1111/jcmm.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer (CRC) is a high-incidence malignancy worldwide which still needs better therapy options. Therefore, the aim of the present study was to investigate the responses of normal or malignant human intestinal epithelium to bone morphogenetic protein (BMP)-9 and to find out whether the application of BMP-9 to patients with CRC or the enhancement of its synthesis in the liver could be useful strategies for new therapy approaches. In silico analyses of CRC patient cohorts (TCGA database) revealed that high expression of the BMP-target gene ID1, especially in combination with low expression of the BMP-inhibitor noggin, is significantly associated with better patient survival. Organoid lines were generated from human biopsies of colon cancer (T-Orgs) and corresponding non-malignant areas (N-Orgs) of three patients. The N-Orgs represented tumours belonging to three different consensus molecular subtypes (CMS) of CRC. Overall, BMP-9 stimulation of organoids promoted an enrichment of tumour-suppressive gene expression signatures, whereas the stimulation with noggin had the opposite effects. Furthermore, treatment of organoids with BMP-9 induced ID1 expression (independently of high noggin levels), while treatment with noggin reduced ID1. In summary, our data identify the ratio between ID1 and noggin as a new prognostic value for CRC patient outcome. We further show that by inducing ID1, BMP-9 enhances this ratio, even in the presence of noggin. Thus, BMP-9 is identified as a novel target for the development of improved anti-cancer therapies of patients with CRC.
Collapse
Affiliation(s)
- Chen Cai
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timo Itzel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Haristi Gaitantzi
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina de la Torre
- Medical Research Center, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Emrullah Birgin
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Betge
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Teufel
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh N Rahbari
- Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
29
|
Song F, Wang S, Pang X, Fan Z, Zhang J, Chen X, He L, Ma B, Pei X, Li Y. An Active Fraction of Trillium tschonoskii Promotes the Regeneration of Intestinal Epithelial Cells After Irradiation. Front Cell Dev Biol 2021; 9:745412. [PMID: 34796175 PMCID: PMC8593212 DOI: 10.3389/fcell.2021.745412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
Despite significant scientific advances toward the development of safe and effective radiation countermeasures, no drug has been approved for use in the clinic for prevention or treatment of radiation-induced acute gastrointestinal syndrome (AGS). Thus, there is an urgent need to develop potential drugs to accelerate the repair of injured intestinal tissue. In this study, we investigated that whether some fractions of Traditional Chinese Medicine (TCM) have the ability to regulate intestinal crypt cell proliferation and promotes crypt regeneration after radiation. By screening the different supplements from a TCM library, we found that an active fraction of the rhizomes of Trillium tschonoskii Maxim (TT), TT-2, strongly increased the colony-forming ability of irradiated rat intestinal epithelial cell line 6 (IEC-6) cells. TT-2 significantly promoted the proliferation and inhibited the apoptosis of irradiated IEC-6 cells. Furthermore, in a small intestinal organoid radiation model, TT-2 promoted irradiated intestinal organoid growth and increased Lgr5+ intestinal stem cell (ICS) numbers. More importantly, the oral administration of TT-2 remarkably enhanced intestinal crypt cell proliferation and promoted the repair of the intestinal epithelium of mice after abdominal irradiation (ABI). Mechanistically, TT-2 remarkably activated the expression of ICS-associated and proliferation-promoting genes and inhibited apoptosis-related gene expression. Our data indicate that active fraction of TT can be developed into a potential oral drug for improving the regeneration and repair of intestinal epithelia that have intestinal radiation damage.
Collapse
Affiliation(s)
- Feiling Song
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Sihan Wang
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Xu Pang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zeng Fan
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaojuan Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lijuan He
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Baiping Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xuetao Pei
- Stem Cells and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Yanhua Li
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| |
Collapse
|
30
|
Three-Dimensional Culture Systems for Dissecting Notch Signalling in Health and Disease. Int J Mol Sci 2021; 22:ijms222212473. [PMID: 34830355 PMCID: PMC8618738 DOI: 10.3390/ijms222212473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) culture systems opened up new horizons in studying the biology of tissues and organs, modelling various diseases, and screening drugs. Producing accurate in vitro models increases the possibilities for studying molecular control of cell–cell and cell–microenvironment interactions in detail. The Notch signalling is linked to cell fate determination, tissue definition, and maintenance in both physiological and pathological conditions. Hence, 3D cultures provide new accessible platforms for studying activation and modulation of the Notch pathway. In this review, we provide an overview of the recent advances in different 3D culture systems, including spheroids, organoids, and “organ-on-a-chip” models, and their use in analysing the crucial role of Notch signalling in the maintenance of tissue homeostasis, pathology, and regeneration.
Collapse
|
31
|
Chang M, Bogacheva MS, Lou YR. Challenges for the Applications of Human Pluripotent Stem Cell-Derived Liver Organoids. Front Cell Dev Biol 2021; 9:748576. [PMID: 34660606 PMCID: PMC8517247 DOI: 10.3389/fcell.2021.748576] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
The current organoid culture systems allow pluripotent and adult stem cells to self-organize to form three-dimensional (3D) structures that provide a faithful recapitulation of the architecture and function of in vivo organs. In particular, human pluripotent stem cell-derived liver organoids (PSC-LOs) can be used in regenerative medicine and preclinical applications, such as disease modeling and drug discovery. New bioengineering tools, such as microfluidics, biomaterial scaffolds, and 3D bioprinting, are combined with organoid technologies to increase the efficiency of hepatic differentiation and enhance the functional maturity of human PSC-LOs by precise control of cellular microenvironment. Long-term stabilization of hepatocellular functions of in vitro liver organoids requires the combination of hepatic endodermal, endothelial, and mesenchymal cells. To improve the biological function and scalability of human PSC-LOs, bioengineering methods have been used to identify diverse and zonal hepatocyte populations in liver organoids for capturing heterogeneous pathologies. Therefore, constructing engineered liver organoids generated from human PSCs will be an extremely versatile tool in in vitro disease models and regenerative medicine in future. In this review, we aim to discuss the recent advances in bioengineering technologies in liver organoid culture systems that provide a timely and necessary study to model disease pathology and support drug discovery in vitro and to generate cell therapy products for transplantation.
