1
|
Cankara F, Senyuz S, Sayin AZ, Gursoy A, Keskin O. DiPPI: A Curated Data Set for Drug-like Molecules in Protein-Protein Interfaces. J Chem Inf Model 2024; 64:5041-5051. [PMID: 38907989 DOI: 10.1021/acs.jcim.3c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteins interact through their interfaces, and dysfunction of protein-protein interactions (PPIs) has been associated with various diseases. Therefore, investigating the properties of the drug-modulated PPIs and interface-targeting drugs is critical. Here, we present a curated large data set for drug-like molecules in protein interfaces. We further introduce DiPPI (Drugs in Protein-Protein Interfaces), a two-module web site to facilitate the search for such molecules and their properties by exploiting our data set in drug repurposing studies. In the interface module of the web site, we present several properties, of interfaces, such as amino acid properties, hotspots, evolutionary conservation of drug-binding amino acids, and post-translational modifications of these residues. On the drug-like molecule side, we list drug-like small molecules and FDA-approved drugs from various databases and highlight those that bind to the interfaces. We further clustered the drugs based on their molecular fingerprints to confine the search for an alternative drug to a smaller space. Drug properties, including Lipinski's rules and various molecular descriptors, are also calculated and made available on the web site to guide the selection of drug molecules. Our data set contains 534,203 interfaces for 98,632 protein structures, of which 55,135 are detected to bind to a drug-like molecule. 2214 drug-like molecules are deposited on our web site, among which 335 are FDA-approved. DiPPI provides users with an easy-to-follow scheme for drug repurposing studies through its well-curated and clustered interface and drug data and is freely available at http://interactome.ku.edu.tr:8501.
Collapse
Affiliation(s)
- Fatma Cankara
- Graduate School of Sciences and Engineering, Koç University, İstanbul 34450, Turkey
| | - Simge Senyuz
- Graduate School of Sciences and Engineering, Koç University, İstanbul 34450, Turkey
| | - Ahenk Zeynep Sayin
- Department of Chemical and Biological Engineering, Koç University, İstanbul 34450, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koç University, İstanbul 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koç University, İstanbul 34450, Turkey
| |
Collapse
|
2
|
Peña-Guerrero J, Fernández-Rubio C, García-Sosa AT, Nguewa PA. BRCT Domains: Structure, Functions, and Implications in Disease-New Therapeutic Targets for Innovative Drug Discovery against Infections. Pharmaceutics 2023; 15:1839. [PMID: 37514027 PMCID: PMC10386641 DOI: 10.3390/pharmaceutics15071839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The search for new therapeutic targets and their implications in drug development remains an emerging scientific topic. BRCT-bearing proteins are found in Archaea, Bacteria, Eukarya, and viruses. They are traditionally involved in DNA repair, recombination, and cell cycle control. To carry out these functions, BRCT domains are able to interact with DNA and proteins. Moreover, such domains are also implicated in several pathogenic processes and malignancies including breast, ovarian, and lung cancer. Although these domains exhibit moderately conserved folding, their sequences show very low conservation. Interestingly, sequence variations among species are considered positive traits in the search for suitable therapeutic targets, since non-specific drug interactions might be reduced. These main characteristics of BRCT, as well as its critical implications in key biological processes in the cell, have prompted the study of these domains as therapeutic targets. This review explores the possible roles of BRCT domains as therapeutic targets for drug discovery. We describe their common structural features and relevant interactions and pathways, as well as their implications in pathologic processes. Drugs commonly used to target these domains are also presented. Finally, based on their structures, we describe new drug design possibilities using modern and innovative techniques.
