1
|
Xia R, Wu B, Jian Y, Li X, Zhang W, Zeng X, Chen S. Cordycepin improves liver fibrosis and the intestinal flora disturbance induced by 3,5-diethoxycarbonyl-1,4-dihydroxylidine in mice. Eur J Pharmacol 2025; 987:177172. [PMID: 39681281 DOI: 10.1016/j.ejphar.2024.177172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND AND AIMS Studies have shown that improving the intestinal flora can alleviate the progression of liver fibrosis. Cordycepin has shown potential anti-inflammatory and anti-fibrosis effects. In this study, we aimed to investigate the effects of cordycepin on liver fibrosis and how it affects the intestinal flora composition to determine a potentially effective therapeutic approach for liver fibrosis. EXPERIMENTAL PROCEDURE C57BL/6 mice were fed a special diet containing 3,5-diethoxycarbonyl-1,4-dihydroxylidine (DDC) to induce liver fibrosis. The histopathological changes in liver tissue and intestinal mucosa were determining via immunohistochemical staining. Serum transaminase levels were determined using biochemical test kits. Faecalibaculum samples were sequenced via 16S rRNA sequencing. RESULTS Cordycepin reduced DDC-induced liver collagen deposition, improved serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and reduced the levels of endothelial dysfunction markers vascular cell adhesion molecule 1 (VCAM) and thrombomodulin (TM). Our analysis of the intestinal flora composition showed that Dubosiella, Faecalibaculum, and Bifidobacterium were significantly increased in the cordycepin-treated group (P < 0.05). The Dubosiella level was significantly negatively correlated with TM and VCAM levels, and serum levels of ALT and AST (P < 0.05). After treatment with cordycepin, the microvilli length in the intestinal mucosa, the density of goblet cells, and the expressions of occludin and zonula occludens protein 1 (ZO-1) were significantly increased (P < 0.05). CONCLUSION We discovered that cordycepin improves liver fibrosis in vivo. We found that Dubosiella levels were considerably increased in the cordycepin-treated group and were significantly negatively correlated with liver sinusoidal endothelial damage.
Collapse
Affiliation(s)
- Ruiqi Xia
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China; Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Wu
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yourong Jian
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangting Li
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Zhang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqing Zeng
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China; Evidence-based Medicine Centre, Fudan University, Shanghai, China.
| | - Shiyao Chen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China; Evidence-based Medicine Centre, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q, Perl AKT, Miethke AG, Burg A, Shi T, Hildeman DA, Woodle ESS, Kofron JM, Devarajan P. Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts. Sci Rep 2024; 14:29307. [PMID: 39592775 PMCID: PMC11599588 DOI: 10.1038/s41598-024-80930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrβ) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrβ-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA
| | - Davy Vanhoutte
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaitlynn Stowers
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA
| | - Michelle Sargent
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mike Adam
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA
| | - Anne Karina T Perl
- Division of Neonatology and Pulmonary biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander G Miethke
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Burg
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tiffany Shi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - E Steve S Woodle
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA.
| |
Collapse
|
3
|
Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q, Perl AKT, Miethke AG, Burg A, Shi T, Hildeman DA, Woodle ESS, Kofron JM, Devarajan P. Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts. RESEARCH SQUARE 2024:rs.3.rs-4746078. [PMID: 39184103 PMCID: PMC11343171 DOI: 10.21203/rs.3.rs-4746078/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrβ) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrβ-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.
Collapse
|
4
|
Bedke T, Stumme F, Tomczak M, Steglich B, Jia R, Bohmann S, Wittek A, Kempski J, Göke E, Böttcher M, Reher D, Franke A, Lennartz M, Clauditz T, Sauter G, Fründt T, Weidemann S, Tiegs G, Schramm C, Gagliani N, Pelczar P, Huber S. Protective function of sclerosing cholangitis on IBD. Gut 2024; 73:1292-1301. [PMID: 38839272 PMCID: PMC11287650 DOI: 10.1136/gutjnl-2023-330856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 05/09/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE There is a strong clinical association between IBD and primary sclerosing cholangitis (PSC), a chronic disease of the liver characterised by biliary inflammation that leads to strictures and fibrosis. Approximately 60%-80% of people with PSC will also develop IBD (PSC-IBD). One hypothesis explaining this association would be that PSC drives IBD. Therefore, our aim was to test this hypothesis and to decipher the underlying mechanism. DESIGN Colitis severity was analysed in experimental mouse models of colitis and sclerosing cholangitis, and people with IBD and PSC-IBD. Foxp3+ Treg-cell infiltration was assessed by qPCR and flow cytometry. Microbiota profiling was carried out from faecal samples of people with IBD, PSC-IBD and mouse models recapitulating these diseases. Faecal microbiota samples collected from people with IBD and PSC-IBD were transplanted into germ-free mice followed by colitis induction. RESULTS We show that sclerosing cholangitis attenuated IBD in mouse models. Mechanistically, sclerosing cholangitis causes an altered intestinal microbiota composition, which promotes Foxp3+ Treg-cell expansion, and thereby protects against IBD. Accordingly, sclerosing cholangitis promotes IBD in the absence of Foxp3+ Treg cells. Furthermore, people with PSC-IBD have an increased Foxp3+ expression in the colon and an overall milder IBD severity. Finally, by transplanting faecal microbiota into gnotobiotic mice, we showed that the intestinal microbiota of people with PSC protects against colitis. CONCLUSION This study shows that PSC attenuates IBD and provides a comprehensive insight into the mechanisms involved in this effect.
