1
|
Camargo LL, Rios FJ, Montezano AC, Touyz RM. Reactive oxygen species in hypertension. Nat Rev Cardiol 2025; 22:20-37. [PMID: 39048744 DOI: 10.1038/s41569-024-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Hypertension is a leading risk factor for stroke, heart disease and chronic kidney disease. Multiple interacting factors and organ systems increase blood pressure and cause target-organ damage. Among the many molecular elements involved in the development of hypertension are reactive oxygen species (ROS), which influence cellular processes in systems that contribute to blood pressure elevation (such as the cardiovascular, renal, immune and central nervous systems, or the renin-angiotensin-aldosterone system). Dysregulated ROS production (oxidative stress) is a hallmark of hypertension in humans and experimental models. Of the many ROS-generating enzymes, NADPH oxidases are the most important in the development of hypertension. At the cellular level, ROS influence signalling pathways that define cell fate and function. Oxidative stress promotes aberrant redox signalling and cell injury, causing endothelial dysfunction, vascular damage, cardiovascular remodelling, inflammation and renal injury, which are all important in both the causes and consequences of hypertension. ROS scavengers reduce blood pressure in almost all experimental models of hypertension; however, clinical trials of antioxidants have yielded mixed results. In this Review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in hypertension. We focus on cellular sources of ROS, molecular mechanisms of oxidative stress and alterations in redox signalling in organ systems, and their contributions to hypertension.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Hur YK, Lee HE, Yoo JY, Park YN, Lee IH, Bae YS. NADPH oxidase 4-SH3 domain-containing YSC84-like 1 complex participates liver inflammation and fibrosis. Free Radic Biol Med 2024; 227:246-259. [PMID: 39645205 DOI: 10.1016/j.freeradbiomed.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
There is growing evidence that NADPH oxidase 4 (Nox4) in hepatocytes contributes to liver inflammation and fibrosis during the development of metabolic dysfunction-associated steatohepatitis (MASH). However, how Nox4 is regulated and leads to liver pathogenesis is unclear. Our previous studies showed that the cytosolic protein SH3 domain-containing Ysc84-like 1 (SH3YL1) regulates Nox4 activity. Here, we asked whether SH3YL1 also participates in liver inflammation and fibrosis during MASH development. We generated that whole body SH3YL1 knockout (SH3YL1-/-), Nox4 knockout (Nox4-/-) mice, and the hepatocyte-specific SH3YL1 conditional knockout (Alb-Cre/SH3YL1fl/fl) mice were fed a methionine/choline-deficient (MCD) diet to induce liver inflammation and fibrosis in pathogenesis of MASH. Palmitate-stimulated primary SH3YL1-and Nox4-deficient hepatocytes and hepatic stellate cells (HSCs) did not generate H2O2. While the liver of MCD diet-fed wild type (WT) mice demonstrated elevated 3-nitrotyrosine as a protein oxidation and 4-hydroxynonenal adducts as a lipid oxidation and increased liver inflammation, hepatocyte apoptosis, and liver fibrosis, these events were markedly reduced in SH3YL1-/-, Nox4-/-, and Alb-Cre/SH3YL1fl/fl mice. The MCD diet-fed WT mice also showed elevated hepatocyte expression of SH3YL1 protein. Similarly, liver biopsies from MASH patients demonstrated strong hepatocyte SH3YL1 protein expression, whereas hepatocytes from patients with steatosis weakly expressed SH3YL1 and histologically normal patient hepatocytes exhibited very little SH3YL1 expression. The Nox4-SH3YL1 complex in murine hepatocytes elevates their H2O2 production, which promotes the liver inflammation, hepatocyte apoptosis, and liver fibrosis that characterize MASH. This axis may also participate in MASH in humans.
Collapse
Affiliation(s)
- Yeo Kyu Hur
- Department of Life Sciences, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea
| | - Hye Eun Lee
- Celros Biotech, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea
| | - Jung-Yeon Yoo
- Department of Life Sciences, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea
| | - Young Nyun Park
- Department of Pathology Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - In Hye Lee
- Department of Life Sciences, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea.
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea; Celros Biotech, 52 Ewhayeodae-Gil, Seodaemoon-Gu, Seoul, 03760, South Korea.
| |
Collapse
|
3
|
Li J, Xu D, Shi C, Cheng C, Xu Z, Gao X, Cheng Y. Alarin regulates RyR2 and SERCA2 to improve cardiac function in heart failure with preserved ejection fraction. Eur J Histochem 2024; 68. [PMID: 39494460 PMCID: PMC11583138 DOI: 10.4081/ejh.2024.4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF), a complex disease that is increasingly prevalent due to population aging, pose significant challenges in its treatment. The present study utilized the HFpEF rat model and H9C2 cells as research subjects to thoroughly investigate the potential mechanisms of alarin in protecting cardiac function in HFpEF. The study shows that under HFpEF conditions, oxidative stress significantly increases, leading to myocardial structural damage and dysfunction of calcium ion channels, which ultimately impairs diastolic function. Alarin, through its interaction with NADPH oxidase 1 (NOX1), effectively alleviates oxidative stress and modulates the activities of type 2 ryanodine receptor (RyR2) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), thereby facilitating the restoration of Ca2+ homeostasis and significantly improving cardiac function in the HFpEF model. This research not only uncovers the cardioprotective effects of alarin and its underlying molecular mechanisms but also provides new insights and potential therapeutic targets for HFpEF treatment strategies, suggesting a promising future for alarin and related therapies in the management of this debilitating condition.
Collapse
Affiliation(s)
- Jinshuang Li
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Dawei Xu
- Department of Emergency Intensive Care Unit, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Ce Shi
- Department of Orthopedics, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Chunqi Cheng
- Department of Cardiology, Suqian Zhongwu Hospital, Suqian, Jiangsu
| | - Ziheng Xu
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Xingjuan Gao
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Yong Cheng
- Department of Cardiology, Suqian Zhongwu Hospital, Suqian, Jiangsu
| |
Collapse
|
4
|
Yu H, Liu S, Wang S, Gu X. The involvement of HDAC3 in the pathogenesis of lung injury and pulmonary fibrosis. Front Immunol 2024; 15:1392145. [PMID: 39391308 PMCID: PMC11464298 DOI: 10.3389/fimmu.2024.1392145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Acute lung injury (ALI) and its severe counterpart, acute respiratory distress syndrome (ARDS), are critical respiratory conditions with high mortality rates due primarily to acute and intense pulmonary inflammation. Despite significant research advances, effective pharmacological treatments for ALI and ARDS remain unavailable, highlighting an urgent need for therapeutic innovation. Notably, idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease characterized by the irreversible progression of fibrosis, which is initiated by repeated damage to the alveolar epithelium and leads to excessive extracellular matrix deposition. This condition is further complicated by dysregulated tissue repair and fibroblast dysfunction, exacerbating tissue remodeling processes and promoting progression to terminal pulmonary fibrosis. Similar to that noted for ALI and ARDS, treatment options for IPF are currently limited, with no specific drug therapy providing a cure. Histone deacetylase 3 (HDAC3), a notable member of the HDAC family with four splice variants (HD3α, -β, -γ, and -δ), plays multiple roles. HDAC3 regulates gene transcription through histone acetylation and adjusts nonhistone proteins posttranslationally, affecting certain mitochondrial and cytoplasmic proteins. Given its unique structure, HDAC3 impacts various physiological processes, such as inflammation, apoptosis, mitochondrial homeostasis, and macrophage polarization. This article explores the intricate role of HDAC3 in ALI/ARDS and IPF and evaluates its therapeutic potential the treatment of these severe pulmonary conditions.