Collapse
Affiliation(s)
- Mingyang Chang
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Mariia S. Bogacheva
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Yan-Ru Lou
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Yamashita T, Inui T, Yokota J, Kawakami K, Morinaga G, Takatani M, Hirayama D, Nomoto R, Ito K, Cui Y, Ruez S, Harada K, Kishimoto W, Nakase H, Mizuguchi H. Monolayer platform using human biopsy-derived duodenal organoids for pharmaceutical research. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:263-278. [PMID: 34485610 PMCID: PMC8399089 DOI: 10.1016/j.omtm.2021.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023]
Abstract
The human small intestine is the key organ for absorption, metabolism, and excretion of orally administered drugs. To preclinically predict these reactions in drug discovery research, a cell model that can precisely recapitulate the in vivo human intestinal monolayer is desired. In this study, we developed a monolayer platform using human biopsy-derived duodenal organoids for application to pharmacokinetic studies. The human duodenal organoid-derived monolayer was prepared by a simple method in 3-8 days. It consisted of polarized absorptive cells and had tight junctions. It showed much higher cytochrome P450 (CYP)3A4 and carboxylesterase (CES)2 activities than did the existing models (Caco-2 cells). It also showed efflux activity of P-glycoprotein (P-gp) and inducibility of CYP3A4. Finally, its gene expression profile was closer to the adult human duodenum, compared to the profile of Caco-2 cells. Based on these findings, this monolayer assay system using biopsy-derived human intestinal organoids is likely to be widely adopted.
Collapse
Affiliation(s)
- Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Osaka 565-0871, Japan
| | - Tatsuya Inui
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Yokota
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kentaro Kawakami
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Hokkaido 060-8556, Japan
- Department of Medical Oncology, Keiyukai Sapporo Hospital, Hokkaido 003-0027, Japan
| | - Gaku Morinaga
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Masahito Takatani
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Daisuke Hirayama
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Hokkaido 060-8556, Japan
| | - Ryuga Nomoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kohei Ito
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Yunhai Cui
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
| | - Stephanie Ruez
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Wataru Kishimoto
- Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Hyogo 650-0047, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, School of Medicine, Sapporo Medical University, Hokkaido 060-8556, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University Osaka 565-0871, Japan
- Corresponding author: Hiroyuki Mizuguchi, PhD, Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
33
|
Girish N, Liu CY, Gadeock S, Gomez ML, Huang Y, Sharifkhodaei Z, Washington MK, Polk DB. Persistence of Lgr5+ colonic epithelial stem cells in mouse models of inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2021; 321:G308-G324. [PMID: 34260310 PMCID: PMC8461791 DOI: 10.1152/ajpgi.00248.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Intestinal mucosal healing is the primary therapeutic goal of medical treatments for inflammatory bowel disease (IBD). Epithelial stem cells are key players in the healing process. Lgr5+ stem cells maintain cellular turnover during homeostasis in the colonic crypt. However, they are lost and dispensable for repair in a wide variety of injury models, including dextran sulfate sodium (DSS) colitis, radiation, helminth infection, and T-cell activation. The direct loss of Lgr5+ cells activates a plasticity response in the epithelium in which other cell types can serve as stem cells. Whether this paradigm applies to mouse models of IBD remains unknown. In contrast to previously tested models, IBD models involve an inflammatory response rooted in the loss of immunologic tolerance to intestinal luminal contents including the microbiome. Here, we show the persistence of Lgr5+ cells in oxazolone, 2,4,6-trinitrobenzene sulfonic acid (TNBS), and Il10-/-, and Il10-/- Tnfr1-/- IBD models. This contrasts with results obtained from DSS-induced injury. Through high-throughput expression profiling, we find that these colitis models were associated with distinct patterns of cytokine expression. Direct exposure of colonic epithelial organoids to DSS, oxazolone, or TNBS resulted in increased apoptosis and loss of Lgr5+ cells. Targeted ablation of Lgr5+ cells resulted in severe exacerbation of chronic, antibody-induced IL-10-deficient colitis, but had only modest effects in TNBS-induced colitis. These results show that distinct mouse models of IBD-like colitis induce different patterns of Lgr5+ stem cell retention and function.NEW & NOTEWORTHY Acute intestinal injury and epithelial repair are associated with the loss of fast-cycling Lgr5+ stem cells and plasticity in the activation of formerly quiescent cell populations. In contrast, here we show in murine inflammatory bowel disease the persistence of the Lgr5+ stem cell population and its essential role in restricting the severity of chronic colitis. This demonstrates a diversity of stem cell responses to colitis.