Collapse
Affiliation(s)
- José Peña-Guerrero
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| | - Celia Fernández-Rubio
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| | - Alfonso T García-Sosa
- Chair of Molecular Technology, Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Paul A Nguewa
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, University of Navarra, IdiSNA (Navarra Institute for Health Research), E-31008 Pamplona, Navarra, Spain
| |
Collapse
|
3
|
Ozdemir ES, Nussinov R. Pathogen-driven cancers from a structural perspective: Targeting host-pathogen protein-protein interactions. Front Oncol 2023; 13:1061595. [PMID: 36910650 PMCID: PMC9997845 DOI: 10.3389/fonc.2023.1061595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Host-pathogen interactions (HPIs) affect and involve multiple mechanisms in both the pathogen and the host. Pathogen interactions disrupt homeostasis in host cells, with their toxins interfering with host mechanisms, resulting in infections, diseases, and disorders, extending from AIDS and COVID-19, to cancer. Studies of the three-dimensional (3D) structures of host-pathogen complexes aim to understand how pathogens interact with their hosts. They also aim to contribute to the development of rational therapeutics, as well as preventive measures. However, structural studies are fraught with challenges toward these aims. This review describes the state-of-the-art in protein-protein interactions (PPIs) between the host and pathogens from the structural standpoint. It discusses computational aspects of predicting these PPIs, including machine learning (ML) and artificial intelligence (AI)-driven, and overviews available computational methods and their challenges. It concludes with examples of how theoretical computational approaches can result in a therapeutic agent with a potential of being used in the clinics, as well as future directions.
Collapse
Affiliation(s)
- Emine Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ruth Nussinov
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Ozdemir ES, Gomes MM, Fischer JM. Computational Modeling of TP63-TP53 Interaction and Rational Design of Inhibitors: Implications for Therapeutics. Mol Cancer Ther 2022; 21:1846-1856. [PMID: 36190964 DOI: 10.1158/1535-7163.mct-22-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
Tumor protein p63 (TP63) is a member of the TP53 protein family that are important for development and in tumor suppression. Unlike TP53, TP63 is rarely mutated in cancer, but instead different TP63 isoforms regulate its activity. TA isoforms (TAp63) act as tumor suppressors, whereas ΔN isoforms are strong drivers of squamous or squamous-like cancers. Many of these tumors become addicted to ΔN isoforms and removal of ΔN isoforms result in cancer cell death. Furthermore, some TP53 conformational mutants (TP53CM) gain the ability to interact with TAp63 isoforms and inhibit their antitumorigenic function, while indirectly promoting tumorigenic function of ΔN isoforms, but the exact mechanism of TP63-TP53CM interaction is unclear. The changes in the balance of TP63 isoform activity are crucial to understanding the transition between normal and tumor cells. Here, we modeled TP63-TP53CM complex using computational approaches. We then used our models to design peptides to disrupt the TP63-TP53CM interaction and restore antitumorigenic TAp63 function. In addition, we studied ΔN isoform oligomerization and designed peptides to inhibit its oligomerization and reduce their tumorigenic activity. We show that some of our peptides promoted cell death in a TP63 highly expressed cancer cell line, but not in a TP63 lowly expressed cancer cell line. Furthermore, we performed kinetic-binding assays to validate binding of our peptides to their targets. Our computational and experimental analyses present a detailed model for the TP63-TP53CM interaction and provide a framework for potential therapeutic peptides for the elimination of TP53CM cancer cells.
Collapse
Affiliation(s)
- E Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Michelle M Gomes
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Jared M Fischer
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
5
|
Ozdemir ES, Ranganathan SV, Nussinov R. How has artificial intelligence impacted COVID-19 drug repurposing and what lessons have we learned? Expert Opin Drug Discov 2022; 17:1061-1065. [PMID: 36154343 DOI: 10.1080/17460441.2022.2128333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- E Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Srivathsan V Ranganathan
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ruth Nussinov
- Cancer Innovation Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Wakefield AE, Kozakov D, Vajda S. Mapping the binding sites of challenging drug targets. Curr Opin Struct Biol 2022; 75:102396. [PMID: 35636004 PMCID: PMC9790766 DOI: 10.1016/j.sbi.2022.102396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/03/2023]
Abstract
An increasing number of medically important proteins are challenging drug targets because their binding sites are too shallow or too polar, are cryptic and thus not detectable without a bound ligand or located in a protein-protein interface. While such proteins may not bind druglike small molecules with sufficiently high affinity, they are frequently druggable using novel therapeutic modalities. The need for such modalities can be determined by experimental or computational fragment based methods. Computational mapping by mixed solvent molecular dynamics simulations or the FTMap server can be used to determine binding hot spots. The strength and location of the hot spots provide very useful information for selecting potentially successful approaches to drug discovery.