Collapse
Affiliation(s)
| | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of
China Medical University, Shenyang, China
| |
Collapse
|
5
|
Hebchen DM, Spaeth M, Müller N, Schröder K. NoxO1 Determines the Level of ROS Formation by the Nox1-Centered NADPH Oxidase. Antioxidants (Basel) 2024; 13:1113. [PMID: 39334772 PMCID: PMC11428687 DOI: 10.3390/antiox13091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The Nox1-centered NADPH oxidase complex facilitates the transfer of electrons from intracellular NADPH across the cell membrane to extracellular molecular oxygen, resulting in the formation of superoxide. The complex is comprised of two membrane-bound subunits, namely Nox1 and p22phox, and the cytosolic subunits, namely NoxA1 and NoxO1. The presence of NoxO1 facilitates the proximity of all components, thereby enabling the complex to exhibit constitutive activity. Despite the theoretical sufficiency of all subunits in a 1:1 ratio, the precise composition of the Nox1-centered NADPH oxidase remains unknown. Analyses of mRNA expression in different cell lines revealed an unequal expression of the components, with an excess of NoxO1. Furthermore, plasmid-based overexpression of individual components of the Nox1-centered NADPH oxidase resulted in an excess of NoxO1 mRNA. The objective of this study was to analyze the ability of NoxO1 to control the level of ROS formation by the Nox1 complex. To this end, we generated Hek293 cells for constitutive expression of Nox1 and NoxA1, which were then transfected with increasing concentrations of NoxO1. The data presented herein suggests that ROS formation by the Nox1-centered NADPH oxidase is dependent on the concentration of NoxO1. A surplus of NoxO1 has been observed to exert control over the activity of the complex in accordance with a dose-dependent mechanism. We thus conclude that the ratio of Nox1, NoxA1, and NoxO1 complexes does not adhere to a 1:1 ratio. Conversely, the availability of NoxO1 serves to regulate the formation of ROS by the Nox1-centered NADPH oxidase.
Collapse
Affiliation(s)
- Dana Maureen Hebchen
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60298 Frankfurt, Germany
| | - Manuela Spaeth
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60298 Frankfurt, Germany
| | - Niklas Müller
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60298 Frankfurt, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60298 Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, 60596 Frankfurt, Germany
| |
Collapse
|
6
|
George J, Lu Y, Tsuchishima M, Tsutsumi M. Cellular and molecular mechanisms of hepatic ischemia-reperfusion injury: The role of oxidative stress and therapeutic approaches. Redox Biol 2024; 75:103258. [PMID: 38970988 PMCID: PMC11279328 DOI: 10.1016/j.redox.2024.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Ischemia-reperfusion (IR) or reoxygenation injury is the paradoxical exacerbation of cellular impairment following restoration of blood flow after a period of ischemia during surgical procedures or other conditions. Acute interruption of blood supply to the liver and subsequent reperfusion can result in hepatocyte injury, apoptosis, and necrosis. Since the liver requires a continuous supply of oxygen for many biochemical reactions, any obstruction of blood flow can rapidly lead to hepatic hypoxia, which could quickly progress to absolute anoxia. Reoxygenation results in the increased generation of reactive oxygen species and oxidative stress, which lead to the enhanced production of proinflammatory cytokines, chemokines, and other signaling molecules. Consequent acute inflammatory cascades lead to significant impairment of hepatocytes and nonparenchymal cells. Furthermore, the expression of several vascular growth factors results in the heterogeneous closure of numerous hepatic sinusoids, which leads to reduced oxygen supply in certain areas of the liver even after reperfusion. Therefore, it is vital to identify appropriate therapeutic modalities to mitigate hepatic IR injury and subsequent tissue damage. This review covers all the major aspects of cellular and molecular mechanisms underlying the pathogenesis of hepatic ischemia-reperfusion injury, with special emphasis on oxidative stress, associated inflammation and complications, and prospective therapeutic approaches.
Collapse
Affiliation(s)
- Joseph George
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan; Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa, 920-0293, Japan.
| | - Yongke Lu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan; Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
7
|
Schröder K. Specific signaling by nicotinamide adenine dinucleotide oxidases - Role of their site of action. Curr Opin Chem Biol 2024; 81:102461. [PMID: 38810503 DOI: 10.1016/j.cbpa.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024]
Abstract
Nicotinamide adenine dinucleotide (NADPH) oxidases, known for their role in generating reactive oxygen species (ROS) have emerged as key regulators of specific cellular signaling pathways. While their primary function is ROS production, recent research has highlighted the significance of their site-specific activity in governing distinct cellular signaling events. NADPH oxidases (Nox) are found in various cell types, and both their expression and activities are tightly regulated. The generated ROS, such as superoxide anions and hydrogen peroxide, function as secondary messengers that modulate various signaling molecules, including protein kinases, transcription factors, and phosphatases. The site-specific action of NADPH oxidases in different cellular compartments, such as the plasma membrane, endosomes, and endoplasmic reticulum, allows for precise control over specific signaling pathways. Understanding the complex interplay of NADPH oxidases in cellular signaling is essential for deciphering their roles in health and disease. Dysregulation of these enzymes can lead to oxidative stress and inflammation, making them potential therapeutic targets in various pathological conditions. Ongoing research into NADPH oxidase activation and site-specific signaling promises to unveil new insights into cellular physiology and potential treatment strategies.
Collapse
|
8
|
Maimaiti Y, Su T, Zhang Z, Ma L, Zhang Y, Xu H. NOX4-mediated astrocyte ferroptosis in Alzheimer's disease. Cell Biosci 2024; 14:88. [PMID: 38956702 PMCID: PMC11218381 DOI: 10.1186/s13578-024-01266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
This study investigates NADPH oxidase 4 (NOX4) involvement in iron-mediated astrocyte cell death in Alzheimer's Disease (AD) using single-cell sequencing data and transcriptomes. We analyzed AD single-cell RNA sequencing data, identified astrocyte marker genes, and explored biological processes in astrocytes. We integrated AD-related chip data with ferroptosis-related genes, highlighting NOX4. We validated NOX4's role in ferroptosis and AD in vitro and in vivo. Astrocyte marker genes were enriched in AD, emphasizing their role. NOX4 emerged as a crucial player in astrocytic ferroptosis in AD. Silencing NOX4 mitigated ferroptosis, improved cognition, reduced Aβ and p-Tau levels, and alleviated mitochondrial abnormalities. NOX4 promotes astrocytic ferroptosis, underscoring its significance in AD progression.
Collapse
Affiliation(s)
- Yasenjiang Maimaiti
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China.
| | - Ting Su
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China
| | - Zhanying Zhang
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China
| | - Lingling Ma
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China
| | - Yuan Zhang
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China
| | - Hong Xu
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, Xinjiang, China.
| |
Collapse
|
9
|
Mapuskar KA, Pulliam CF, Tomanek-Chalkley A, Rastogi P, Wen H, Dayal S, Griffin BR, Zepeda-Orozco D, Sindler AL, Anderson CM, Beardsley R, Kennedy EP, Spitz DR, Allen BG. The antioxidant and anti-inflammatory activities of avasopasem manganese in age-associated, cisplatin-induced renal injury. Redox Biol 2024; 70:103022. [PMID: 38215546 PMCID: PMC10821164 DOI: 10.1016/j.redox.2023.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024] Open
Abstract
PURPOSE Cisplatin contributes to acute kidney injury (AKI) and chronic kidney disease (CKD) that occurs with greater frequency and severity in older patients. Age-associated cisplatin sensitivity in human fibroblasts involves increased mitochondrial superoxide produced by older donor cells. EXPERIMENTAL DESIGN Young and old C57BL/6 J murine models of cisplatin-induced AKI and CKD were treated with the SOD mimetic avasopasem manganese to investigate the potential antioxidant and anti-inflammatory effects. Adverse event reporting from a phase 2 and a phase 3 randomized clinical trial (NCT02508389 and NCT03689712) conducted in patients treated with cisplatin and AVA was determined to have established the incidence and severity of AKI. RESULTS Cisplatin-induced AKI and CKD occurred in all mice, however, was more pronounced in older mice. AVA reduced cisplatin-induced mortality, AKI, and CKD, in older animals. AVA also alleviated cisplatin-induced alterations in mitochondrial electron transport chain (ETC) complex activities and NADPH Oxidase 4 (NOX4) and inhibited the increased levels of the inflammation markers, TNFα, IL1, ICAM-1, and VCAM-1. Analysis of age-stratified subjects treated with cisplatin from clinical trials (NCT02508389, NCT03689712) also supported that the incidence of AKI increased with age and AVA reduced age-associated therapy-induced adverse events (AE), including hypomagnesemia, increased creatinine, and AKI. CONCLUSIONS Older mice and humans are more susceptible to cisplatin-induced kidney injury, and treatment with AVA mitigates age-associated damage. Mitochondrial ETC and NOX4 activities represent sources of superoxide production contributing to cisplatin-induced kidney injury, and pro-inflammatory cytokine production and endothelial dysfunction may also be increased by superoxide formation.