Collapse
Affiliation(s)
- Tanja Bedke
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Stumme
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Tomczak
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Babett Steglich
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rongrong Jia
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Bohmann
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agnes Wittek
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Kempski
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Emilia Göke
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marius Böttcher
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Reher
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anissa Franke
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Center of Diagnostics, Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology with the Section Molecular Pathology and Cytopathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Clauditz
- Center of Diagnostics, Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology with the Section Molecular Pathology and Cytopathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Center of Diagnostics, Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology with the Section Molecular Pathology and Cytopathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorben Fründt
- I.Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Center of Diagnostics, Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Center for Experimental Medicine, Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I.Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Penelope Pelczar
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, Section of Molecular Immunology and Gastroenterology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Hellen DJ, Fay ME, Lee DH, Klindt-Morgan C, Bennett A, Pachura KJ, Grakoui A, Huppert SS, Dawson PA, Lam WA, Karpen SJ. BiliQML: a supervised machine-learning model to quantify biliary forms from digitized whole slide liver histopathological images. Am J Physiol Gastrointest Liver Physiol 2024; 327:G1-G15. [PMID: 38651949 PMCID: PMC11376979 DOI: 10.1152/ajpgi.00058.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
The progress of research focused on cholangiocytes and the biliary tree during development and following injury is hindered by limited available quantitative methodologies. Current techniques include two-dimensional standard histological cell-counting approaches, which are rapidly performed, error prone, and lack architectural context or three-dimensional analysis of the biliary tree in opacified livers, which introduce technical issues along with minimal quantitation. The present study aims to fill these quantitative gaps with a supervised machine-learning model (BiliQML) able to quantify biliary forms in the liver of anti-keratin 19 antibody-stained whole slide images. Training utilized 5,019 researcher-labeled biliary forms, which following feature selection, and algorithm optimization, generated an F score of 0.87. Application of BiliQML on seven separate cholangiopathy models [genetic (Afp-CRE;Pkd1l1null/Fl, Alb-CRE;Rbp-jkfl/fl, and Albumin-CRE;ROSANICD), surgical (bile duct ligation), toxicological (3,5-diethoxycarbonyl-1,4-dihydrocollidine), and therapeutic (Cyp2c70-/- with ileal bile acid transporter inhibition)] allowed for a means to validate the capabilities and utility of this platform. The results from BiliQML quantification revealed biological and pathological differences across these seven diverse models, indicating a highly sensitive, robust, and scalable methodology for the quantification of distinct biliary forms. BiliQML is the first comprehensive machine-learning platform for biliary form analysis, adding much-needed morphologic context to standard immunofluorescence-based histology, and provides clinical and basic science researchers with a novel tool for the characterization of cholangiopathies.NEW & NOTEWORTHY BiliQML is the first comprehensive machine-learning platform for biliary form analysis in whole slide histopathological images. This platform provides clinical and basic science researchers with a novel tool for the improved quantification and characterization of biliary tract disorders.
Collapse
Affiliation(s)
- Dominick J Hellen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Meredith E Fay
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, United States
| | - David H Lee
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Caroline Klindt-Morgan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ashley Bennett
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Kimberly J Pachura
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Arash Grakoui
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Stacey S Huppert
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Paul A Dawson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Hameed H, Irshad N, Yousaf MA, Mumtaz S, Sohail I. Berberine ameliorates the progression of primary sclerosing cholangitis by activating farnesoid X receptor. Cell Biochem Biophys 2024; 82:767-776. [PMID: 38332450 DOI: 10.1007/s12013-024-01226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Primary sclerosing cholangitis (PSC) is a rare cholestatic disease characterized by biliary infiltration, hepatic fibrosis and bile duct destruction. To date, treatment options for PSC are very limited. Therefore, the current study is aimed to investigate the therapeutic potential of berberine (BBR) against PSC. The disease was induced by feeding the mice with 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-collidine (DDC) for four weeks. The serum biochemistry and liver histology were analyzed. Furthermore, the expression of farnesoid X receptor (FXR) was also evaluated by real-time PCR. The results indicated that berberine prevents the progression of PSC by modulating the expression of FXR which ultimately regulates other genes (including Cyp7A1 and BSEP) thus maintaining bile acids homeostasis. Furthermore, the docking analysis showed that berberine interacts with the binding pocket of FXR to activate the protein thus acting as an FXR agonist. In conclusion, data indicate that berberine protects the liver from PSC-related injury. This effect might be due to the modulation of FXR activity.
Collapse
Affiliation(s)
- Hassan Hameed
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Nida Irshad
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Abrar Yousaf
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sidra Mumtaz
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Imran Sohail
- Department of Zoology, Government College University Lahore, Lahore, Pakistan.
| |
Collapse
|
7
|
Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q, Perl AKT, Miethke AG, Burg A, Shi T, Hildeman DA, Woodle ESS, Kofron JM, Devarajan P. Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594404. [PMID: 38798483 PMCID: PMC11118280 DOI: 10.1101/2024.05.15.594404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrβ) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrβ-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.
Collapse
|
8
|
Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression-An Overview. Cells 2024; 13:579. [PMID: 38607018 PMCID: PMC11011399 DOI: 10.3390/cells13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.
Collapse
Affiliation(s)
- Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mallikarjuna Siraganahalli Eshwaraiah
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| | - Jaquelene Kennedy
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| |
Collapse
|
9
|
Choi H, Oh D, Kim HJ, Chambugong M, Kim MH, Lee MO, Park HG. An RORα agonist, ODH-08, inhibits fibrogenic activation of hepatic stellate cells via suppression of SMAD3. Life Sci 2024; 340:122443. [PMID: 38242496 DOI: 10.1016/j.lfs.2024.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
AIMS Hepatic fibrosis is a dynamic process characterized by the net accumulation of an extracellular matrix resulting from chronic liver injury such as nonalcoholic steatohepatitis. Activation of hepatic stellate cells (HSCs) plays a role in transdifferentiation of quiescent cells into fibrogenic myofibroblasts. We aimed to examine the function of retinoic acid receptor-related orphan receptor alpha (RORα) and its novel agonistic ligand, 1-(4-benzyloxybenzyl)-3-(2-dimethylaminoethyl)-thiourea (ODH-08) against activation of HSCs using hepatic fibrosis mouse models. MAIN METHODS Chemical synthesis, a reporter gene assay, surface plasmon resonance analysis, and a docking study were performed to evaluate ODH-08 as a ligand of RORα. In vivo experiments with mice fed a Western diet were performed to evaluate the effect of ODH-08. The human HSC line, Lx-2, and primary mouse HSCs were employed to identify the molecular mechanisms underlying the antifibrogenic effect of ODH-08. KEY FINDINGS A novel RORα-selective ligand, ODH-08, was developed based on modification of JC1-40, an analog of N-methylthiourea. Administration of ODH-08 to the Western diet-fed mice reduced hepatic collagen deposition and expression levels of fibrogenic markers such as α-smooth muscle actin and collagen type I alpha 1 chain. Activation of RORα-either by transient overexpression of RORα or treatment with ODH-08-suppressed the expression of fibrogenic proteins in HSCs. The activation of RORα suppressed the activity of SMAD2 and 3, which are the primary downstream proteins of transforming growth factor β. SIGNIFICANCE RORα and its agonist ODH-08 have a potent antifibrotic effect, which could provide a novel antifibrotic strategy against hepatic fibrosis.