Collapse
Affiliation(s)
- Nandini Girish
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, UC University of California San Diego School of Medicine, San Diego, California
| | - Cambrian Y Liu
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Safina Gadeock
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, UC University of California San Diego School of Medicine, San Diego, California
| | - Marie L Gomez
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ying Huang
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Zohreh Sharifkhodaei
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, UC University of California San Diego School of Medicine, San Diego, California
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - D Brent Polk
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
- Division of Pediatric Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, UC University of California San Diego School of Medicine, San Diego, California
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
34
|
Effect of short-time treatment with TNF-α on stem cell activity and barrier function in enteroids. Cytotechnology 2021; 73:669-682. [PMID: 34349355 DOI: 10.1007/s10616-021-00487-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Although tumor necrosis factor-α (TNF-α) is a known major inflammatory mediator in inflammatory bowel disease (IBD) and has various effects on intestinal epithelial cell (IEC) homeostasis, the changes in IECs in the early inflammatory state induced during short-time treatment (24 h) with TNF-α remain unclear. In this study, we investigated TNF-α-induced alterations in IECs in the early inflammatory state using mouse jejunal organoids (enteroids). Of the inflammatory cytokines, i.e., TNF-α, IL-1β, IL-6, and IL-17, only TNF-α markedly increased the mRNA level of macrophage inflammatory protein 2 (MIP-2; the mouse homologue of interleukin-8), which is induced in the early stages of inflammation. TNF-α stimulation (3 h and 6 h) decreased the mRNA level of the stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) and polycomb group ring finger 4 and the progenitor cell marker prominin-1, which is also known as CD133. In addition, TNF-α treatment (24 h) decreased the number of Lgr5-positive cells and enteroid proliferation. TNF-α stimulation at 3 h and 6 h also decreased the mRNA level of chromogranin A and mucin 2, which are respective markers of enteroendocrine and goblet cells. Moreover, enteroids treated with TNF-α (24 h) not only decreased the integrity of tight junctions and cytoskeletal components but also increased intercellular permeability in an influx test with fluorescent dextran, indicating disrupted intestinal barrier function. Taken together, our findings indicate that short-time treatment with TNF-α promotes the inflammatory response and decreases intestinal stem cell activity and barrier function. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00487-y.
Collapse
|
35
|
Zhang Y, Huang S, Zhong W, Chen W, Yao B, Wang X. 3D organoids derived from the small intestine: An emerging tool for drug transport research. Acta Pharm Sin B 2021; 11:1697-1707. [PMID: 34386316 PMCID: PMC8343122 DOI: 10.1016/j.apsb.2020.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Small intestine in vitro models play a crucial role in drug transport research. Although conventional 2D cell culture models, such as Caco-2 monolayer, possess many advantages, they should be interpreted with caution because they have relatively poor physiologically reproducible phenotypes and functions. With the development of 3D culture technology, pluripotent stem cells (PSCs) and adult somatic stem cells (ASCs) show remarkable self-organization characteristics, which leads to the development of intestinal organoids. Based on previous studies, this paper reviews the application of intestinal 3D organoids in drug transport mediated by P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2). The advantages and limitations of this model are also discussed. Although there are still many challenges, intestinal 3D organoid model has the potential to be an excellent tool for drug transport research.
Collapse
Key Words
- 3D organoid
- ASCs, adult somatic stem cells
- BCRP, breast cancer resistance protein
- BMP, bone morphogenetic protein
- CDF, 5(6)-carboxy-2′,7′-dichlorofluorescein
- Caco-2 cell monolayer
- DDI, drug–drug interactions
- Drug transporter
- EGF, epidermal growth factor
- ER, efflux ratio
- ESCs, embryonic stem cells
- FGF, fibroblast growth factor
- Lgr5+, leucine-rich-repeat-containing G-protein-coupled receptor 5 positive
- MCT, monocarboxylate transporter protein
- MRP2, multidrug resistance protein 2
- NBD, nucleotide-binding domain
- OATP, organic anion transporting polypeptide
- OCT, organic cation transporter
- OCTN, carnitine/organic cation transporter
- P-glycoprotein
- P-gp, P-glycoprotein
- PEPT, peptide transporter protein
- PMAT, plasma membrane monoamine transporter
- PSCs, pluripotent stem cells
- Papp, apparent permeability coefficient
- Rh123, rhodamine 123
- SLC, solute carrier
- Small intestine
- TEER, transepithelial electrical resistance
- TMDs, transmembrane domains
- cMOAT, canalicular multispecific organic anion transporter
- iPSCs, induced pluripotent stem cells
Collapse
Affiliation(s)
- Yuanjin Zhang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiguo Zhong
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Wenxia Chen
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Corresponding author. Tel.: +86 21 2420 6564; fax: +86 21 5434 4922.
| |
Collapse
|
36
|
Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-λ response in vivo and in enteroid cultures. Mucosal Immunol 2021; 14:751-761. [PMID: 33674763 PMCID: PMC8085034 DOI: 10.1038/s41385-021-00387-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 02/04/2023]
Abstract
Although they globally cause viral gastroenteritis in children, astroviruses are understudied due to the lack of well-defined animal models. While murine astroviruses (muAstVs) chronically infect immunodeficient mice, a culture system and understanding of their pathogenesis is lacking. Here, we describe a platform to cultivate muAstV using air-liquid interface (ALI) cultures derived from mouse enteroids, which support apical infection and release. Chronic muAstV infection occurs predominantly in the small intestine and correlates with higher interferon-lambda (IFN-λ) expression. MuAstV stimulates IFN-λ production in ALI, recapitulating our in vivo findings. We demonstrate that goblet cells and enterocytes are targets for chronic muAstV infection in vivo, and that infection is enhanced by parasite co-infection or type 2 cytokine signaling. Depletion of goblet cells from ALI limits muAstV infection in vitro. During chronic infection, muAstV stimulates IFN-λ production in infected cells and induces ISGs throughout the intestinal epithelium in an IFN-λ-receptor-dependent manner. Collectively, our study provides insights into the cellular tropism and innate immune responses to muAstV and establishes an enteroid-based culture system to propagate muAstV in vitro.
Collapse
|
37
|
Ferrari KJ, Amato S, Noberini R, Toscani C, Fernández-Pérez D, Rossi A, Conforti P, Zanotti M, Bonaldi T, Tamburri S, Pasini D. Intestinal differentiation involves cleavage of histone H3 N-terminal tails by multiple proteases. Nucleic Acids Res 2021; 49:791-804. [PMID: 33398338 PMCID: PMC7826276 DOI: 10.1093/nar/gkaa1228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
The proteolytic cleavage of histone tails, also termed histone clipping, has been described as a mechanism for permanent removal of post-translational modifications (PTMs) from histone proteins. Such activity has been ascribed to ensure regulatory function in key cellular processes such as differentiation, senescence and transcriptional control, for which different histone-specific proteases have been described. However, all these studies were exclusively performed using cell lines cultured in vitro and no clear evidence that histone clipping is regulated in vivo has been reported. Here we show that histone H3 N-terminal tails undergo extensive cleavage in the differentiated cells of the villi in mouse intestinal epithelium. Combining biochemical methods, 3D organoid cultures and in vivo approaches, we demonstrate that intestinal H3 clipping is the result of multiple proteolytic activities. We identified Trypsins and Cathepsin L as specific H3 tail proteases active in small intestinal differentiated cells and showed that their proteolytic activity is differentially affected by the PTM pattern of histone H3 tails. Together, our findings provide in vivo evidence of H3 tail proteolysis in mammalian tissues, directly linking H3 clipping to cell differentiation.