Collapse
Affiliation(s)
- Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, 52242, USA
| | - Casey F Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, 52242, USA
| | - Ann Tomanek-Chalkley
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, 52242, USA
| | | | | | - Sanjana Dayal
- Internal Medicine, Iowa City, IA, 52242, USA; The University of Iowa, Iowa City VA Healthcare System, Iowa City, IA, 52242, USA
| | - Benjamin R Griffin
- Internal Medicine, Iowa City, IA, 52242, USA; Division of Nephrology, Iowa City, IA, 52242, USA
| | - Diana Zepeda-Orozco
- Pediatric Nephrology and Hypertension at Nationwide Children's Hospital, Columbus, OH, USA; Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics at the Ohio State University, Columbus, OH, USA
| | - Amy L Sindler
- Health and Human Physiology, University of Iowa, USA
| | - Carryn M Anderson
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, 52242, USA
| | | | | | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, 52242, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA, 52242, USA.
| |
Collapse
|
10
|
Seo YS, Park KH, Park JM, Jeong H, Kim B, Jeon JS, Yu J, Kim SK, Lee K, Lee MY. Short-term inhalation exposure to cigarette smoke induces oxidative stress and inflammation in lungs without systemic oxidative stress in mice. Toxicol Res 2024; 40:273-283. [PMID: 38525133 PMCID: PMC10959912 DOI: 10.1007/s43188-023-00223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 03/26/2024] Open
Abstract
Smoking is a well-established risk factor for various pathologies, including pulmonary diseases, cardiovascular disorders, and cancers. The toxic effects of cigarette smoke (CS) are mediated through multiple pathways and diverse mechanisms. A key pathogenic factor is oxidative stress, primarily induced by excessive formation of reactive oxygen species. However, it remains unclear whether smoking directly induces systemic oxidative stress or if such stress is a secondary consequence. This study aimed to determine whether short-term inhalation exposure to CS induces oxidative stress in extrapulmonary organs in addition to the lung in a murine model. In the experiment, 3R4F reference cigarettes were used to generate CS, and 8-week-old male BALB/c mice were exposed to CS at a total particulate matter concentration of either 0 or 800 µg/L for four consecutive days. CS exposure led to an increase in neutrophils, eosinophils, and total cell counts in bronchoalveolar lavage fluid. It also elevated levels of lactate dehydrogenase and malondialdehyde (MDA), markers indicative of tissue damage and oxidative stress, respectively. Conversely, no significant changes were observed in systemic oxidative stress markers such as total oxidant scavenging capacity, MDA, glutathione (GSH), and the GSH/GSSG ratio in blood samples. In line with these findings, CS exposure elevated NADPH oxidase (NOX)-dependent superoxide generation in the lung but not in other organs like the liver, kidney, heart, aorta, and brain. Collectively, our results indicate that short-term exposure to CS induces inflammation and oxidative stress in the lung without significantly affecting oxidative stress in extrapulmonary organs under the current experimental conditions. NOX may play a role in these pulmonary-specific events.
Collapse
Affiliation(s)
- Yoon-Seok Seo
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Kwang-Hoon Park
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Jung-Min Park
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Hyuneui Jeong
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do 54596 Republic of Korea
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan-si, Jeollabuk-do 54596 Republic of Korea
| | - Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Jieun Yu
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Moo-Yeol Lee
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
11
|
Pham TD, Verlander JW, Chen C, Pech V, Kim HI, Kim YH, Weiner ID, Milne GL, Zent R, Bock F, Brown D, Eaton A, Wall SM. Angiotensin II acts through Rac1 to upregulate pendrin: role of NADPH oxidase. Am J Physiol Renal Physiol 2024; 326:F202-F218. [PMID: 38059296 PMCID: PMC11198991 DOI: 10.1152/ajprenal.00139.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Angiotensin II increases apical plasma membrane pendrin abundance and function. This study explored the role of the small GTPase Rac1 in the regulation of pendrin by angiotensin II. To do this, we generated intercalated cell (IC) Rac1 knockout mice and observed that IC Rac1 gene ablation reduced the relative abundance of pendrin in the apical region of intercalated cells in angiotensin II-treated mice but not vehicle-treated mice. Similarly, the Rac1 inhibitor EHT 1864 reduced apical pendrin abundance in angiotensin II-treated mice, through a mechanism that does not require aldosterone. This IC angiotensin II-Rac1 signaling cascade modulates pendrin subcellular distribution without significantly changing actin organization. However, NADPH oxidase inhibition with APX 115 reduced apical pendrin abundance in vivo in angiotensin II-treated mice. Moreover, superoxide dismutase mimetics reduced Cl- absorption in angiotensin II-treated cortical collecting ducts perfused in vitro. Since Rac1 is an NADPH subunit, Rac1 may modulate pendrin through NADPH oxidase-mediated reactive oxygen species production. Because pendrin gene ablation blunts the pressor response to angiotensin II, we asked if pendrin blunts the angiotensin II-induced increase in kidney superoxide. Although kidney superoxide was similar in vehicle-treated wild-type and pendrin knockout mice, it was lower in angiotensin II-treated pendrin-null kidneys than in wild-type kidneys. We conclude that angiotensin II acts through Rac1, independently of aldosterone, to increase apical pendrin abundance. Rac1 may stimulate pendrin, at least partly, through NADPH oxidase. This increase in pendrin abundance contributes to the increment in blood pressure and kidney superoxide content seen in angiotensin II-treated mice.NEW & NOTEWORTHY This study defines a new signaling mechanism by which angiotensin II modulates oxidative stress and blood pressure.