Collapse
Affiliation(s)
- Haena Choi
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Daehyun Oh
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul, Republic of Korea
| | - Melody Chambugong
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Mi-Hyun Kim
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea.
| | - Hyeung-Geun Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea; Research Institute of Pharmaceutical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Eissazadeh S, Mohammadi S, Faradonbeh FA, Rathouska JU, Nemeckova I, Tripska K, Vitverova B, Dohnalkova E, Vasinova M, Fikrova P, Sa ICI, Micuda S, Nachtigal P. Endoglin and soluble endoglin in liver sinusoidal endothelial dysfunction in vivo. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166990. [PMID: 38110128 DOI: 10.1016/j.bbadis.2023.166990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) play a crucial role in regulating the hepatic function. Endoglin (ENG), a transmembrane glycoprotein, was shown to be related to the development of endothelial dysfunction. In this study, we hypothesized the relationship between changes in ENG expression and markers of liver sinusoidal endothelial dysfunction (LSED) during liver impairment. Male C57BL/6J mice aged 9-12 weeks were fed with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet (intrahepatic cholestasis) or choline-deficient l-amino acid defined high-fat diet (CDAA-HFD) (non-alcoholic steatohepatitis (NASH)). Significant increases in liver enzymes, fibrosis, and inflammation biomarkers were observed in both cholestasis and NASH. Decreased p-eNOS/eNOS and VE-cadherin protein expression and a significant increase in VCAM-1 and ICAM-1 expression were detected, indicating LSED in both mouse models of liver damage. A significant reduction of ENG in the DDC-fed mice, while a significant increase of ENG in the CDAA-HFD group was observed. Both DDC and CDAA-HFD-fed mice showed a significant increase in MMP-14 protein expression, which is related to significantly increased levels of soluble endoglin (sENG) in the plasma. In conclusion, we demonstrated that intrahepatic cholestasis and NASH result in an altered ENG expression, predominantly in LSECs, suggesting a critical role of ENG expression for the proper function of liver sinusoids. Both pathologies resulted in elevated sENG levels, cleaved by MMP-14 expressed predominantly from LSECs, indicating sENG as a liver injury biomarker.
Collapse
Affiliation(s)
- Samira Eissazadeh
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - SeyedehNiloufar Mohammadi
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Fatemeh Alaei Faradonbeh
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Urbankova Rathouska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Ivana Nemeckova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Katarina Tripska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Barbora Vitverova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Ester Dohnalkova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Martina Vasinova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Petra Fikrova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Ivone Cristina Igreja Sa
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic.
| |
Collapse
|
11
|
Fu K, Dai S, Li Y, Ma C, Xue X, Zhang S, Wang C, Zhou H, Zhang Y, Li Y. The protective effect of forsythiaside A on 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced cholestatic liver injury in mice: Based on targeted metabolomics and molecular biology technology. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166822. [PMID: 37523877 DOI: 10.1016/j.bbadis.2023.166822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Cholestasis is a disorder of bile secretion and excretion caused by a variety of etiologies. At present, there is a lack of functional foods or drugs that can be used for intervention. Forsythiaside A (FTA) is a natural phytochemical component isolated from the medicinal plant Forsythia suspensa (Thunb.) Vahl, which has a significant hepatoprotective effect. In this study, we investigated whether FTA could alleviate liver injury induced by cholestasis. In vitro, FTA reversed the decrease in viability of human intrahepatic bile duct epithelial cells, the decrease in antioxidant enzymes (SOD1, CAT and GSH-Px), and cell apoptosis induced by lithocholic acid. In vivo, FTA protected mice from 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver injury, abnormal serum biochemical indexes, abnormal bile duct hyperplasia, and inflammatory infiltration. Furthermore, FTA treatment alleviated liver fibrosis by inhibiting collagen deposition and HSC activation. The metabonomic results showed that DDC-induced bile acid disorders in the liver and serum were reversed after FTA treatment, which may benefit from the activation of the FXR/BSEP axis. In addition, FTA treatment increased the levels of antioxidant enzymes in the serum and liver. Meanwhile, FTA treatment inhibited ROS and MDA levels and cleaved caspase 3 protein expression, thereby reducing DDC-induced hepatic oxidative stress and apoptosis. Further studies showed that the antioxidant effects of FTA were dependent on the activation of the BRG1/NRF2/HO-1 axis. In a word, FTA has a significant hepatoprotective effect on cholestatic liver injury, and can be further developed as a functional food or drug to prevent and treat cholestatic liver injury.