Collapse
Affiliation(s)
- Karin Johanna Ferrari
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Roberta Noberini
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Cecilia Toscani
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy.,University of Milan, Department of Health Sciences, Via A. di Rudinì, 8, 20142 Milan, Italy
| | - Daniel Fernández-Pérez
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Alessandra Rossi
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Pasquale Conforti
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marika Zanotti
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simone Tamburri
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy.,University of Milan, Department of Health Sciences, Via A. di Rudinì, 8, 20142 Milan, Italy
| | - Diego Pasini
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy.,University of Milan, Department of Health Sciences, Via A. di Rudinì, 8, 20142 Milan, Italy
| |
Collapse
|
38
|
Chowdhury S, Ghosh S. Sources, Isolation and culture of stem cells? Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Meir M, Salm J, Fey C, Schweinlin M, Kollmann C, Kannapin F, Germer CT, Waschke J, Beck C, Burkard N, Metzger M, Schlegel N. Enteroids Generated from Patients with Severe Inflammation in Crohn's Disease Maintain Alterations of Junctional Proteins. J Crohns Colitis 2020; 14:1473-1487. [PMID: 32342109 DOI: 10.1093/ecco-jcc/jjaa085] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanisms underlying loss of intestinal epithelial barrier [IEB] function in Crohn's disease [CD] are poorly understood. We tested whether human enteroids generated from isolated intestinal crypts of CD patients serve as an appropriate in vitro model to analyse changes of IEB proteins observed in patients' specimens. METHODS Gut samples from CD patients and healthy individuals who underwent surgery were collected. Enteroids were generated from intestinal crypts and analyses of junctional proteins in comparison to full wall samples were performed. RESULTS Histopathology confirmed the presence of CD and the extent of inflammation in intestinal full wall sections. As revealed by immunostaining and Western blot analysis, profound changes in expression patterns of tight junction, adherens junction and desmosomal proteins were observed in full wall specimens when CD was present. Unexpectedly, when enteroids were generated from specimens of CD patients with severe inflammation, alterations of most tight junction proteins and the majority of changes in desmosomal proteins but not E-cadherin were maintained under culture conditions. Importantly, these changes were maintained without any additional stimulation of cytokines. Interestingly, qRT-PCR demonstrated that mRNA levels of junctional proteins were not different when enteroids from CD patients were compared to enteroids from healthy controls. CONCLUSIONS These data indicate that enteroids generated from patients with severe inflammation in CD maintain some characteristics of intestinal barrier protein changes on a post-transcriptional level. The enteroid in vitro model represents an appropriate tool to gain further cellular and molecular insights into the pathogenesis of barrier dysfunction in CD.
Collapse
Affiliation(s)
- Michael Meir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jonas Salm
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christina Fey
- Chair for Tissue Engineering and Regenerative Medicine, Wuerzburg, Germany
| | | | - Catherine Kollmann
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Felix Kannapin
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Natalie Burkard
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Marco Metzger
- Chair for Tissue Engineering and Regenerative Medicine, Wuerzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Centre for Regenerative Therapies TLC-RT, Wuerzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
40
|
Palikuqi B, Nguyen DHT, Li G, Schreiner R, Pellegata AF, Liu Y, Redmond D, Geng F, Lin Y, Gómez-Salinero JM, Yokoyama M, Zumbo P, Zhang T, Kunar B, Witherspoon M, Han T, Tedeschi AM, Scottoni F, Lipkin SM, Dow L, Elemento O, Xiang JZ, Shido K, Spence JR, Zhou QJ, Schwartz RE, De Coppi P, Rabbany SY, Rafii S. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature 2020; 585:426-432. [PMID: 32908310 PMCID: PMC7480005 DOI: 10.1038/s41586-020-2712-z] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Endothelial cells adopt tissue-specific characteristics to instruct organ development and regeneration1,2. This adaptability is lost in cultured adult endothelial cells, which do not vascularize tissues in an organotypic manner. Here, we show that transient reactivation of the embryonic-restricted ETS variant transcription factor 2 (ETV2)3 in mature human endothelial cells cultured in a serum-free three-dimensional matrix composed of a mixture of laminin, entactin and type-IV collagen (LEC matrix) ‘resets’ these endothelial cells to adaptable, vasculogenic cells, which form perfusable and plastic vascular plexi. Through chromatin remodelling, ETV2 induces tubulogenic pathways, including the activation of RAP1, which promotes the formation of durable lumens4,5. In three-dimensional matrices—which do not have the constraints of bioprinted scaffolds—the ‘reset’ vascular endothelial cells (R-VECs) self-assemble into stable, multilayered and branching vascular networks within scalable microfluidic chambers, which are capable of transporting human blood. In vivo, R-VECs implanted subcutaneously in mice self-organize into durable pericyte-coated vessels that functionally anastomose to the host circulation and exhibit long-lasting patterning, with no evidence of malformations or angiomas. R-VECs directly interact with cells within three-dimensional co-cultured organoids, removing the need for the restrictive synthetic semipermeable membranes that are required for organ-on-chip systems, therefore providing a physiological platform for vascularization, which we call ‘Organ-On-VascularNet’. R-VECs enable perfusion of glucose-responsive insulin-secreting human pancreatic islets, vascularize decellularized rat intestines and arborize healthy or cancerous human colon organoids. Using single-cell RNA sequencing and epigenetic profiling, we demonstrate that R-VECs establish an adaptive vascular niche that differentially adjusts and conforms to organoids and tumoroids in a tissue-specific manner. Our Organ-On-VascularNet model will permit metabolic, immunological and physiochemical studies and screens to decipher the crosstalk between organotypic endothelial cells and parenchymal cells for identification of determinants of endothelial cell heterogeneity, and could lead to advances in therapeutic organ repair and tumour targeting. The transient reactivation of ETV2 in adult human endothelial cells reprograms these cells to become adaptable vasculogenic endothelia that in three-dimensional matrices self-assemble into vascular networks that can transport blood and physiologically arborize organoids and decellularized tissues.