Collapse
Affiliation(s)
- Amanda E. Wakefield
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215,Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA NY, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215,Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
7
|
Ghadie MA, Xia Y. Are transient protein-protein interactions more dispensable? PLoS Comput Biol 2022; 18:e1010013. [PMID: 35404956 PMCID: PMC9000134 DOI: 10.1371/journal.pcbi.1010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) are key drivers of cell function and evolution. While it is widely assumed that most permanent PPIs are important for cellular function, it remains unclear whether transient PPIs are equally important. Here, we estimate and compare dispensable content among transient PPIs and permanent PPIs in human. Starting with a human reference interactome mapped by experiments, we construct a human structural interactome by building three-dimensional structural models for PPIs, and then distinguish transient PPIs from permanent PPIs using several structural and biophysical properties. We map common mutations from healthy individuals and disease-causing mutations onto the structural interactome, and perform structure-based calculations of the probabilities for common mutations (assumed to be neutral) and disease mutations (assumed to be mildly deleterious) to disrupt transient PPIs and permanent PPIs. Using Bayes' theorem we estimate that a similarly small fraction (<~20%) of both transient and permanent PPIs are completely dispensable, i.e., effectively neutral upon disruption. Hence, transient and permanent interactions are subject to similarly strong selective constraints in the human interactome.
Collapse
Affiliation(s)
| | - Yu Xia
- Department of Bioengineering, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Alsulaimany FA, Zabermawi NMO, Almukadi H, Parambath SV, Shetty PJ, Vaidyanathan V, Elango R, Babanaganapalli B, Shaik NA. Transcriptome-Based Molecular Networks Uncovered Interplay Between Druggable Genes of CD8 + T Cells and Changes in Immune Cell Landscape in Patients With Pulmonary Tuberculosis. Front Med (Lausanne) 2022; 8:812857. [PMID: 35198572 PMCID: PMC8859411 DOI: 10.3389/fmed.2021.812857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is a major infectious disease, where incomplete information about host genetics and immune responses is hindering the development of transformative therapies. This study characterized the immune cell landscape and blood transcriptomic profile of patients with pulmonary TB (PTB) to identify the potential therapeutic biomarkers. METHODS The blood transcriptome profile of patients with PTB and controls were used for fractionating immune cell populations with the CIBERSORT algorithm and then to identify differentially expressed genes (DEGs) with R/Bioconductor packages. Later, systems biology investigations (such as semantic similarity, gene correlation, and graph theory parameters) were implemented to prioritize druggable genes contributing to the immune cell alterations in patients with TB. Finally, real time-PCR (RT-PCR) was used to confirm gene expression levels. RESULTS Patients with PTB had higher levels of four immune subpopulations like CD8+ T cells (P = 1.9 × 10-8), natural killer (NK) cells resting (P = 6.3 × 10-5), monocytes (P = 6.4 × 10-6), and neutrophils (P = 1.6 × 10-7). The functional enrichment of 624 DEGs identified in the blood transcriptome of patients with PTB revealed major dysregulation of T cell-related ontologies and pathways (q ≤ 0.05). Of the 96 DEGs shared between transcriptome and immune cell types, 39 overlapped with TB meta-profiling genetic signatures, and their semantic similarity analysis with the remaining 57 genes, yielded 45 new candidate TB markers. This study identified 9 CD8+ T cell-associated genes (ITK, CD2, CD6, CD247, ZAP70, CD3D, SH2D1A, CD3E, and IL7R) as potential therapeutic targets of PTB by combining computational druggability and co-expression (r2 ≥ |0.7|) approaches. CONCLUSION The changes in immune cell proportion and the downregulation of T cell-related genes may provide new insights in developing therapeutic compounds against chronic TB.