Collapse
Affiliation(s)
- Truyen D Pham
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
| | - Chao Chen
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
| | - Vladimir Pech
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Hailey I Kim
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Young Hee Kim
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, The University of Florida College of Medicine, Gainesville, Florida, United States
- Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, Florida, United States
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Hospital, Nashville, Tennessee, United States
| | - Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs Hospital, Nashville, Tennessee, United States
| | - Dennis Brown
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Amity Eaton
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Susan M Wall
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
12
|
Hou T, Zhu L, Wang Y, Peng L. Oxidative stress is the pivot for PM2.5-induced lung injury. Food Chem Toxicol 2024; 184:114362. [PMID: 38101601 DOI: 10.1016/j.fct.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Fine particulate matter (PM2.5) is a primary air pollutant recognized worldwide as a serious threat to public health. PM2.5, which has a diameter of less than 2.5 μm, is known to cause various diseases, including cardiovascular, respiratory, metabolic, and neurological diseases. Studies have shown that the respiratory system is particularly susceptible to PM2.5 as it is the first line of defense against external pollutants. PM2.5 can cause oxidative stress, which is triggered by the catalyzation of biochemical reactions, the activation of oxidases and metabolic enzymes, and mitochondrial dysfunction, all of which can lead to lung injury and aggravate various respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis, and cancer. Oxidative stress plays a crucial role in the harmful effects and mechanisms of PM2.5 on the respiratory system by activating several detrimental pathways related to inflammation and cellular damage. However, experimental studies have shown that antioxidative therapy methods can effectively cure PM2.5-induced lung injury. This review aims to clarify how PM2.5 induces oxidative stress and the mechanisms by which it is involved in the aggravation of various lung diseases. Additionally, we have listed antioxidant treatments to protect against PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Tianhua Hou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Laiyu Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Yusheng Wang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| |
Collapse
|
13
|
Camargo LL, Wang Y, Rios FJ, McBride M, Montezano AC, Touyz RM. Oxidative Stress and Endoplasmic Reticular Stress Interplay in the Vasculopathy of Hypertension. Can J Cardiol 2023; 39:1874-1887. [PMID: 37875177 DOI: 10.1016/j.cjca.2023.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
Under physiologic conditions, reactive oxygen species (ROS) function as signalling molecules that control cell function. However, in pathologic conditions, increased generation of ROS triggers oxidative stress, which plays a role in vascular changes associated with hypertension, including endothelial dysfunction, vascular reactivity, and arterial remodelling (termed the vasculopathy of hypertension). The major source of ROS in the vascular system is NADPH oxidase (NOX). Increased NOX activity drives vascular oxidative stress in hypertension. Molecular mechanisms underlying vascular damage in hypertension include activation of redox-sensitive signalling pathways, post-translational modification of proteins, and oxidative damage of DNA and cytoplasmic proteins. In addition, oxidative stress leads to accumulation of proteins in the endoplasmic reticulum (ER) (termed ER stress), with consequent activation of the unfolded protein response (UPR). ER stress is emerging as a potential player in hypertension as abnormal protein folding in the ER leads to oxidative stress and dysregulated activation of the UPR promotes inflammation and injury in vascular and cardiac cells. In addition, the ER engages in crosstalk with exogenous sources of ROS, such as mitochondria and NOX, which can amplify redox processes. Here we provide an update of the role of ROS and NOX in hypertension and discuss novel concepts on the interplay between oxidative stress and ER stress.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Yu Wang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Martin McBride
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; McGill University, Department of Medicine and Department of Family Medicine, Montréal, Québec, Canada.
| |
Collapse
|
14
|
LAGAL DJ, BÁRCENA JA, REQUEJO-AGUILAR R, PADILLA CA, LETO TL. NOX1 and PRDX6 synergistically support migration and invasiveness of hepatocellular carcinoma cells through enhanced NADPH oxidase activity. ADVANCES IN REDOX RESEARCH 2023; 9:100080. [PMID: 37900981 PMCID: PMC10611439 DOI: 10.1016/j.arres.2023.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The NADPH oxidase 1 (NOX1) complex formed by proteins NOX1, p22phox, NOXO1, NOXA1, and RAC1 plays an important role in the generation of superoxide and other reactive oxygen species (ROS) which are involved in normal and pathological cell functions due to their effects on diverse cell signaling pathways. Cell migration and invasiveness are at the origin of tumor metastasis during cancer progression which involves a process of cellular de-differentiation known as the epithelial-mesenchymal transition (EMT). During EMT cells lose their polarized epithelial phenotype and express mesenchymal marker proteins that enable cytoskeletal rearrangements promoting cell migration, expression and activation of matrix metalloproteinases (MMPs), tissue remodeling, and cell invasion during metastasis. In this work, we explored the importance of the peroxiredoxin 6 (PRDX6)-NOX1 enzyme interaction leading to NOXA1 protein stabilization and increased levels of superoxide produced by NOX in hepatocarcinoma cells. This increase was accompanied by higher levels of N-cadherin and MMP2, correlating with a greater capacity for cell migration and invasiveness of SNU475 hepatocarcinoma cells. The increase in superoxide and the associated downstream effects on cancer progression were suppressed when phospholipase A2 or peroxidase activities of PRDX6 were abolished by site-directed mutagenesis, reinforcing the importance of these catalytic activities in supporting NOX1-based superoxide generation. Overall, these results demonstrate a clear functional cooperation between NOX1 and PRDX6 catalytic activities which generate higher levels of ROS production, resulting in a more aggressive tumor phenotype.
Collapse
Affiliation(s)
- Daniel J. LAGAL
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD, USA
- University of Córdoba, Biochemistry and Molecular Biology Department. Córdoba, Spain
| | - J. Antonio BÁRCENA
- University of Córdoba, Biochemistry and Molecular Biology Department. Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Spain
| | - Raquel REQUEJO-AGUILAR
- University of Córdoba, Biochemistry and Molecular Biology Department. Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Spain
| | - C. Alicia PADILLA
- University of Córdoba, Biochemistry and Molecular Biology Department. Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Spain
| | - Thomas L. LETO
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD, USA
| |
Collapse
|
15
|
Zhang R, Tu L, Yang Y, Sun J, Liang T, Li Y, Chen R, Chen B, Luan T. Altered generation pattern of reactive oxygen species triggering DNA and plasma membrane damages to human liver cells treated with arsenite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165821. [PMID: 37506919 DOI: 10.1016/j.scitotenv.2023.165821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Human exposure to arsenic via drinking water is one of globally concerned health issues. Oxidative stress is regarded as the denominator of arsenic-inducing toxicities. Therefore, to identify intracellular sources of reactive oxygen species (ROS) could be essential for addressing the detrimental effects of arsenite (iAsIII). In this study, the contributions of different pathways to ROS formation in iAsIII-treated human normal liver (L-02) cells were quantitatively assessed, and then concomitant oxidative impairs were evaluated using metabolomics and lipidomics approaches. Following iAsIII treatment, NADPH oxidase (NOX) activity and expression levels of p47phox and p67phox were upregulated, and NOX-derived ROS contributed to almost 60.0 % of the total ROS. Moreover, iAsIII also induced mitochondrial superoxide anion and impaired mitochondrial respiratory function of L-02 cells with a decreasing ATP production. The inhibition of NOX activity significantly rescued mitochondrial membrane potential in iAsIII-treated L-02 cells. Purine and glycerophospholipids metabolisms in L-02 cells were disrupted by iAsIII, which might be used to represent DNA and plasma membrane damages, respectively. Our study supported that NOX could be the primary pathway of ROS overproduction and revealed the potential mechanisms of iAsIII toxicity related to oxidative stress.
Collapse
Affiliation(s)
- Ruijia Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lanyin Tu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanzhu Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin Sun
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Tong Liang
- Intensive Care Unit, Guangzhou Eighth People's Hospital, Guangzhou 510440, China
| | - Yizheng Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Ruohong Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
16
|
Ijurko C, Romo-González M, García-Calvo C, Sardina JL, Sánchez-Bernal C, Sánchez-Yagüe J, Elena-Herrmann B, Villaret J, Garrel C, Mondet J, Mossuz P, Hernández-Hernández Á. NOX2 control over energy metabolism plays a role in acute myeloid leukaemia prognosis and survival. Free Radic Biol Med 2023; 209:18-28. [PMID: 37806599 DOI: 10.1016/j.freeradbiomed.2023.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease, however the therapeutic approaches have hardly changed in the last decades. Metabolism rewiring and the enhanced production of reactive oxygen species (ROS) are hallmarks of cancer. A deeper understanding of these features could be instrumental for the development of specific AML-subtypes treatments. NADPH oxidases (NOX), the only cellular system specialised in ROS production, are also involved in leukemic metabolism control. NOX2 shows a variable expression in AML patients, so patients can be classified based on such difference. Here we have analysed whether NOX2 levels are important for AML metabolism control. The lack of NOX2 in AML cells slowdowns basal glycolysis and oxidative phosphorylation (OXPHOS), along with the accumulation of metabolites that feed such routes, and a sharp decrease of glutathione. In addition, we found changes in the expression of 725 genes. Among them, we have discovered a panel of 30 differentially expressed metabolic genes, whose relevance was validated in patients. This panel can segregate AML patients according to CYBB expression, and it can predict patient prognosis and survival. In summary, our data strongly support the relevance of NOX2 for AML metabolism, and highlights the potential of our discoveries in AML prognosis.