Collapse
Affiliation(s)
- Brisa Palikuqi
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Duc-Huy T Nguyen
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ge Li
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alessandro F Pellegata
- Stem Cell and Regenerative Medicine Section, DBC Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ying Liu
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Fuqiang Geng
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yang Lin
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesus M Gómez-Salinero
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Masataka Yokoyama
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Paul Zumbo
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Balvir Kunar
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mavee Witherspoon
- Sandra and Edward Meyer Cancer Center, Weill Cornell Graduate School of Medical Sciences, Departments of Biochemistry and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Teng Han
- Sandra and Edward Meyer Cancer Center, Weill Cornell Graduate School of Medical Sciences, Departments of Biochemistry and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alfonso M Tedeschi
- Stem Cell and Regenerative Medicine Section, DBC Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Federico Scottoni
- Stem Cell and Regenerative Medicine Section, DBC Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Steven M Lipkin
- Sandra and Edward Meyer Cancer Center, Weill Cornell Graduate School of Medical Sciences, Departments of Biochemistry and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lukas Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Graduate School of Medical Sciences, Departments of Biochemistry and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jenny Z Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Koji Shido
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Qiao J Zhou
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.,Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sina Y Rabbany
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
41
|
Rabata A, Fedr R, Soucek K, Hampl A, Koledova Z. 3D Cell Culture Models Demonstrate a Role for FGF and WNT Signaling in Regulation of Lung Epithelial Cell Fate and Morphogenesis. Front Cell Dev Biol 2020; 8:574. [PMID: 32850782 PMCID: PMC7396690 DOI: 10.3389/fcell.2020.00574] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023] Open
Abstract
FGF signaling plays an essential role in lung development, homeostasis, and regeneration. We employed mouse 3D cell culture models and imaging to study ex vivo the role of FGF ligands and the interplay of FGF signaling with epithelial growth factor (EGF) and WNT signaling pathways in lung epithelial morphogenesis and differentiation. In non-adherent conditions, FGF signaling promoted formation of lungospheres from lung epithelial stem/progenitor cells (LSPCs). Ultrastructural and immunohistochemical analyses showed that LSPCs produced more differentiated lung cell progeny. In a 3D extracellular matrix, FGF2, FGF7, FGF9, and FGF10 promoted lung organoid formation. FGF9 showed reduced capacity to promote lung organoid formation, suggesting that FGF9 has a reduced ability to sustain LSPC survival and/or initial divisions. FGF7 and FGF10 produced bigger organoids and induced organoid branching with higher frequency than FGF2 or FGF9. Higher FGF concentration and/or the use of FGF2 with increased stability and affinity to FGF receptors both increased lung organoid and lungosphere formation efficiency, respectively, suggesting that the level of FGF signaling is a crucial driver of LSPC survival and differentiation, and also lung epithelial morphogenesis. EGF signaling played a supportive but non-essential role in FGF-induced lung organoid formation. Analysis of tissue architecture and cell type composition confirmed that the lung organoids contained alveolar-like regions with cells expressing alveolar type I and type II cell markers, as well as airway-like structures with club cells and ciliated cells. FGF ligands showed differences in promoting distinct lung epithelial cell types. FGF9 was a potent inducer of more proximal cell types, including ciliated and basal cells. FGF7 and FGF10 directed the differentiation toward distal lung lineages. WNT signaling enhanced the efficiency of lung organoid formation, but in the absence of FGF10 signaling, the organoids displayed limited branching and less differentiated phenotype. In summary, we present lung 3D cell culture models as useful tools to study the role and interplay of signaling pathways in postnatal lung development and homeostasis, and we reveal distinct roles for FGF ligands in regulation of mouse lung morphogenesis and differentiation ex vivo.
Collapse
Affiliation(s)
- Anas Rabata
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Karel Soucek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Ales Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
42
|
Shin W, Wu A, Min S, Shin YC, Fleming RYD, Eckhardt SG, Kim HJ. Spatiotemporal Gradient and Instability of Wnt Induce Heterogeneous Growth and Differentiation of Human Intestinal Organoids. iScience 2020; 23:101372. [PMID: 32745985 PMCID: PMC7398973 DOI: 10.1016/j.isci.2020.101372] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/22/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
In a conventional culture of three-dimensional human intestinal organoids, extracellular matrix hydrogel has been used to provide a physical space for the growth and morphogenesis of organoids in the presence of exogenous morphogens such as Wnt3a. We found that organoids embedded in a dome-shaped hydrogel show significant size heterogeneity in different locations inside the hydrogel. Computational simulations revealed that the instability and diffusion limitation of Wnt3a constitutively generate a concentration gradient inside the hydrogel. The location-dependent heterogeneity of organoids in a hydrogel dome substantially perturbed the transcriptome profile associated with epithelial functions, cytodifferentiation including mucin 2 expression, and morphological characteristics. This heterogeneous phenotype was significantly mitigated when the Wnt3a was frequently replenished in the culture medium. Our finding suggests that the morphological, transcriptional, translational, and functional heterogeneity in conventional organoid cultures may lead to a false interpretation of the experimental results in organoid-based studies.