Collapse
Affiliation(s)
| | - Nidal M Omer Zabermawi
- Department of Biology, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haifa Almukadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Snijesh V Parambath
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Preetha Jayasheela Shetty
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Venkatesh Vaidyanathan
- Auckland Cancer Society Research Centre (ACSRC), Faculty of Medical and Health Sciences (FM&HS), The University of Auckland, Auckland, New Zealand
| | - Ramu Elango
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Babanaganapalli
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Mavridou D, Psatha K, Aivaliotis M. Proteomics and Drug Repurposing in CLL towards Precision Medicine. Cancers (Basel) 2021; 13:cancers13143391. [PMID: 34298607 PMCID: PMC8303629 DOI: 10.3390/cancers13143391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Despite continued efforts, the current status of knowledge in CLL molecular pathobiology, diagnosis, prognosis and treatment remains elusive and imprecise. Proteomics approaches combined with advanced bioinformatics and drug repurposing promise to shed light on the complex proteome heterogeneity of CLL patients and mitigate, improve, or even eliminate the knowledge stagnation. In relation to this concept, this review presents a brief overview of all the available proteomics and drug repurposing studies in CLL and suggests the way such studies can be exploited to find effective therapeutic options combined with drug repurposing strategies to adopt and accost a more “precision medicine” spectrum. Abstract CLL is a hematological malignancy considered as the most frequent lymphoproliferative disease in the western world. It is characterized by high molecular heterogeneity and despite the available therapeutic options, there are many patient subgroups showing the insufficient effectiveness of disease treatment. The challenge is to investigate the individual molecular characteristics and heterogeneity of these patients. Proteomics analysis is a powerful approach that monitors the constant state of flux operators of genetic information and can unravel the proteome heterogeneity and rewiring into protein pathways in CLL patients. This review essences all the available proteomics studies in CLL and suggests the way these studies can be exploited to find effective therapeutic options combined with drug repurposing approaches. Drug repurposing utilizes all the existing knowledge of the safety and efficacy of FDA-approved or investigational drugs and anticipates drug alignment to crucial CLL therapeutic targets, leading to a better disease outcome. The drug repurposing studies in CLL are also discussed in this review. The next goal involves the integration of proteomics-based drug repurposing in precision medicine, as well as the application of this procedure into clinical practice to predict the most appropriate drugs combination that could ensure therapy and the long-term survival of each CLL patient.
Collapse
Affiliation(s)
- Dimitra Mavridou
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina Psatha
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Greece
- Correspondence: (K.P.); (M.A.)
| | - Michalis Aivaliotis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
- Functional Proteomics and Systems Biology (FunPATh)—Center for Interdisciplinary Research and Innovation (CIRI-AUTH), GR-57001 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR-70013 Heraklion, Greece
- Correspondence: (K.P.); (M.A.)