Collapse
Affiliation(s)
- Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Clara García-Calvo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - José Luis Sardina
- Epigenetic Control of Haematopoiesis Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Carmen Sánchez-Bernal
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Jesús Sánchez-Yagüe
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Bénédicte Elena-Herrmann
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, GEMELI Platform, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Joran Villaret
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, GEMELI Platform, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Catherine Garrel
- Department of Biochemistry, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043, Grenoble, CEDEX 9, France
| | - Julie Mondet
- Team "Epigenetic Regulations", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700, Grenoble, France; Department of Molecular Pathology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043, Grenoble, CEDEX 9, France
| | - Pascal Mossuz
- Team "Epigenetic Regulations", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700, Grenoble, France; Department of Biological Hematology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043, Grenoble, CEDEX 9, France
| | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain.
| |
Collapse
|
17
|
Yu M, Wang Z, Wang D, Aierxi M, Ma Z, Wang Y. Oxidative stress following spinal cord injury: From molecular mechanisms to therapeutic targets. J Neurosci Res 2023; 101:1538-1554. [PMID: 37272728 DOI: 10.1002/jnr.25221] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
Spinal cord injury (SCI) is a medical condition that results from severe trauma to the central nervous system; it imposes great psychological and economic burdens on affected patients and their families. The dynamic balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining normal cellular physiological functions. As important intracellular signaling molecules, ROS regulate numerous physiological activities, including vascular reactivity and neuronal function. However, excessive ROS can cause damage to cellular macromolecules, including DNA, lipids, and proteins; this damage eventually leads to cell death. This review discusses the mechanisms of oxidative stress in SCI and describes some signaling pathways that regulate oxidative injury after injury, with the aim of providing guidance for the development of novel SCI treatment strategies.
Collapse
Affiliation(s)
- Mengsi Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhiying Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dongmin Wang
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Milikemu Aierxi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhanjun Ma
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | - Yonggang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
18
|
Seo YS, Park JM, Kim JH, Lee MY. Cigarette Smoke-Induced Reactive Oxygen Species Formation: A Concise Review. Antioxidants (Basel) 2023; 12:1732. [PMID: 37760035 PMCID: PMC10525535 DOI: 10.3390/antiox12091732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Smoking is recognized as a significant risk factor for numerous disorders, including cardiovascular diseases, respiratory conditions, and various forms of cancer. While the exact pathogenic mechanisms continue to be explored, the induction of oxidative stress via the production of excess reactive oxygen species (ROS) is widely accepted as a primary molecular event that predisposes individuals to these smoking-related ailments. This review focused on how cigarette smoke (CS) promotes ROS formation rather than the pathophysiological repercussions of ROS and oxidative stress. A comprehensive analysis of existing studies revealed the following key ways through which CS imposes ROS burden on biological systems: (1) ROS, as well as radicals, are intrinsically present in CS, (2) CS constituents generate ROS through chemical reactions with biomolecules, (3) CS stimulates cellular ROS sources to enhance production, and (4) CS disrupts the antioxidant system, aggravating the ROS generation and its functions. While the evidence supporting these mechanisms is chiefly based on in vitro and animal studies, the direct clinical relevance remains to be fully elucidated. Nevertheless, this understanding is fundamental for deciphering molecular events leading to oxidative stress and for developing intervention strategies to counter CS-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Moo-Yeol Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (Y.-S.S.); (J.-M.P.); (J.-H.K.)
| |
Collapse
|
19
|
Toro CA, De Gasperi R, Aslan A, Johnson N, Siddiq MM, Chow C, Zhao W, Harlow L, Graham Z, Liu XH, Sadoshima J, Iyengar R, Cardozo CP. Muscle-restricted Nox4 knockout partially corrects muscle contractility following spinal cord injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551985. [PMID: 37577656 PMCID: PMC10418279 DOI: 10.1101/2023.08.04.551985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Spinal cord injury (SCI) results in severe atrophy of skeletal muscle in paralyzed regions, and a decrease in the force generated by muscle per unit of cross-sectional area. Oxidation of skeletal muscle ryanodine 1 receptors (RyR1) reduces contractile force due to reduced binding of calstabin 1 to RyR1 together with altered gating of RyR1. One cause of RyR1 oxidation is NADPH oxidase 4 (Nox4). We have previously shown that in rats, RyR1 was oxidized and bound less calstabin 1 at 56 days after spinal cord injury (SCI) by transection. Here, we used a conditional knock-out mouse model of Nox4 in muscle to investigate the role of Nox4 in reduced muscle specific force after SCI. Peak twitch force in control mice after SCI was reduced by 42% compared to sham-operated controls but was increased by approximately 43% in SCI Nox4 conditional KO mice compared to SCI controls although it remained less than that for sham-operated controls. Unlike what observed in rats, after SCI the expression of Nox4 was not increased in gastrocnemius muscle and binding of calstabin 1 to RyR1 was not reduced in this muscle. The results suggest a link between Nox4 expression in muscle tissue and reduction in muscle twitch force, however further studies are needed to understand the mechanistic basis for this linkage.
Collapse
Affiliation(s)
- Carlos A Toro
- Spinal Cord Damage Research Center, James J Peters VA Medical Center
- Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Rita De Gasperi
- Spinal Cord Damage Research Center, James J Peters VA Medical Center
- Department of Medicine, Icahn School of Medicine at Mount Sinai
- Department of Phychiatry, Icahn School of Medicine at Mount Sinai
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Abdurrahman Aslan
- Spinal Cord Damage Research Center, James J Peters VA Medical Center
- Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Nicholas Johnson
- Spinal Cord Damage Research Center, James J Peters VA Medical Center
- Pharmacological Science and Systems Biomedicine Institute, Icahn School of Medicine at Mount Sinai
| | - Mustafa M Siddiq
- Pharmacological Science and Systems Biomedicine Institute, Icahn School of Medicine at Mount Sinai
| | - Christine Chow
- Spinal Cord Damage Research Center, James J Peters VA Medical Center
| | - Wei Zhao
- Spinal Cord Damage Research Center, James J Peters VA Medical Center
- Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Lauren Harlow
- Spinal Cord Damage Research Center, James J Peters VA Medical Center
| | - Zachary Graham
- Healthspan, Resilience & Performance, Florida Institute for Human and Machine Cognition, Pensacola, FL
- Research Service, Birmingham VA Medical Center, Birmingham, AL
- Department of Cellular, Developmental and Integrative Biology, University of Alabama-Birmingham, Birmingham, AL
| | - Xin-Hua Liu
- Spinal Cord Damage Research Center, James J Peters VA Medical Center
- Department of Medicine, Icahn School of Medicine at Mount Sinai
| | - Junichi Sadoshima
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Ravi Iyengar
- Pharmacological Science and Systems Biomedicine Institute, Icahn School of Medicine at Mount Sinai
| | - Christopher P Cardozo
- Spinal Cord Damage Research Center, James J Peters VA Medical Center
- Department of Medicine, Icahn School of Medicine at Mount Sinai
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
20
|
Tyagi A, Chandrasekaran B, Navin AK, Shukla V, Baby BV, Ankem MK, Damodaran C. Molecular interplay between NOX1 and autophagy in cadmium-induced prostate carcinogenesis. Free Radic Biol Med 2023; 199:44-55. [PMID: 36764624 DOI: 10.1016/j.freeradbiomed.2023.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Chronic exposure to cadmium (Cd), a class I carcinogen, leads to malignant transformation of normal prostate epithelial cells (RWPE-1). The constant generation of Cd-induced ROS and resulting ER stress induces cellular responses that are needed for cell survival, and autophagy has an important role in this process. However, the mechanisms that regulate Cd-induced ROS and how these differ in terms of acute and chronic cadmium exposure remain unexplained. Here, we show that acute or chronic Cd exposure facilitates NOX1 assembly by activating its cytosolic regulators p47phox and p67phox in RWPE-1 cells. Upregulation of NOX1 complex proteins and generation of ROS activates unfolded protein response (UPR) via phosphorylation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2 alpha (eIF2α), and selective translation of activating transcription factor 4 (ATF4). Chronic Cd exposure constantly activates NOX1 complex and generates consistent ROS and ER stress that led to defective autophagy, wherein ATG5 expression is downregulated in contrast to acute Cd exposure. As a result, selective/defective autophagy creates depletion of autophagosome-lysosome fusion that gives a survival advantage to transforming cells, which is not available to RWPE-1 cells acutely exposed to Cd. Knockdown of key molecules in a lockstep manner directly affects the most downstream autophagy pathways in transforming cells. Overall, this study demonstrates that assembly of NOX1 complex proteins is indispensable for Cd-induced persistent ROS and controls ER stress-induced defective autophagy in mice and humans.