Collapse
Affiliation(s)
- Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Tan Y, Zhao N, Xie Q, Xu Z, Chai J, Zhang X, Li Y. Melatonin attenuates cholestatic liver injury via inhibition of the inflammatory response. Mol Cell Biochem 2023; 478:2527-2537. [PMID: 36869985 DOI: 10.1007/s11010-023-04682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Melatonin, an indole neurohormone secreted mainly by the pineal gland, has been found to be involved in a variety of liver diseases. However, the underlying mechanism by which melatonin ameliorates cholestatic liver injury is not fully understood. In this study, we investigated the mechanism by which melatonin attenuates cholestatic liver injury via inhibition of the inflammatory response. We measured the levels of serum melatonin in patients with obstructive cholestasis (n = 9), patients with primary biliary cholangitis (PBC) (n = 11), and control patients (n = 7). We performed experiments with C57BL/6 J mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and melatonin to verify the role of melatonin in the mouse model of cholestasis. Primary mouse hepatocytes were used for in vitro studies to study the mechanisms of action of melatonin in cholestasis. The levels of serum melatonin were markedly increased and negatively correlated with serum markers of liver injury in cholestatic patients. As expected, oral administration of melatonin significantly attenuated cholestasis-induced liver inflammation and fibrosis in 0.1% DDC diet-fed mice. Further mechanistic studies in cholestatic mice and primary hepatocytes revealed that melatonin reduced the conjugate BA-stimulated expression of cytokines (e.g. Ccl2, Tnfα, and Il6) through the ERK/Egr1 signalling pathway in these models. The levels of serum melatonin are significantly elevated in cholestatic patients. Melatonin treatment ameliorates cholestatic liver injury by suppressing the inflammatory response in vivo and in vitro. Therefore, melatonin is a promising novel therapeutic strategy for cholestasis.
Collapse
Affiliation(s)
- Ya Tan
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Nan Zhao
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiaoling Xie
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ziqian Xu
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Chai
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Xiaoxun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yan Li
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Institute of Digestive Diseases of PLA, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
13
|
Ariño S, Aguilar-Bravo B, Coll M, Lee WY, Peiseler M, Cantallops-Vilà P, Sererols-Viñas L, Martínez-García de la Torre RA, Martínez-Sánchez C, Pedragosa J, Zanatto L, Gratacós-Ginès J, Pose E, Blaya D, Almodóvar X, Fernández-Fernández M, Ruiz-Blázquez P, Lozano JJ, Affo S, Planas AM, Ginès P, Moles A, Kubes P, Sancho-Bru P. Ductular reaction-associated neutrophils promote biliary epithelium proliferation in chronic liver disease. J Hepatol 2023; 79:1025-1036. [PMID: 37348790 PMCID: PMC10585421 DOI: 10.1016/j.jhep.2023.05.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND & AIMS Ductular reaction expansion is associated with poor prognosis in patients with advanced liver disease. However, the mechanisms promoting biliary cell proliferation are largely unknown. Here, we identify neutrophils as drivers of biliary cell proliferation and the defective wound-healing response. METHODS The intrahepatic localization of neutrophils was evaluated in patients with chronic liver disease. Neutrophil dynamics were analyzed by intravital microscopy and neutrophil-labeling assays in DDC-treated mice. Neutrophil depletion or inhibition of recruitment was achieved using a Ly6g antibody or a CXCR1/2 inhibitor, respectively. Mice deficient in PAD4 (peptidyl arginine deiminase 4) and ELANE/NE (neutrophil elastase) were used to investigate the mechanisms underlying ductular reaction expansion. RESULTS In this study we describe a population of ductular reaction-associated neutrophils (DRANs), which are in direct contact with biliary epithelial cells in chronic liver diseases and whose numbers increased in parallel with disease progression. We show that DRANs are immobilized at the site of ductular reaction for a prolonged period of time. In addition, liver neutrophils display a unique phenotypic and transcriptomic profile, showing a decreased phagocytic capacity and increased oxidative burst. Depletion of neutrophils or inhibition of their recruitment reduces DRANs and the expansion of ductular reaction, while mitigating liver fibrosis and angiogenesis. Mechanistically, neutrophils deficient in PAD4 and ELANE abrogate neutrophil-induced biliary cell proliferation, thus indicating the role of neutrophil extracellular traps and elastase release in ductular reaction expansion. CONCLUSIONS Overall, our study reveals the accumulation of DRANs as a hallmark of advanced liver disease and a potential therapeutic target to mitigate ductular reaction and the maladaptive wound-healing response. IMPACT AND IMPLICATIONS Our results indicate that neutrophils are highly plastic and can have an extended lifespan. Moreover, we identify a new role of neutrophils as triggers of expansion of the biliary epithelium. Overall, the results of this study indicate that ductular reaction-associated neutrophils (or DRANs) are new players in the maladaptive tissue-healing response in chronic liver injury and may be a potential target for therapeutic interventions to reduce ductular reaction expansion and promote tissue repair in advanced liver disease.