Collapse
Affiliation(s)
- Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Alexander Wu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Soyoun Min
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - Yong Cheol Shin
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA
| | - R Y Declan Fleming
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - S Gail Eckhardt
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA; Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA; Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
43
|
Huang WK, Xie C, Young RL, Zhao JB, Ebendorff-Heidepriem H, Jones KL, Rayner CK, Wu TZ. Development of innovative tools for investigation of nutrient-gut interaction. World J Gastroenterol 2020; 26:3562-3576. [PMID: 32742126 PMCID: PMC7366065 DOI: 10.3748/wjg.v26.i25.3562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract is the key interface between the ingesta and the human body. There is wide recognition that the gastrointestinal response to nutrients or bioactive compounds, particularly the secretion of numerous hormones, is critical to the regulation of appetite, body weight and blood glucose. This concept has led to an increasing focus on "gut-based" strategies for the management of metabolic disorders, including type 2 diabetes and obesity. Understanding the underlying mechanisms and downstream effects of nutrient-gut interactions is fundamental to effective translation of this knowledge to clinical practice. To this end, an array of research tools and platforms have been developed to better understand the mechanisms of gut hormone secretion from enteroendocrine cells. This review discusses the evolution of in vitro and in vivo models and the integration of innovative techniques that will ultimately enable the development of novel therapies for metabolic diseases.
Collapse
Affiliation(s)
- Wei-Kun Huang
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Cong Xie
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard L Young
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Diabetes, Nutrition and Gut Health, Lifelong Health, South Australia Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Jiang-Bo Zhao
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Heike Ebendorff-Heidepriem
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5005, Australia
| | - Karen L Jones
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher K Rayner
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Tong-Zhi Wu
- Adelaide Medical School, Centre of Research Excellence in Translating Nutritional Science to Good Health, the University of Adelaide, Adelaide, SA 5005, Australia
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
44
|
Abstract
Diabetes is one of the most challenging health concerns facing society. Available drugs treat the symptoms but there is no cure. This presents an urgent need to better understand human diabetes in order to develop improved treatments or target remission. New disease models need to be developed that more accurately describe the pathology of diabetes. Organoid technology provides an opportunity to fill this knowledge gap. Organoids are 3D structures, established from pluripotent stem cells or adult stem/progenitor cells, that recapitulate key aspects of the in vivo tissues they mimic. In this review we briefly introduce organoids and their benefits; we focus on organoids generated from tissues important for glucose homeostasis and tissues associated with diabetic complications. We hope this review serves as a touchstone to demonstrate how organoid technology extends the research toolbox and can deliver a step change of discovery in the field of diabetes.
Collapse
Affiliation(s)
- Anastasia Tsakmaki
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Patricia Fonseca Pedro
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Gavin A Bewick
- Faculty of Life Sciences and Medicine, School of Life Course Sciences, Department of Diabetes, Diabetes Research Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
45
|
Vargas-Valderrama A, Messina A, Mitjavila-Garcia MT, Guenou H. The endothelium, a key actor in organ development and hPSC-derived organoid vascularization. J Biomed Sci 2020; 27:67. [PMID: 32443983 PMCID: PMC7245026 DOI: 10.1186/s12929-020-00661-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Over the last 4 decades, cell culture techniques have evolved towards the creation of in vitro multicellular entities that incorporate the three-dimensional complexity of in vivo tissues and organs. As a result, stem cells and adult progenitor cells have been used to derive self-organized 3D cell aggregates that mimic the morphological and functional traits of organs in vitro. These so-called organoids were first generated from primary animal and human tissues, then human pluripotent stem cells (hPSCs) arose as a new tool for organoid generation. Due to their self-renewal capacity and differentiation potential, hPSCs are an unlimited source of cells used for organoids. Today, hPSC-derived small intestinal, kidney, brain, liver, and pancreas organoids, among others, have been produced and are promising in vitro human models for diverse applications, including fundamental research, drug development and regenerative medicine. However, achieving in vivo-like organ complexity and maturation in vitro remains a challenge. Current hPSC-derived organoids are often limited in size and developmental state, resembling embryonic or fetal organs rather than adult organs. The use of endothelial cells to vascularize hPSC-derived organoids may represent a key to ensuring oxygen and nutrient distribution in large organoids, thus contributing to the maturation of adult-like organoids through paracrine signaling.Here, we review the current state of the art regarding vascularized hPSC-derived organoids (vhPSC-Orgs). We analyze the progress achieved in the generation of organoids derived from the three primary germ layers (endoderm, mesoderm and ectoderm) exemplified by the pancreas, liver, kidneys and brain. Special attention will be given to the role of the endothelium in the organogenesis of the aforementioned organs, the sources of endothelial cells employed in vhPSC-Org protocols and the remaining challenges preventing the creation of ex vivo functional and vascularized organs.