| |
Collapse
|
10
|
Abdizadeh H, Jalalypour F, Atilgan AR, Atilgan C. A Coarse-Grained Methodology Identifies Intrinsic Mechanisms That Dissociate Interacting Protein Pairs. Front Mol Biosci 2020; 7:210. [PMID: 33195399 PMCID: PMC7477071 DOI: 10.3389/fmolb.2020.00210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/03/2020] [Indexed: 11/13/2022] Open
Abstract
We address the problem of triggering dissociation events between proteins that have formed a complex. We have collected a set of 25 non-redundant, functionally diverse protein complexes having high-resolution three-dimensional structures in both the unbound and bound forms. We unify elastic network models with perturbation response scanning (PRS) methodology as an efficient approach for predicting residues that have the propensity to trigger dissociation of an interacting protein pair, using the three-dimensional structures of the bound and unbound proteins as input. PRS reveals that while for a group of protein pairs, residues involved in the conformational shifts are confined to regions with large motions, there are others where they originate from parts of the protein unaffected structurally by binding. Strikingly, only a few of the complexes have interface residues responsible for dissociation. We find two main modes of response: In one mode, remote control of dissociation in which disruption of the electrostatic potential distribution along protein surfaces play the major role; in the alternative mode, mechanical control of dissociation by remote residues prevail. In the former, dissociation is triggered by changes in the local environment of the protein, e.g., pH or ionic strength, while in the latter, specific perturbations arriving at the controlling residues, e.g., via binding to a third interacting partner is required for decomplexation. We resolve the observations by relying on an electromechanical coupling model which reduces to the usual elastic network result in the limit of the lack of coupling. We validate the approach by illustrating the biological significance of top residues selected by PRS on select cases where we show that the residues whose perturbation leads to the observed conformational changes correspond to either functionally important or highly conserved residues in the complex.
Collapse
Affiliation(s)
- Haleh Abdizadeh
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Farzaneh Jalalypour
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
11
|
Shin WH, Kumazawa K, Imai K, Hirokawa T, Kihara D. Current Challenges and Opportunities in Designing Protein-Protein Interaction Targeted Drugs. Adv Appl Bioinform Chem 2020; 13:11-25. [PMID: 33209039 PMCID: PMC7669531 DOI: 10.2147/aabc.s235542] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
It has been noticed that the efficiency of drug development has been decreasing in the past few decades. To overcome the situation, protein-protein interactions (PPIs) have been identified as new drug targets as early as 2000. PPIs are more abundant in human cells than single proteins and play numerous important roles in cellular processes including diseases. However, PPIs have very different physicochemical features from the conventional drug targets, which make targeting PPIs challenging. Therefore, as of now, only a small number of PPI inhibitors have been approved or progressed to a stage of clinical trial. In this article, we first overview previous works that analyzed differences between PPIs with PPI targeting ligands and conventional drugs with their binding pockets. Then, we constructed an up-to-date list of PPI targeting drugs that have been approved or are currently under clinical trial and have bound drug-target structures available. Using the dataset, we analyzed the PPIs and their ligands using several scores of druggability. Druggability scores showed that PPI sites and their drugs targeting PPIs are less druggable than conventional binding pockets and drugs, which also indicates that PPI drugs do not follow the conventional rules for drug design, such as Lipinski's rule of five. Our analyses suggest that developing a new rule would be beneficial for guiding PPI-drug discovery.
Collapse
Affiliation(s)
- Woong-Hee Shin
- Department of Chemical Science Education, Sunchon National University, Suncheon57922, Republic of Korea
| | - Keiko Kumazawa
- Pharmaceutical Discovery Research Laboratories, Teijin Pharma Limited, Tokyo191-8512, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo135-0064, Japan
| | - Takatsugu Hirokawa
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo135-0064, Japan
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN47906, USA
- Department of Computer Science, Purdue University, West Lafayette, IN47906, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN47906, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Care, University of Cincinnati, Cincinnati, OH45229, USA
| |
Collapse
|
12
|
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med 2020; 10:E200. [PMID: 33138097 PMCID: PMC7711505 DOI: 10.3390/jpm10040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.