Collapse
Affiliation(s)
- Silvia Ariño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Beatriz Aguilar-Bravo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar Coll
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Medicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| | - Woo-Yong Lee
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Moritz Peiseler
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Paula Cantallops-Vilà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Sererols-Viñas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Celia Martínez-Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Jordi Pedragosa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Laura Zanatto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Gratacós-Ginès
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Elisa Pose
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Medicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Delia Blaya
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Xènia Almodóvar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Fernández-Fernández
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Department of Experimental Pathology, Institute of Biomedical Research of Barcelona, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Paloma Ruiz-Blázquez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Department of Experimental Pathology, Institute of Biomedical Research of Barcelona, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Silvia Affo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna M Planas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Neuroscience and Experimental Therapeutics, Institute of Biomedical Research of Barcelona, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Pere Ginès
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Medicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Anna Moles
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Department of Experimental Pathology, Institute of Biomedical Research of Barcelona, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Medicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
14
|
Zhou W, VanDuyne P, Zhang C, Liu Y, Riessen R, Barragan M, Rowitz BM, Teran-Garcia M, Boppart SA, Anakk S. Pathological bile acid concentrations in chronic cholestasis cause adipose mitochondrial defects. JHEP Rep 2023; 5:100714. [PMID: 37122689 PMCID: PMC10133756 DOI: 10.1016/j.jhepr.2023.100714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 05/02/2023] Open
Abstract
Background & Aims Although fat loss is observed in patients with cholestasis, how chronically elevated bile acids (BAs) impact white and brown fat depots remains obscure. Methods To determine the direct effect of pathological levels of BAs on lipid accumulation and mitochondrial function, primary white and brown adipocyte cultures along with fat depots from two separate mouse models of cholestatic liver diseases, namely (i) genetic deletion of farnesoid X receptor (Fxr); small heterodimer (Shp) double knockout (DKO) and (ii) injury by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), were used. Results As expected, cholestatic mice accumulate high systemic BA levels and exhibit fat loss. Here, we demonstrate that chronic exposure to pathological BA levels results in mitochondrial dysfunction and defective thermogenesis. Consistently, both DKO and DDC-fed mice exhibit lower body temperature. Importantly, thermoneutral (30 °C) housing of the cholestatic DKO mice rescues the decrease in brown fat mass, and the expression of genes responsible for lipogenesis and regulation of mitochondrial function. To overcome systemic effects, primary adipocyte cultures were treated with pathological BA concentrations. Mitochondrial permeability and respiration analysis revealed that BA overload is sufficient to reduce mitochondrial function in primary adipocytes, which is not as a result of cytotoxicity. Instead, we found robust reductions in uncoupling protein 1 (Ucp1), PR domain containing 16 (Prdm16), and deiodinase, iodothyronine, type II (Dio2) transcripts in brown adipocytes upon treatment with chenodeoxycholic acid, whereas taurocholic acid led to the suppression of Dio2 transcript. This BA-mediated decrease in transcripts was alleviated by pharmacological activation of UCP1. Conclusions High concentrations of BAs cause defective thermogenesis by reducing the expression of crucial regulators of mitochondrial function, including UCP1, which may explain the clinical features of hypothermia and fat loss observed in patients with cholestatic liver diseases. Impact and Implications We uncover a detrimental effect of chronic bile acid overload on adipose mitochondrial function. Pathological concentration of different BAs reduces the expression of distinct genes involved in energy expenditure, which can be mitigated with pharmacological UCP1 activation.
Collapse
Affiliation(s)
- Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Philip VanDuyne
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Chi Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yushan Liu
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ryan Riessen
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Maribel Barragan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Blair M. Rowitz
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Margarita Teran-Garcia
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Corresponding author. Address: Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Tel.: +1 217 300 7905; fax: +1 217 244 5858.
| |
Collapse
|
15
|
Impaired hepatic autophagy exacerbates hepatotoxin induced liver injury. Cell Death Discov 2023; 9:71. [PMID: 36810855 PMCID: PMC9944334 DOI: 10.1038/s41420-023-01368-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Hepatotoxins activate the hepatic survival pathway, but it is unclear whether impaired survival pathways contribute to liver injury caused by hepatotoxins. We investigated the role of hepatic autophagy, a cellular survival pathway, in cholestatic liver injury driven by a hepatotoxin. Here we demonstrate that hepatotoxin contained DDC diet impaired autophagic flux, resulting in the accumulation of p62-Ub-intrahyaline bodies (IHBs) but not the Mallory Denk-Bodies (MDBs). An impaired autophagic flux was associated with a deregulated hepatic protein-chaperonin system and significant decline in Rab family proteins. Additionally, p62-Ub-IHB accumulation activated the NRF2 pathway rather than the proteostasis-related ER stress signaling pathway and suppressed the FXR nuclear receptor. Moreover, we demonstrate that heterozygous deletion of Atg7, a key autophagy gene, aggravated the IHB accumulation and cholestatic liver injury. Conclusion: Impaired autophagy exacerbates hepatotoxin-induced cholestatic liver injury. The promotion of autophagy may represent a new therapeutic approach for hepatotoxin-induced liver damage.
Collapse
|
16
|
Hao J, Shen X, Lu K, Xu Y, Chen Y, Liu J, Shao X, Zhu C, Ding Y, Xie X, Wu J, Yang Q. Costunolide alleviated DDC induced ductular reaction and inflammatory response in murine model of cholestatic liver disease. J Tradit Complement Med 2023. [DOI: 10.1016/j.jtcme.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
|
17
|
Won SM, Lee NY, Oh KK, Gupta H, Sharma SP, Kim KH, Kim BK, Joung HC, Jeong JJ, Ganesan R, Han SH, Yoon SJ, Kim DJ, Suk KT. Gut Lactobacillus and Probiotics Lactobacillus lactis/rhamnosis Ameliorate Liver Fibrosis in Prevention and Treatment. J Microbiol 2023; 61:245-257. [PMID: 36745335 DOI: 10.1007/s12275-023-00014-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/18/2022] [Accepted: 12/21/2022] [Indexed: 02/07/2023]
Abstract
The progression and exacerbation of liver fibrosis are closely related to the gut microbiome. It is hypothesized that some probiotics may slow the progression of liver fibrosis. In human stool analysis [healthy group (n = 44) and cirrhosis group (n = 18)], difference in Lactobacillus genus between healthy group and cirrhosis group was observed. Based on human data, preventive and therapeutic effect of probiotics Lactobacillus lactis and L. rhamnosus was evaluated by using four mice fibrosis models. L. lactis and L. rhamnosus were supplied to 3,5-diethoxycarbonyl-1,4-dihydrocollidine or carbon tetrachloride-induced liver fibrosis C57BL/6 mouse model. Serum biochemical measurements, tissue staining, and mRNA expression in the liver were evaluated. The microbiome was analyzed in mouse cecal contents. In the mouse model, the effects of Lactobacillus in preventing and treating liver fibrosis were different for each microbe species. In case of L. lactis, all models showed preventive and therapeutic effects against liver fibrosis. In microbiome analysis in mouse models administered Lactobacillus, migration and changes in the ratio and composition of the gut microbial community were confirmed. L. lactis and L. rhamnosus showed preventive and therapeutic effects on the progression of liver fibrosis, suggesting that Lactobacillus intake may be a useful strategy for prevention and treatment.