Collapse
Affiliation(s)
- Ashish Tyagi
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Balaji Chandrasekaran
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Ajit K Navin
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Vaibhav Shukla
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA
| | - Becaa V Baby
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Chendil Damodaran
- Department of Pharmacology, College of Pharmacy, Texas A&M University, College Station, TX, 77845, USA; Department of Urology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
21
|
Structure, regulation, and physiological functions of NADPH oxidase 5 (NOX5). J Physiol Biochem 2023:10.1007/s13105-023-00955-3. [PMID: 36905456 DOI: 10.1007/s13105-023-00955-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
NOX5 is the last member of the NADPH oxidase (NOXs) family to be identified and presents some specific characteristics differing from the rest of the NOXs. It contains four Ca2+ binding domains at the N-terminus and its activity is regulated by the intracellular concentration of Ca2+. NOX5 generates superoxide (O2•-) using NADPH as a substrate, and it modulates functions related to processes in which reactive oxygen species (ROS) are involved. Those functions appear to be detrimental or beneficial depending on the level of ROS produced. For example, the increase in NOX5 activity is related to the development of various oxidative stress-related pathologies such as cancer, cardiovascular, and renal diseases. In this context, pancreatic expression of NOX5 can negatively alter insulin action in high-fat diet-fed transgenic mice. This is consistent with the idea that the expression of NOX5 tends to increase in response to a stimulus or a stressful situation, generally causing a worsening of the pathology. On the other hand, it has also been suggested that it might have a positive role in preparing the body for metabolic stress, for example, by inducing a protective adipose tissue adaptation to the excess of nutrients supplied by a high-fat diet. In this line, its endothelial overexpression can delay lipid accumulation and insulin resistance development in obese transgenic mice by inducing the secretion of IL-6 followed by the expression of thermogenic and lipolytic genes. However, as NOX5 gene is not present in rodents and human NOX5 protein has not been crystallized, its function is still poorly characterized and further extensive research is required.
Collapse
|
22
|
Romo-González M, Ijurko C, Alonso MT, Gómez de Cedrón M, Ramirez de Molina A, Soriano ME, Hernández-Hernández Á. NOX2 and NOX4 control mitochondrial function in chronic myeloid leukaemia. Free Radic Biol Med 2023; 198:92-108. [PMID: 36764627 DOI: 10.1016/j.freeradbiomed.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Cancer cells are characterised by an elevated metabolic plasticity and enhanced production of reactive oxygen species (ROS), two features acknowledged as hallmarks in cancer, with a high translational potential to the therapeutic setting. These aspects, that have been traditionally studied separately, are in fact intimately intermingled. As part of their transforming activity, some oncogenes stimulate rewiring of metabolic processes, whilst simultaneously promoting increased production of intracellular ROS. In this scenario the latest discoveries suggest the relevance of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) to connect ROS production and metabolic control. Here we have analysed the relevance of NOX2 and NOX4 in the regulation of metabolism in chronic myeloid leukaemia (CML), a neoplasia driven by the expression of the breakpoint cluster region-Abelson fusion oncogene (BCR-ABL). Silencing of NOX2 enhances glycolysis and oxidative phosphorylation rates, together with an enhanced production of mitochondrial ROS and a decrease in mitochondrial DNA copy number, which reflects mitochondrial dysfunction. NOX4 expression was upregulated upon NOX2 silencing, and this was required to alter mitochondrial function. Our results support the relevance of NOX2 to regulate metabolism-related signalling pathways downstream of BCR-ABL. Overall we show that NOX2, through the regulation of NOX4 expression, controls metabolism and mitochondrial function in CML cells. This notion was confirmed by transcriptomic analyses, that strongly relate both NOX isoforms with metabolism regulation in CML.
Collapse
Affiliation(s)
- Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | | | | | | | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain.
| |
Collapse
|
23
|
Guse AH. Enzymology of Ca 2+-Mobilizing Second Messengers Derived from NAD: From NAD Glycohydrolases to (Dual) NADPH Oxidases. Cells 2023; 12:cells12040675. [PMID: 36831342 PMCID: PMC9954121 DOI: 10.3390/cells12040675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) and its 2'-phosphorylated cousin NADP are precursors for the enzymatic formation of the Ca2+-mobilizing second messengers adenosine diphosphoribose (ADPR), 2'-deoxy-ADPR, cyclic ADPR, and nicotinic acid adenine dinucleotide phosphate (NAADP). The enzymes involved are either NAD glycohydrolases CD38 or sterile alpha toll/interleukin receptor motif containing-1 (SARM1), or (dual) NADPH oxidases (NOX/DUOX). Enzymatic function(s) are reviewed and physiological role(s) in selected cell systems are discussed.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
24
|
Calpain Regulates Reactive Oxygen Species Production during Capacitation through the Activation of NOX2 and NOX4. Int J Mol Sci 2023; 24:ijms24043980. [PMID: 36835392 PMCID: PMC9967964 DOI: 10.3390/ijms24043980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Capacitation is a series of physiological, biochemical, and metabolic changes experienced by mammalian spermatozoa. These changes enable them to fertilize eggs. The capacitation prepares the spermatozoa to undergo the acrosomal reaction and hyperactivated motility. Several mechanisms that regulate capacitation are known, although they have not been fully disclosed; among them, reactive oxygen species (ROS) play an essential role in the normal development of capacitation. NADPH oxidases (NOXs) are a family of enzymes responsible for ROS production. Although their presence in mammalian sperm is known, little is known about their participation in sperm physiology. This work aimed to identify the NOXs related to the production of ROS in guinea pig and mouse spermatozoa and define their participation in capacitation, acrosomal reaction, and motility. Additionally, a mechanism for NOXs' activation during capacitation was established. The results show that guinea pig and mouse spermatozoa express NOX2 and NOX4, which initiate ROS production during capacitation. NOXs inhibition by VAS2870 led to an early increase in the capacitation and intracellular concentration of Ca2+ in such a way that the spermatozoa also presented an early acrosome reaction. In addition, the inhibition of NOX2 and NOX4 reduced progressive motility and hyperactive motility. NOX2 and NOX4 were found to interact with each other prior to capacitation. This interaction was interrupted during capacitation and correlated with the increase in ROS. Interestingly, the association between NOX2-NOX4 and their activation depends on calpain activation, since the inhibition of this Ca2+-dependent protease prevents NOX2-NOX4 from dissociating and ROS production. The results indicate that NOX2 and NOX4 could be the most important ROS producers during guinea pig and mouse sperm capacitation and that their activation depends on calpain.