Collapse
Affiliation(s)
- Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Francisca E. Cara-Lupiañez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine—PTS—University of Granada, 18016 Granada, Spain
| | | | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| |
Collapse
|
13
|
Trajanoska K, Rivadeneira F. Genomic Medicine: Lessons Learned From Monogenic and Complex Bone Disorders. Front Endocrinol (Lausanne) 2020; 11:556610. [PMID: 33162933 PMCID: PMC7581702 DOI: 10.3389/fendo.2020.556610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Current genetic studies of monogenic and complex bone diseases have broadened our understanding of disease pathophysiology, highlighting the need for medical interventions and treatments tailored to the characteristics of patients. As genomic research progresses, novel insights into the molecular mechanisms are starting to provide support to clinical decision-making; now offering ample opportunities for disease screening, diagnosis, prognosis and treatment. Drug targets holding mechanisms with genetic support are more likely to be successful. Therefore, implementing genetic information to the drug development process and a molecular redefinition of skeletal disease can help overcoming current shortcomings in pharmaceutical research, including failed attempts and appalling costs. This review summarizes the achievements of genetic studies in the bone field and their application to clinical care, illustrating the imminent advent of the genomic medicine era.
Collapse
|
14
|
Shi Q, Pei F, Silverman GA, Pak SC, Perlmutter DH, Liu B, Bahar I. Mechanisms of Action of Autophagy Modulators Dissected by Quantitative Systems Pharmacology Analysis. Int J Mol Sci 2020; 21:ijms21082855. [PMID: 32325894 PMCID: PMC7215584 DOI: 10.3390/ijms21082855] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities.
Collapse
Affiliation(s)
- Qingya Shi
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (Q.S.); (F.P.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fen Pei
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (Q.S.); (F.P.)
| | - Gary A. Silverman
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; (G.A.S.); (S.C.P.); (D.H.P.)
| | - Stephen C. Pak
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; (G.A.S.); (S.C.P.); (D.H.P.)
| | - David H. Perlmutter
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; (G.A.S.); (S.C.P.); (D.H.P.)
| | - Bing Liu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (Q.S.); (F.P.)
- Correspondence: (B.L.); (I.B.)
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (Q.S.); (F.P.)
- Correspondence: (B.L.); (I.B.)
| |
Collapse
|
15
|
Infante T, Del Viscovo L, De Rimini ML, Padula S, Caso P, Napoli C. Network Medicine: A Clinical Approach for Precision Medicine and Personalized Therapy in Coronary Heart Disease. J Atheroscler Thromb 2020; 27:279-302. [PMID: 31723086 PMCID: PMC7192819 DOI: 10.5551/jat.52407] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Early identification of coronary atherosclerotic pathogenic mechanisms is useful for predicting the risk of coronary heart disease (CHD) and future cardiac events. Epigenome changes may clarify a significant fraction of this "missing hereditability", thus offering novel potential biomarkers for prevention and care of CHD. The rapidly growing disciplines of systems biology and network science are now poised to meet the fields of precision medicine and personalized therapy. Network medicine integrates standard clinical recording and non-invasive, advanced cardiac imaging tools with epigenetics into deep learning for in-depth CHD molecular phenotyping. This approach could potentially explore developing novel drugs from natural compounds (i.e. polyphenols, folic acid) and repurposing current drugs, such as statins and metformin. Several clinical trials have exploited epigenetic tags and epigenetic sensitive drugs both in primary and secondary prevention. Due to their stability in plasma and easiness of detection, many ongoing clinical trials are focused on the evaluation of circulating miRNAs (e.g. miR-8059 and miR-320a) in blood, in association with imaging parameters such as coronary calcifications and stenosis degree detected by coronary computed tomography angiography (CCTA), or functional parameters provided by FFR/CT and PET/CT. Although epigenetic modifications have also been prioritized through network based approaches, the whole set of molecular interactions (interactome) in CHD is still under investigation for primary prevention strategies.