Collapse
Affiliation(s)
- Sung Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Na Young Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute, Ansan, Republic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute, Ansan, Republic of Korea
| | - Hyun Chae Joung
- Chong Kun Dang Bio Research Institute, Ansan, Republic of Korea
| | - Jin Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
18
|
Sun Q, Schwabe RF. Hepatic Stellate Cell Depletion and Genetic Manipulation. Methods Mol Biol 2023; 2669:207-220. [PMID: 37247062 DOI: 10.1007/978-1-0716-3207-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hepatic stellate cells (HSCs) exert key roles in the development of liver disease. Cell-specific genetic labeling, gene knockout and depletion are important for the understanding of the HSC in homeostasis and a wide range of diseases ranging from acute liver injury and liver regeneration to nonalcoholic liver disease and cancer. Here, we will review and compare different Cre-dependent and Cre-independent methods for genetic labeling, gene knockout, HSC tracing and depletion, and their applications to different disease models. We provide detailed protocols for each method including methods to confirm successful and efficient targeting of HSCs.
Collapse
Affiliation(s)
- Qiuyan Sun
- Department of Medicine, Columbia University, New York, NY, USA
| | | |
Collapse
|
19
|
Induced Endothelial Cell-Integrated Liver Assembloids Promote Hepatic Maturation and Therapeutic Effect on Cholestatic Liver Fibrosis. Cells 2022; 11:cells11142242. [PMID: 35883684 PMCID: PMC9317515 DOI: 10.3390/cells11142242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
The transplantation of pluripotent stem cell (PSC)-derived liver organoids has been studied to solve the current donor shortage. However, the differentiation of unintended cell populations, difficulty in generating multi-lineage organoids, and tumorigenicity of PSC-derived organoids are challenges. However, direct conversion technology has allowed for the generation lineage-restricted induced stem cells from somatic cells bypassing the pluripotent state, thereby eliminating tumorigenic risks. Here, liver assembloids (iHEAs) were generated by integrating induced endothelial cells (iECs) into the liver organoids (iHLOs) generated with induced hepatic stem cells (iHepSCs). Liver assembloids showed enhanced functional maturity compared to iHLOs in vitro and improved therapeutic effects on cholestatic liver fibrosis animals in vivo. Mechanistically, FN1 expressed from iECs led to the upregulation of Itgα5/β1 and Hnf4α in iHEAs and were correlated to the decreased expression of genes related to hepatic stellate cell activation such as Lox and Spp1 in the cholestatic liver fibrosis animals. In conclusion, our study demonstrates the possibility of generating transplantable iHEAs with directly converted cells, and our results evidence that integrating iECs allows iHEAs to have enhanced hepatic maturation compared to iHLOs.
Collapse
|
20
|
Faccioli LA, Dias ML, Paranhos BA, dos Santos Goldenberg RC. Liver cirrhosis: An overview of experimental models in rodents. Life Sci 2022; 301:120615. [DOI: 10.1016/j.lfs.2022.120615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023]
|
21
|
Pantasis S, Friemel J, Brütsch SM, Hu Z, Krautbauer S, Liebisch G, Dengjel J, Weber A, Werner S, Bordoli MR. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J Cell Sci 2022; 135:275016. [PMID: 35293576 PMCID: PMC9016620 DOI: 10.1242/jcs.259243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Vertebrate lonesome kinase (VLK) is the only known extracellular tyrosine kinase, but its physiological functions are largely unknown. We show that VLK is highly expressed in hepatocytes of neonatal mice, but downregulated during adulthood. To determine the role of VLK in liver homeostasis and regeneration, we generated mice with a hepatocyte-specific knockout of the VLK gene (Pkdcc). Cultured progenitor cells established from primary hepatocytes of Pkdcc knockout mice produced a secretome, which promoted their own proliferation in 3D spheroids and proliferation of cultured fibroblasts. In vivo, Pkdcc knockout mice developed liver steatosis with signs of inflammation and perivascular fibrosis upon aging, combined with expansion of liver progenitor cells. In response to chronic CCl4-induced liver injury, the pattern of deposited collagen was significantly altered in these mice. The liver injury marker alpha-fetoprotein (AFP) was increased in the secretome of VLK-deficient cultured progenitor cells and in liver tissues of aged or CCl4-treated knockout mice. These results support a key role for VLK and extracellular protein phosphorylation in liver homeostasis and repair through paracrine control of liver cell function and regulation of appropriate collagen deposition. This article has an associated First Person interview with the first author of the paper. Summary: The secreted protein kinase VLK is released from hepatocytes and protects the liver from perivascular fibrosis and inflammation.
Collapse
Affiliation(s)
- Sophia Pantasis
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| | - Juliane Friemel
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Salome Mirjam Brütsch
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| | - Zehan Hu
- Department of Biology, Université de Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Joern Dengjel
- Department of Biology, Université de Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| | - Mattia Renato Bordoli
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology ETH, Otto-Stern Weg 7, CH-8093, Zurich, Switzerland
| |
Collapse
|
22
|
Di Matteo S, Di Meo C, Carpino G, Zoratto N, Cardinale V, Nevi L, Overi D, Costantini D, Pinto C, Montanari E, Marzioni M, Maroni L, Benedetti A, Viola M, Coviello T, Matricardi P, Gaudio E, Alvaro D. Therapeutic effects of dexamethasone-loaded hyaluronan nanogels in the experimental cholestasis. Drug Deliv Transl Res 2022; 12:1959-1973. [PMID: 35226290 PMCID: PMC9242918 DOI: 10.1007/s13346-022-01132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/27/2022]
Abstract
A major function of the intrahepatic biliary epithelium is bicarbonate excretion in bile. Recent reports indicate that budesonide, a corticosteroid with high receptor affinity and hepatic first pass clearance, increases the efficacy of ursodeoxycholic acid, a choleretic agent, in primary biliary cholangitis patients. We have previously reported that bile ducts isolated from rats treated with dexamethasone or budesonide showed an enhanced activity of the Na+/H+ exchanger isoform 1 (NHE1) and Cl-/HCO3- exchanger protein 2 (AE2) . Increasing the delivery of steroids to the liver may result in three beneficial effects: increase in the choleresis, treatment of the autoimmune or inflammatory liver injury and reduction of steroids' systemic harmful effects. In this study, the steroid dexamethasone was loaded into nanohydrogels (or nanogels, NHs), in order to investigate corticosteroid-induced increased activities of transport processes driving bicarbonate excretion in the biliary epithelium (NHE-1 isoform) and to evaluate the effects of dexamethasone-loaded NHs (NHs/dex) on liver injury induced by experimental cholestatis. Our results showed that NHs and NHs/dex do not reduce cell viability in vitro in human cholangiocyte cell lines. Primary and immortalized human cholangiocytes treated with NHs/dex show an increase in the functional marker expression of NHE1 cholangiocytes compared to control groups. A mouse model of cholangiopathy treated with NHs/dex shows a reduction in markers of hepatocellular injury compared to control groups (NHs, dex, or sham group). In conclusion, we believe that the NHs/dex formulation is a suitable candidate to be investigated in preclinical models of cholangiopathies.