Collapse
|
25
|
Guse AH. NAADP-Evoked Ca 2+ Signaling: The DUOX2-HN1L/JPT2-Ryanodine Receptor 1 Axis. Handb Exp Pharmacol 2023; 278:57-70. [PMID: 36443544 DOI: 10.1007/164_2022_623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing second messenger known to date. Major steps elucidating metabolism and Ca2+ mobilizing activity of NAADP are reviewed, with emphasis on a novel redox cycle between the inactive reduced form, NAADPH, and the active oxidized form, NAADP. Oxidation from NAADPH to NAADP is catalyzed in cell free system by (dual) NADPH oxidases NOX5, DUOX1, and DUOX2, whereas reduction from NAADP to NAADPH is catalyzed by glucose 6-phosphate dehydrogenase. Using different knockout models for NOX and DUOX isozymes, DUOX2 was identified as NAADP forming enzyme in early T-cell activation.Recently, receptors or binding proteins for NAADP were identified: hematological and neurological expressed 1-like protein (HN1L)/Jupiter microtubule associated homolog 2 (JPT2) and Lsm12 are small cytosolic proteins that bind NAADP. In addition, they interact with NAADP-sensitive Ca2+ channels, such as ryanodine receptor type 1 (RYR1) or two-pore channels (TPC).Due to its role as Ca2+ mobilizing second messenger in T cells, NAADP's involvement in inflammation is also reviewed. In the central nervous system (CNS), NAADP regulates autoimmunity because NAADP antagonism affects a couple of T-cell migration and re-activation events, e.g. secretion of the pro-inflammatory cytokine interleukin-17. Further, the role of NAADP in transdifferentiation of IL-17-producing Th17 cells into T regulatory type 1 cells in vitro and in vivo is discussed.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
26
|
Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases. Antioxidants (Basel) 2022; 11:2237. [PMID: 36421423 PMCID: PMC9687037 DOI: 10.3390/antiox11112237] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Inflammation of the human lung is mediated in response to different stimuli (e.g., physical, radioactive, infective, pro-allergenic or toxic) such as cigarette smoke and environmental pollutants. They often promote an increase in inflammatory activities in the airways that manifest themselves as chronic diseases (e.g., allergic airway diseases, asthma, chronic bronchitis/chronic obstructive pulmonary disease (COPD) or even lung cancer). Increased levels of oxidative stress (OS) reduce the antioxidant defenses, affect the autophagy/mitophagy processes, and the regulatory mechanisms of cell survival, promoting inflammation in the lung. In fact, OS potentiate the inflammatory activities in the lung, favoring the progression of chronic airway diseases. OS increases the production of reactive oxygen species (ROS), including superoxide anions (O2-), hydroxyl radicals (OH) and hydrogen peroxide (H2O2), by the transformation of oxygen through enzymatic and non-enzymatic reactions. In this manner, OS reduces endogenous antioxidant defenses in both nucleated and non-nucleated cells. The production of ROS in the lung can derive from both exogenous insults (cigarette smoke or environmental pollution) and endogenous sources such as cell injury and/or activated inflammatory and structural cells. In this review, we describe the most relevant knowledge concerning the functional interrelation between the mechanisms of OS and inflammation in airway diseases.
Collapse
|
27
|
NOX as a Therapeutic Target in Liver Disease. Antioxidants (Basel) 2022; 11:antiox11102038. [PMID: 36290761 PMCID: PMC9598239 DOI: 10.3390/antiox11102038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
The nicotinamide adenine dinucleotide phosphate hydrogen oxidase (NADPH oxidase or NOX) plays a critical role in the inflammatory response and fibrosis in several organs such as the lungs, pancreas, kidney, liver, and heart. In the liver, NOXs contribute, through the generation of reactive oxygen species (ROS), to hepatic fibrosis by acting through multiple pathways, including hepatic stellate cell activation, proliferation, survival, and migration of hepatic stellate cells; hepatocyte apoptosis, enhancement of fibrogenic mediators, and mediation of an inflammatory cascade in both Kupffer cells and hepatic stellate cells. ROS are overwhelmingly produced during malignant transformation and hepatic carcinogenesis (HCC), creating an oxidative microenvironment that can cause different and various types of cellular stress, including DNA damage, ER stress, cell death of damaged hepatocytes, and oxidative stress. NOX1, NOX2, and NOX4, members of the NADPH oxidase family, have been linked to the production of ROS in the liver. This review will analyze some diseases related to an increase in oxidative stress and its relationship with the NOX family, as well as discuss some therapies proposed to slow down or control the disease's progression.
Collapse
|
28
|
G JM, P P, Dharmarajan A, Warrier S, Gandhirajan RK. Modulation of Reactive Oxygen Species in Cancers: Recent Advances. Free Radic Res 2022; 56:447-470. [PMID: 36214686 DOI: 10.1080/10715762.2022.2133704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oxidation-reduction reactions played a significant role in the chemical evolution of life forms on oxygenated earth. Cellular respiration is dependent on such redox reactions, and any imbalance leads to the accumulation of reactive oxygen species (ROS), resulting in both chronic and acute illnesses. According to the International Agency for Research on Cancer (IARC), by 2040, the global burden of new cancer cases is expected to be around 27.5 million, with 16.3 million cancer deaths due to an increase in risk factors such as unhealthy lifestyle, environmental factors, aberrant gene mutations, and resistance to therapies. ROS play an important role in cellular signalling, but they can cause severe damage to tissues when present at higher levels. Elevated and chronic levels of ROS are pertinent in carcinogenesis, while several therapeutic strategies rely on altering cellular ROS to eliminate tumour cells as they are more susceptible to ROS-induced damage than normal cells. Given this selective targeting potential, therapies that can effectively modulate ROS levels have been the focus of intense research in recent years. The current review describes biologically relevant ROS, its origins in solid and haematological cancers, and the current status of evolving antioxidant and pro-oxidant therapies in cancers.
Collapse
Affiliation(s)
- Jeyasree M G
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India
| | - Prerana P
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India.,Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India.,Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Porur, Chennai 600116, India
| |
Collapse
|
29
|
Hewitt OH, Degnan SM. Distribution and diversity of ROS-generating enzymes across the animal kingdom, with a focus on sponges (Porifera). BMC Biol 2022; 20:212. [PMID: 36175868 PMCID: PMC9524095 DOI: 10.1186/s12915-022-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive derivatives of oxygen (reactive oxygen species; ROS) are essential in signalling networks of all aerobic life. Redox signalling, based on cascades of oxidation-reduction reactions, is an evolutionarily ancient mechanism that uses ROS to regulate an array of vital cellular processes. Hydrogen peroxide (H2O2) and superoxide anion (O2•-) are employed as signalling molecules that alter the oxidation state of atoms, inhibiting or activating gene activity. Here, we conduct metazoan-wide comparative genomic assessments of the two enzyme families, superoxide dismutase (SOD) and NADPH oxidases (NOX), that generate H2O2 and/or O2•- in animals. RESULTS Using the genomes of 19 metazoan species representing 10 phyla, we expand significantly on previous surveys of these two ancient enzyme families. We find that the diversity and distribution of both the SOD and NOX enzyme families comprise some conserved members but also vary considerably across phyletic animal lineages. For example, there is substantial NOX gene loss in the ctenophore Mnemiopsis leidyi and divergent SOD isoforms in the bilaterians D. melanogaster and C. elegans. We focus particularly on the sponges (phylum Porifera), a sister group to all other metazoans, from which these enzymes have not previously been described. Within Porifera, we find a unique calcium-regulated NOX, the widespread radiation of an atypical member of CuZnSOD named Rsod, and a novel endoplasmic reticulum MnSOD that is prevalent across aquatic metazoans. CONCLUSIONS Considering the precise, spatiotemporal specificity of redox signalling, our findings highlight the value of expanding redox research across a greater diversity of organisms to better understand the functional roles of these ancient enzymes within a universally important signalling mechanism.