Collapse
Affiliation(s)
- Teresa Infante
- Department of Advanced Clinical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Luca Del Viscovo
- Department of Precision Medicine, Section of Diagnostic Imaging, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Sergio Padula
- Department of Cardiology, A.O.R.N. Dei Colli, Monaldi Hospital, Naples, Italy
| | - Pio Caso
- Department of Cardiology, A.O.R.N. Dei Colli, Monaldi Hospital, Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- IRCCS SDN, Naples, Italy
| |
Collapse
|
16
|
Rasafar N, Barzegar A, Mehdizadeh Aghdam E. Design and development of high affinity dual anticancer peptide-inhibitors against p53-MDM2/X interaction. Life Sci 2020; 245:117358. [PMID: 32001262 DOI: 10.1016/j.lfs.2020.117358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
AIMS Inhibition of P53-MDM2/X interaction is known as an effective cancer therapy strategy. In this regard, pDI peptide was introduced previously with the potential of targeting MDM2. In this research, the large-scale peptide mutation screening was used to achieve the best sequence of pDI with the highest affinity for inhibition activity against MDM2/X. MAIN METHODS Three mutant peptides of pDI as dual inhibitor peptides including single mutations of pDIm/4W, pDIm/11M and double mutations of pDIdm/4W11M were presented with the high affinities to inhibit both MDM2/X. The selected mutants were then evaluated comprehensively to confirm their ability as potent MDM2/X inhibitors, using a theoretical simulation approach. KEY FINDINGS MD simulations analyses confirmed their dual inhibition potential against both MDM2/X interactions with p53 protein. The developed pDIm and mainly pDIdm peptides showed stable conformations over the simulation time with conserved secondary structure and effective interaction with MDM2/X by physical binding such as hydrogen bonding. Besides, umbrella sampling free energy calculation indicated higher binding energy, ΔGbinding, of pDIm-MDM2/X and pDIdm-MDM2/X compared to pDI-MDM2/X. SIGNIFICANCE The optimized and improved mutant pDI, pDIdm, with more effective ΔGbinding values of -30 and -25 kcal/mol to MDMX and MDM2, respectively, is recommended as a promising anticancer agent and suitable candidate for experimental evaluations.
Collapse
Affiliation(s)
- Nasim Rasafar
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| | - Abolfazl Barzegar
- Research Institute of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran.
| | - Elnaz Mehdizadeh Aghdam
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Ghadermarzi S, Li X, Li M, Kurgan L. Sequence-Derived Markers of Drug Targets and Potentially Druggable Human Proteins. Front Genet 2019; 10:1075. [PMID: 31803227 PMCID: PMC6872670 DOI: 10.3389/fgene.2019.01075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Recent research shows that majority of the druggable human proteome is yet to be annotated and explored. Accurate identification of these unexplored druggable proteins would facilitate development, screening, repurposing, and repositioning of drugs, as well as prediction of new drug–protein interactions. We contrast the current drug targets against the datasets of non-druggable and possibly druggable proteins to formulate markers that could be used to identify druggable proteins. We focus on the markers that can be extracted from protein sequences or names/identifiers to ensure that they can be applied across the entire human proteome. These markers quantify key features covered in the past works (topological features of PPIs, cellular functions, and subcellular locations) and several novel factors (intrinsic disorder, residue-level conservation, alternative splicing isoforms, domains, and sequence-derived solvent accessibility). We find that the possibly druggable proteins have significantly higher abundance of alternative splicing isoforms, relatively large number of domains, higher degree of centrality in the protein-protein interaction networks, and lower numbers of conserved and surface residues, when compared with the non-druggable proteins. We show that the current drug targets and possibly druggable proteins share involvement in the catalytic and signaling functions. However, unlike the drug targets, the possibly druggable proteins participate in the metabolic and biosynthesis processes, are enriched in the intrinsic disorder, interact with proteins and nucleic acids, and are localized across the cell. To sum up, we formulate several markers that can help with finding novel druggable human proteins and provide interesting insights into the cellular functions and subcellular locations of the current drug targets and potentially druggable proteins.