Collapse
Affiliation(s)
- Sabina Di Matteo
- Department of Immunology, Bambino Gesù Childrens Hospital, IRCCS, Rome, Italy
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.
| | - Guido Carpino
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Nicole Zoratto
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Lorenzo Nevi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Diletta Overi
- Department of Anatomical, Forensic, Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Costantini
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Elita Montanari
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica Delle Marche, Ancona, Italy
| | - Marco Viola
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Tommasina Coviello
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Pietro Matricardi
- Department of Movement, Division of Health Sciences, Human and Health Sciences, University of Rome "Foro Italico, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Forensic, Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Kim JY, Jang HJ, Leem J, Kim GM. Protective Effects of Bee Venom-Derived Phospholipase A 2 against Cholestatic Liver Disease in Mice. Biomedicines 2021; 9:biomedicines9080992. [PMID: 34440196 PMCID: PMC8394029 DOI: 10.3390/biomedicines9080992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatocyte apoptosis and inflammation play important roles in cholestatic liver diseases. Bee venom-derived secretory phospholipase A2 (bvPLA2) has been shown to ameliorate various inflammatory diseases. However, whether bvPLA2 has a therapeutic effect against cholestatic liver disease has not been evaluated. Therefore, we investigated the effects of bvPLA2 on cholestatic liver injury and fibrosis in a murine model of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet feeding. The administration of bvPLA2 ameliorated liver damage, cholestasis, and fibrosis in DDC diet-fed mice, as assessed by serum biochemical tests and histological examinations. In addition, bvPLA2 reduced myofibroblast accumulation, concomitant with suppression of transforming growth factor-β signaling cascade. The administration of bvPLA2 inhibited hepatocyte apoptosis in DDC diet-fed mice as represented by a reduction in the number of cells stained with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and suppression of caspase-3 activation. Moreover, bvPLA2 reduced cytokine production along with the inhibition of the nuclear factor kappa-B pathway. The number of regulatory T-cells was increased by bvPLA2, while the number of other immune cells, including neutrophils, macrophages, and CD8+ T-cells, was decreased. Our data indicate that the administration of bvPLA2 ameliorates cholestatic liver injury and fibrosis by inhibiting hepatocyte apoptosis and inflammation.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Hyo-Jeong Jang
- Department of Pediatrics, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
- Correspondence: (J.L.); (G.-M.K.)
| | - Gyun-Moo Kim
- Department of Emergency Medicine, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
- Correspondence: (J.L.); (G.-M.K.)
| |
Collapse
|
24
|
Kim JY, Choi Y, Leem J, Song JE. Heme Oxygenase-1 Induction by Cobalt Protoporphyrin Ameliorates Cholestatic Liver Disease in a Xenobiotic-Induced Murine Model. Int J Mol Sci 2021; 22:ijms22158253. [PMID: 34361019 PMCID: PMC8347179 DOI: 10.3390/ijms22158253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Cholestatic liver diseases can progress to end-stage liver disease and reduce patients' quality of life. Although their underlying mechanisms are still incompletely elucidated, oxidative stress is considered to be a key contributor to these diseases. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that displays antioxidant action. It has been found that this enzyme plays a protective role against various inflammatory diseases. However, the role of HO-1 in cholestatic liver diseases has not yet been investigated. Here, we examined whether pharmacological induction of HO-1 by cobalt protoporphyrin (CoPP) ameliorates cholestatic liver injury. To this end, a murine model of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet feeding was used. Administration of CoPP ameliorated liver damage and cholestasis with HO-1 upregulation in DDC diet-fed mice. Induction of HO-1 by CoPP suppressed the DDC diet-induced oxidative stress and hepatocyte apoptosis. In addition, CoPP attenuated cytokine production and inflammatory cell infiltration. Furthermore, deposition of the extracellular matrix and expression of fibrosis-related genes after DDC feeding were also decreased by CoPP. HO-1 induction decreased the number of myofibroblasts and inhibited the transforming growth factor-β pathway. Altogether, these data suggest that the pharmacological induction of HO-1 ameliorates cholestatic liver disease by suppressing oxidative stress, hepatocyte apoptosis, and inflammation.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Yongmin Choi
- Department of Rehabilitation Medicine, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
- Correspondence: (J.L.); (J.E.S.)
| | - Jeong Eun Song
- Department of Internal Medicine, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
- Correspondence: (J.L.); (J.E.S.)