Collapse
Affiliation(s)
- Alejandra Vargas-Valderrama
- INSERM UMRS-MD 1197, Université Paris Sud-Université Paris-Saclay. Hôpital Paul Brousse, Villejuif, France
- DHU Hépatinov, Villejuif, France
| | - Antonietta Messina
- DHU Hépatinov, Villejuif, France
- UMR_S1193 Inserm. Université Paris-Saclay, Villejuif, France
| | - Maria Teresa Mitjavila-Garcia
- INSERM UMRS-MD 1197, Université Paris Sud-Université Paris-Saclay. Hôpital Paul Brousse, Villejuif, France
- DHU Hépatinov, Villejuif, France
| | - Hind Guenou
- INSERM UMRS-MD 1197, Université Paris Sud-Université Paris-Saclay. Hôpital Paul Brousse, Villejuif, France
- DHU Hépatinov, Villejuif, France
- Université d’Evry-Val-d’Essonne. Université Paris-Saclay, Evry, France
| |
Collapse
|
46
|
Sayed IM, Suarez K, Lim E, Singh S, Pereira M, Ibeawuchi SR, Katkar G, Dunkel Y, Mittal Y, Chattopadhyay R, Guma M, Boland BS, Dulai PS, Sandborn WJ, Ghosh P, Das S. Host engulfment pathway controls inflammation in inflammatory bowel disease. FEBS J 2020; 287:3967-3988. [PMID: 32003126 DOI: 10.1111/febs.15236] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Chronic diseases, including inflammatory bowel disease (IBD) urgently need new biomarkers as a significant proportion of patients, do not respond to current medications. Inflammation is a common factor in these diseases, and microbial sensing in the intestinal tract is critical to initiate the inflammation. We have identified ELMO1 (engulfment and cell motility protein 1) as a microbial sensor in epithelial and phagocytic cells that turns on inflammatory signals. Using a stem cell-based 'gut-in-a-dish' coculture model, we studied the interactions between microbes, epithelium, and monocytes in the context of IBD. To mimic the in vivo cell physiology, enteroid-derived monolayers (EDMs) were generated from the organoids isolated from WT and ELMO1-/- mice and colonic biopsies of IBD patients. The EDMs were infected with the IBD-associated microbes to monitor the inflammatory responses. ELMO1-depleted EDMs displayed a significant reduction in bacterial internalization, a decrease in pro-inflammatory cytokine productions and monocyte recruitment. The expression of ELMO1 is elevated in the colonic epithelium and in the inflammatory infiltrates within the lamina propria of IBD patients where the higher expression is positively correlated with the elevated expression of pro-inflammatory cytokines, MCP-1 and TNF-α. MCP-1 is released from the epithelium and recruits monocytes to the site of inflammation. Once recruited, monocytes require ELMO1 to engulf the bacteria and propagate a robust TNF-α storm. These findings highlight that the dysregulated epithelial ELMO1 → MCP-1 axis can serve as an early biomarker in the diagnostics of IBD and other inflammatory disorders.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, USA
| | - Katherine Suarez
- Department of Pathology, University of California, San Diego, CA, USA
| | - Eileen Lim
- Department of Pathology, University of California, San Diego, CA, USA
| | - Sujay Singh
- Department of Pathology, University of California, San Diego, CA, USA
| | - Matheus Pereira
- Department of Pathology, University of California, San Diego, CA, USA
| | | | - Gajanan Katkar
- Department of Cellular & Molecular Medicine, University of California, San Diego, CA, USA
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, CA, USA
| | - Yash Mittal
- Department of Medicine, University of California, San Diego, CA, USA
| | - Ranajoy Chattopadhyay
- Department of Cellular & Molecular Medicine, University of California, San Diego, CA, USA
| | - Monica Guma
- Department of Medicine, University of California, San Diego, CA, USA
| | - Brigid S Boland
- Department of Medicine, University of California, San Diego, CA, USA
| | - Parambir S Dulai
- Department of Medicine, University of California, San Diego, CA, USA
| | | | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, CA, USA.,Department of Cellular & Molecular Medicine, University of California, San Diego, CA, USA
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, USA
| |
Collapse
|
47
|
Matsui S, Okabayashi K, Tsuruta M, Shigeta K, Seishima R, Ishida T, Kondo T, Suzuki Y, Hasegawa H, Shimoda M, Sugimoto S, Sato T, Kitagawa Y. Interleukin-13 and its signaling pathway is associated with obesity-related colorectal tumorigenesis. Cancer Sci 2019; 110:2156-2165. [PMID: 31099450 PMCID: PMC6609806 DOI: 10.1111/cas.14066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 01/10/2023] Open
Abstract
The incidence of colorectal cancer (CRC) has been on the rise, which is linked to the increasing prevalence of obesity, based on global epidemiological evidence. Although chronic inflammation is implicated in tumor development, the mechanisms underlying obesity‐associated CRC remain unknown. Here, we sought to identify the inflammatory cytokines and their roles in obesity‐related colorectal tumorigenesis using cytokine array analyses in a mouse model. Colorectal tumorigenesis was induced through i.p. injection of azoxymethane once a week for 6 weeks in 6‐week‐old female WT C57Black/6J mice and the obesity diabetes model mouse KK/TaJcl, KK‐Ay/TaJcl. The formation of aberrant crypt foci and colorectal tumors were more frequent in obese mice compared with WT mice, and both serum interleukin (IL)‐13 and IL‐13 receptor (R) expression in the normal intestinal mucosal epithelium were significantly increased in the obese mice. Furthermore, addition of IL‐13 to a human CRC cell line and a human colon organoid culture altered the phenotype of intestinal epithelial cells. Knockdown experiments further revealed that IL‐13Rα1 dominantly induced mucosal proliferation. Collectively, These results suggest an association between anti‐inflammatory cytokines and colorectal carcinogenesis, and provide new research directions for cancer prevention strategies. In particular, inflammation provoked by obesity, notably by increased expression of the cytokine IL‐13, could play an important role in the carcinogenesis of obesity‐related CRC.
Collapse
Affiliation(s)
- Shimpei Matsui
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masashi Tsuruta
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Shigeta
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Seishima
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Ishida
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Kondo
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suzuki
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hirotoshi Hasegawa
- Department of Surgery, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Sugimoto
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Ren J, Niu Z, Li X, Yang J, Gao M, Li X, Zhang T, Fang L, Zhang B, Wang J, Su Y, Wang F. A novel morphometry system automatically assessing the growth and regeneration of intestinal organoids. Biochem Biophys Res Commun 2018; 506:1052-1058. [PMID: 30409423 DOI: 10.1016/j.bbrc.2018.10.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
As compared with 2D cell line cultures, 3D intestinal organoids are better at maximally recapitulating the physiological features of stem cells in vivo. However, the complex 3D structure is an obstacle which must be objectively and automatically evaluated to assess colony growth and regeneration. Meanwhile, no internal standard currently exists for evaluating the size of heterogeneities in organoids or defining those regenerating colonies. Herein, we developed a simple morphometry system to image MTT-stained organoids. The growth curve of organoids can be automatically generated based upon analyzing the integrated optical density using software. Referencing the definition standards of in vivo regenerating crypts, the perimeters of crypts cultured 24 h after seeding were selected as an "Organoid Unit" to further evaluate colony survival rate and colony size heterogeneities after exposure to varying doses of irradiation. Moreover, the morphometry-based quantification data collected confirmed other findings associated with radiation sensitizing effects of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR) inhibitor and the radiation protective effect of IL-22. In summary, the novel organoid morphometry system combined with a new internal reference is a practical means for standardizing assessment of growth, survival and regeneration of intestinal organoid colonies. This method has promise to facilitate drug screens in intestinal and other organoid systems.