Collapse
Affiliation(s)
- Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Xingyi Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
18
|
Dincer C, Kaya T, Keskin O, Gursoy A, Tuncbag N. 3D spatial organization and network-guided comparison of mutation profiles in Glioblastoma reveals similarities across patients. PLoS Comput Biol 2019; 15:e1006789. [PMID: 31527881 PMCID: PMC6782092 DOI: 10.1371/journal.pcbi.1006789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 10/08/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor. Molecular heterogeneity is a hallmark of GBM tumors that is a barrier in developing treatment strategies. In this study, we used the nonsynonymous mutations of GBM tumors deposited in The Cancer Genome Atlas (TCGA) and applied a systems level approach based on biophysical characteristics of mutations and their organization in patient-specific subnetworks to reduce inter-patient heterogeneity and to gain potential clinically relevant insights. Approximately 10% of the mutations are located in "patches" which are defined as the set of residues spatially in close proximity that are mutated across multiple patients. Grouping mutations as 3D patches reduces the heterogeneity across patients. There are multiple patches that are relatively small in oncogenes, whereas there are a small number of very large patches in tumor suppressors. Additionally, different patches in the same protein are often located at different domains that can mediate different functions. We stratified the patients into five groups based on their potentially affected pathways that are revealed from the patient-specific subnetworks. These subnetworks were constructed by integrating mutation profiles of the patients with the interactome data. Network-guided clustering showed significant association between the groups and patient survival (P-value = 0.0408). Also, each group carries a set of signature 3D mutation patches that affect predominant pathways. We integrated drug sensitivity data of GBM cell lines with the mutation patches and the patient groups to analyze the possible therapeutic outcome of these patches. We found that Pazopanib might be effective in Group 3 by targeting CSF1R. Additionally, inhibiting ATM that is a mediator of PTEN phosphorylation may be ineffective in Group 2. We believe that from mutations to networks and eventually to clinical and therapeutic data, this study provides a novel perspective in the network-guided precision medicine.
Collapse
Affiliation(s)
- Cansu Dincer
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey
| | - Tugba Kaya
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
| | - Attila Gursoy
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Nurcan Tuncbag
- Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkey
- Cancer Systems Biology Laboratory (CanSyL-METU), Ankara, Turkey
- * E-mail:
| |
Collapse
|
19
|
Pulley JM, Rhoads JP, Jerome RN, Challa AP, Erreger KB, Joly MM, Lavieri RR, Perry KE, Zaleski NM, Shirey-Rice JK, Aronoff DM. Using What We Already Have: Uncovering New Drug Repurposing Strategies in Existing Omics Data. Annu Rev Pharmacol Toxicol 2019; 60:333-352. [PMID: 31337270 DOI: 10.1146/annurev-pharmtox-010919-023537] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The promise of drug repurposing is to accelerate the translation of knowledge to treatment of human disease, bypassing common challenges associated with drug development to be more time- and cost-efficient. Repurposing has an increased chance of success due to the previous validation of drug safety and allows for the incorporation of omics. Hypothesis-generating omics processes inform drug repurposing decision-making methods on drug efficacy and toxicity. This review summarizes drug repurposing strategies and methodologies in the context of the following omics fields: genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, phenomics, pregomics, and personomics. While each omics field has specific strengths and limitations, incorporating omics into the drug repurposing landscape is integral to its success.
Collapse
Affiliation(s)
- Jill M Pulley
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Jillian P Rhoads
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Rebecca N Jerome
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Anup P Challa
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Kevin B Erreger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Meghan M Joly
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Robert R Lavieri
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Kelly E Perry
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Nicole M Zaleski
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Jana K Shirey-Rice
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - David M Aronoff
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.,Departments of Obstetrics and Gynecology, and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;
| |
Collapse
|
20
|
Benincasa G, Costa D, Infante T, Lucchese R, Donatelli F, Napoli C. Interplay between genetics and epigenetics in modulating the risk of venous thromboembolism: A new challenge for personalized therapy. Thromb Res 2019; 177:145-153. [DOI: 10.1016/j.thromres.2019.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 02/09/2023]
|