| |
Collapse
|
25
|
Arnold F, Mahaddalkar PU, Kraus JM, Zhong X, Bergmann W, Srinivasan D, Gout J, Roger E, Beutel AK, Zizer E, Tharehalli U, Daiss N, Russell R, Perkhofer L, Oellinger R, Lin Q, Azoitei N, Weiss F, Lerch MM, Liebau S, Katz S, Lechel A, Rad R, Seufferlein T, Kestler HA, Ott M, Sharma AD, Hermann PC, Kleger A. Functional Genomic Screening During Somatic Cell Reprogramming Identifies DKK3 as a Roadblock of Organ Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100626. [PMID: 34306986 PMCID: PMC8292873 DOI: 10.1002/advs.202100626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 05/06/2023]
Abstract
Somatic cell reprogramming and tissue repair share relevant factors and molecular programs. Here, Dickkopf-3 (DKK3) is identified as novel factor for organ regeneration using combined transcription-factor-induced reprogramming and RNA-interference techniques. Loss of Dkk3 enhances the generation of induced pluripotent stem cells but does not affect de novo derivation of embryonic stem cells, three-germ-layer differentiation or colony formation capacity of liver and pancreatic organoids. However, DKK3 expression levels in wildtype animals and serum levels in human patients are elevated upon injury. Accordingly, Dkk3-null mice display less liver damage upon acute and chronic failure mediated by increased proliferation in hepatocytes and LGR5+ liver progenitor cell population, respectively. Similarly, recovery from experimental pancreatitis is accelerated. Regeneration onset occurs in the acinar compartment accompanied by virtually abolished canonical-Wnt-signaling in Dkk3-null animals. This results in reduced expression of the Hedgehog repressor Gli3 and increased Hedgehog-signaling activity upon Dkk3 loss. Collectively, these data reveal Dkk3 as a key regulator of organ regeneration via a direct, previously unacknowledged link between DKK3, canonical-Wnt-, and Hedgehog-signaling.
Collapse
Affiliation(s)
- Frank Arnold
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Pallavi U Mahaddalkar
- Institute for Diabetes and RegenerationHelmholtz Zentrum MünchenIngolstädter Landstraße 185764 NeuherbergGermany
| | - Johann M. Kraus
- Institute of Medical Systems BiologyUlm UniversityAlbert‐Einstein Allee 1189081 UlmGermany
| | - Xiaowei Zhong
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell AnalysisUniversity Medical Center RostockSchillingallee 7018057 RostockGermany
| | - Dharini Srinivasan
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Johann Gout
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Elodie Roger
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Alica K. Beutel
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Eugen Zizer
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Umesh Tharehalli
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Nora Daiss
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Ronan Russell
- Diabetes CenterUniversity of CaliforniaSan FranciscoCA94143USA
| | - Lukas Perkhofer
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Rupert Oellinger
- Institute of Molecular Oncology and Functional GenomicsTranslaTUM Cancer CenterTechnical University of MunichIsmaninger Str. 2281675 MunichGermany
| | - Qiong Lin
- Bayer AG Research & DevelopmentPharmaceuticalsMüllerstraße 17813353 BerlinGermany
| | - Ninel Azoitei
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Frank‐Ulrich Weiss
- Department of Medicine AUniversity Medicine GreifswaldFerdinand‐Sauerbruch‐Straße17475 GreifswaldGermany
| | - Markus M. Lerch
- Department of Medicine AUniversity Medicine GreifswaldFerdinand‐Sauerbruch‐Straße17475 GreifswaldGermany
- Klinikum der Ludwig‐Maximilians‐Universität München‐GroßhadernMarchioninistraße 1581377 MünchenGermany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology INDBEberhard Karls University TübingenÖsterbergstr. 372074 TübingenGermany
| | - Sarah‐Fee Katz
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - André Lechel
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional GenomicsTranslaTUM Cancer CenterTechnical University of MunichIsmaninger Str. 2281675 MunichGermany
| | - Thomas Seufferlein
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Hans A. Kestler
- Institute of Medical Systems BiologyUlm UniversityAlbert‐Einstein Allee 1189081 UlmGermany
| | - Michael Ott
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Amar Deep Sharma
- Department of GastroenterologyHepatology and EndocrinologyHannover Medical SchoolFeodor‐Lynen‐Str. 730625 HannoverGermany
| | - Patrick C. Hermann
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| | - Alexander Kleger
- Department of Internal Medicine IUniversity Hospital UlmAlbert‐Einstein Allee 2389081 UlmGermany
| |
Collapse
|
26
|
Gijbels E, Pieters A, De Muynck K, Vinken M, Devisscher L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int 2021; 41:656-682. [PMID: 33486884 PMCID: PMC8048655 DOI: 10.1111/liv.14800] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium,Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Kevin De Muynck
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Hepatology Research UnitInternal Medicine and PaediatricsLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Lindsey Devisscher
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
27
|
Fine-scale visualizing the hierarchical structure of mouse biliary tree with fluorescence microscopy method. Biosci Rep 2021; 40:223572. [PMID: 32364232 PMCID: PMC7218221 DOI: 10.1042/bsr20193757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/15/2020] [Accepted: 05/01/2020] [Indexed: 02/05/2023] Open
Abstract
The liver is a vital organ and the hepatic lobule serves as the most basic structural and functional unit which is mainly assembled with parenchymal cells including hepatocytes and biliary epithelial cells. The continuous tubular arrangement of biliary cells which constitutes the biliary tracts is critical for liver function, however, the biliary tracts are often disrupted in many liver diseases such as cirrhosis and some congenital disorders. Visualization of the biliary tracts in fine-scale and three-dimension will help to understanding the structure basis of these liver diseases. In the present study, we established several biliary tract injury mouse models by diet feeding, surgery or genetic modification. The cytoplasm and nuclei of the parenchymal cells were marked by active uptake of fluorescent dyes Rhodamine B (red) and Hoechst (blue), respectively. After the removal of liver en bloc, the biliary tracts were retrogradely perfused with green fluorescent dye, fluorescein isothiocyanate (FITC). The liver was then observed under confocal microscopy. The fine-scale and three-dimensional (3D) structure of the whole biliary tree, particularly the network of the end-terminal bile canaliculi and neighboring hepatocytes were clearly visualized. The biliary tracts displayed clear distinct characteristics in normal liver and diseased liver models. Taken together, we have developed a simple and repeatable imaging method to visualize the fine-scale and hierarchical architecture of the biliary tracts spreading in the mouse liver.
Collapse
|
28
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|