Collapse
Affiliation(s)
- Jiong Ren
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Zhibin Niu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Xiaoqin Li
- Chongqing Health Center for Women and Children, China
| | - Jie Yang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Meijiao Gao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Xudong Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Tao Zhang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Lei Fang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Boyang Zhang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China
| | - Fengchao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University, Gaotanyan Street 30(#), Shapingba, Chongqing, 400038, China.
| |
Collapse
|
49
|
Sharma D, Malik A, Guy CS, Karki R, Vogel P, Kanneganti TD. Pyrin Inflammasome Regulates Tight Junction Integrity to Restrict Colitis and Tumorigenesis. Gastroenterology 2018; 154:948-964.e8. [PMID: 29203393 PMCID: PMC5847456 DOI: 10.1053/j.gastro.2017.11.276] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel diseases (IBD) increase risk for colorectal cancer. Mutations in the Mediterranean fever gene (MEFV or pyrin) are associated with hereditary autoinflammatory disease and severe IBD. Expression of MEFV, a sensor protein that the initiates assembly of the inflammasome complex, is increased in colon biopsies from patients with IBD. We investigated the role of pyrin in intestinal homeostasis in mice. METHODS Mefv-/- mice and C57/BL6 mice (controls) were given azoxymethane followed by multiple rounds of dextran sodium sulfate (DSS) to induce colitis and tumorigenesis. In some experiments, Mefv-/- mice were given injections of recombinant interleukin 18 (rIL18) or saline (control) during DSS administration. Colon tissues were collected at different time points during colitis development and analyzed by histology, immunohistochemistry, immunoblots, or ELISAs (to measure cytokines). Spleen and mesenteric lymph node were collected, processed, and analyzed by flow cytometry. Colon epithelial permeability was measured in mice with colitis by gavage of fluorescent dextran and quantification of serum levels. RESULTS MEFV was expressed in colons of control mice and expression increased during chronic and acute inflammation; high levels were detected in colon tumor and adjacent non-tumor tissues. Mefv-/- mice developed more severe colitis than control mice, with a greater extent of epithelial hyperplasia and a larger tumor burden. Levels of inflammatory cytokines (IL6) and chemokines were significantly higher in colons of Mefv-/- mice than control mice following colitis induction, whereas the level IL18, which depends on the inflammasome for maturation and release, was significantly lower in colons of Mefv-/- mice. Mefv-/- mice had increased epithelial permeability following administration of DSS than control mice, and loss of the tight junction proteins occludin and claudin-2 from intercellular junctions. STAT3 was activated (phosphorylated) in inflamed colon tissues from Mefv-/-, which also had increased expression of stem cell markers (OLFM4, BMI1, and MSI1) compared with colons from control mice. Administration of rIL18 to Mefv-/- mice reduced epithelial permeability, intestinal inflammation, the severity of colitis, and colon tumorigenesis. CONCLUSIONS In studies with DSS-induced colitis, we found that pyrin (MEFV) is required for inflammasome activation and IL18 maturation, which promote intestinal barrier integrity and prevent colon inflammation and tumorigenesis. Strategies to increase activity of MEFV or IL18 might be developed for the treatment of IBD and prevention of colitis-associated tumorigenesis.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ankit Malik
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
50
|
Sugimoto S, Ohta Y, Fujii M, Matano M, Shimokawa M, Nanki K, Date S, Nishikori S, Nakazato Y, Nakamura T, Kanai T, Sato T. Reconstruction of the Human Colon Epithelium In Vivo. Cell Stem Cell 2017; 22:171-176.e5. [PMID: 29290616 DOI: 10.1016/j.stem.2017.11.012] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/22/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Genetic lineage tracing has revealed that Lgr5+ murine colon stem cells (CoSCs) rapidly proliferate at the crypt bottom. However, the spatiotemporal dynamics of human CoSCs in vivo have remained experimentally intractable. Here we established an orthotopic xenograft system for normal human colon organoids, enabling stable reconstruction of the human colon epithelium in vivo. Xenografted organoids were prone to displacement by the remaining murine crypts, and this could be overcome by complete removal of the mouse epithelium. Xenografted organoids formed crypt structures distinctively different from surrounding mouse crypts, reflecting their human origin. Lineage tracing using CRISPR-Cas9 to engineer an LGR5-CreER knockin allele demonstrated self-renewal and multipotency of LGR5+ CoSCs. In contrast to the rapidly cycling properties of mouse Lgr5+ CoSCs, human LGR5+ CoSCs were slow-cycling in vivo. This organoid-based orthotopic xenograft model enables investigation of the functional behaviors of human CoSCs in vivo, with potential therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Shinya Sugimoto
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuki Ohta
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masayuki Fujii
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mami Matano
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mariko Shimokawa
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kosaku Nanki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shoichi Date
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan; Fujii Memorial Research Institute, Otsuka Pharmaceutical Company, Limited, Shiga 520-0106, Japan
| | - Shingo Nishikori
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan; Fujii Memorial Research Institute, Otsuka Pharmaceutical Company, Limited, Shiga 520-0106, Japan
| | - Yoshihiro Nakazato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tetsuya Nakamura
- Department of Advanced Therapeutics for GI Diseases, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|