Collapse
Affiliation(s)
- Olivia H Hewitt
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Sandie M Degnan
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
30
|
Valenta H, Dupré-Crochet S, Abdesselem M, Bizouarn T, Baciou L, Nüsse O, Deniset-Besseau A, Erard M. Consequences of the constitutive NOX2 activity in living cells: Cytosol acidification, apoptosis, and localized lipid peroxidation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119276. [PMID: 35489654 DOI: 10.1016/j.bbamcr.2022.119276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The phagocyte NADPH oxidase (NOX2) is a key enzyme of the innate immune system generating superoxide anions (O2•-), precursors of reactive oxygen species. The NOX2 protein complex is composed of six subunits: two membrane proteins (gp91phox and p22phox) forming the catalytic core, three cytosolic proteins (p67phox, p47phox and p40phox) and a small GTPase Rac. The sophisticated activation mechanism of the NADPH oxidase relies on the assembly of cytosolic subunits with the membrane-bound components. A chimeric protein, called 'Trimera', composed of the essential domains of the cytosolic proteins p47phox (aa 1-286), p67phox (aa 1-212) and full-length Rac1Q61L, enables a constitutive and robust NOX2 activity in cells without the need of any stimulus. We employed Trimera as a single activating protein of the phagocyte NADPH oxidase in living cells and examined the consequences on the cell physiology of this continuous and long-term NOX activity. We showed that the sustained high level of NOX activity causes acidification of the intracellular pH, triggers apoptosis and leads to local peroxidation of lipids in the membrane. These local damages to the membrane correlate with the strong tendency of the Trimera to clusterize in the plasma membrane observed by FRET-FLIM microscopy.
Collapse
Affiliation(s)
- Hana Valenta
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Sophie Dupré-Crochet
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Mouna Abdesselem
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Tania Bizouarn
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Laura Baciou
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Oliver Nüsse
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Ariane Deniset-Besseau
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Marie Erard
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| |
Collapse
|
31
|
Kumari R, Dkhar DS, Mahapatra S, Divya, Kumar R, Chandra P. Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants (Basel) 2022; 11:antiox11081566. [PMID: 36009285 PMCID: PMC9405266 DOI: 10.3390/antiox11081566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.
Collapse
|
33
|
Baek M, Jang W, Kim C. Dual Oxidase, a Hydrogen-Peroxide-Producing Enzyme, Regulates Neuronal Oxidative Damage and Animal Lifespan in Drosophila melanogaster. Cells 2022; 11:cells11132059. [PMID: 35805145 PMCID: PMC9265666 DOI: 10.3390/cells11132059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Reducing the oxidative stress in neurons extends lifespan in Drosophila melanogaster, highlighting the crucial role of neuronal oxidative damage in lifespan determination. However, the source of the reactive oxygen species (ROS) that provoke oxidative stress in neurons is not clearly defined. Here, we identify dual oxidase (duox), a calcium-activated ROS-producing enzyme, as a lifespan determinant. Due to the lethality of duox homozygous mutants, we employed a duox heterozygote that exhibited normal appearance and movement. We found that duox heterozygous male flies, which were isogenized with control flies, demonstrated extended lifespan. Neuronal knockdown experiments further suggested that duox is crucial to oxidative stress in neurons. Our findings suggest duox to be a source of neuronal oxidative stress associated with animal lifespan.
Collapse
|
34
|
NADPH Oxidases in Pain Processing. Antioxidants (Basel) 2022; 11:antiox11061162. [PMID: 35740059 PMCID: PMC9219759 DOI: 10.3390/antiox11061162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammation or injury to the somatosensory nervous system may result in chronic pain conditions, which affect millions of people and often cause major health problems. Emerging lines of evidence indicate that reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, are produced in the nociceptive system during chronic inflammatory and neuropathic pain and act as specific signaling molecules in pain processing. Among potential ROS sources in the somatosensory system are NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. Interestingly, the expression and relevant function of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system have been demonstrated. Studies using knockout mice or specific knockdown of these isoforms indicate that Nox1, Nox2, and Nox4 specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. As selective Nox inhibitors are currently being developed and investigated in various physiological and pathophysiological settings, targeting Nox1, Nox2, and/or Nox4 could be a novel strategy for the treatment of chronic pain. Here, we summarize the distinct roles of Nox1, Nox2, and Nox4 in inflammatory and neuropathic processing and discuss the effectiveness of currently available Nox inhibitors in the treatment of chronic pain conditions.
Collapse
|
35
|
Teichert V, Große S, Multhaup A, Müller J, Gutierrez-Samudio RN, Morales-Prieto DM, Groten T. PETN-Induced Antioxidative Properties in Endothelial Cells as a Target for Secondary Prevention of Endothelial Dysfunction in Pregnancy. Front Physiol 2022; 13:882544. [PMID: 35707005 PMCID: PMC9189364 DOI: 10.3389/fphys.2022.882544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
The NO-donor Pentaerytrithyltetranitrate (PETN) has vasodilatative properties and direct protective effects on endothelial cells. We formerly demonstrated that PETN, given to pregnant women during the second and third trimester, influences endothelial dysfunction related pregnancy complications like preeclampsia (PE) and fetal growth restriction (FGR). PETN treatment showed to delay PE to late pregnancy and achieved a profound risk reduction for FGR and/or perinatal death of 40%. The aim of this study was to confirm the effect of PETN on endothelial cell dysfunction at molecular level in an experimental approach. To induce endothelial dysfunction HUVEC were treated with 10 U/l of thrombin in the presence or absence of PETN. qRT-PCR analysis showed that PETN induced the expression of heme-oxygenase-1 and superoxide dismutase two but not endothelial NO-synthase under basal conditions. The induction of antioxidant proteins did not change basal reactive oxygen species (ROS) levels as measured by MitoSOX™ staining. PETN treatment significantly delayed the thrombin-induced disruption of the endothelial monolayer, determined using the xCELLigence® and attenuated the disrupting effect of thrombin on tubular junctions as seen in a tube-forming assay on Matrigel™. In western-blot-analysis we could show that PETN significantly reduced thrombin-induced extracellular signal-regulated kinase activation which correlates with reduction of thrombin-induced ROS. These experimental results establish the concept of how PETN treatment could stabilize endothelial resistance and angiogenic properties in pregnancy-induced stress. Thus, our results underscore the assumption, that the shown clinical effects of PETN are associated to its endothelial cell protection.
Collapse
Affiliation(s)
- Veronika Teichert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Jena, Germany
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | - Silke Große
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Jena, Germany
| | - Anna Multhaup
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Jena, Germany
| | - Jasmin Müller
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Jena, Germany
| | | | | | - Tanja Groten
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Jena, Germany
- *Correspondence: Tanja Groten,
| |
Collapse
|
36
|
Feng W, Wang J, Li B, Liu Y, Xu D, Cheng K, Zhuang J. Graphene oxide leads to mitochondrial-dependent apoptosis by activating ROS-p53-mPTP pathway in intestinal cells. Int J Biochem Cell Biol 2022; 146:106206. [PMID: 35398141 DOI: 10.1016/j.biocel.2022.106206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2022]
Abstract
Owing to its unique physical and chemical properties, graphene oxide (GO) has a wide range of applications in biomedical field. However, with the gradual improvement of biosafety investigations on nanomaterials, growing literatures have pointed out that GO could lead to oxidative stress, aggravation of inflammatory responses, and even irreversible lesions in human multi-tissues, while its damage to small intestinal remained unclear. In this study, we conducted an in-depth study on the toxicological effect of GO on intestinal tissues, and further clarified its toxic effect and molecular mechanism on inducing intestinal cell death. Firstly, we characterized the shape size, potential value, Fourier Transform infrared spectroscopy (FT-IR) characterization and pro-oxidant properties of GO nanosheets. The cytotoxicity of different concentrations of GO to Caco-2 and IEC-6 cell lines was thereafter observed, which was specifically manifested as invoking NADPH Oxidase 1 (NOX1) proteins, accompanied generation of reactive oxygen species (ROS). Since that, more p53 flowed into mitochondria to combine with cyclophilin D (CYPD), thus induced mitochondrial permeability transition pore (mPTP) opening. Through ROS-CyPD-mPTP signaling pathway, GO exerted imbalance of mitochondrial homeostasis, while released cytochrome c (CytC) would ultimate caspase-dependent cell apoptosis. In vivo experiment also confirmed that the microstructure of small intestine was damaged, and the apoptosis rate and oxidative markers were significantly increased in GO-treated Sprague- Dawley (SD) rats (40 mg/kg once every other day from day 1 to day 9 by oral gavage). Based on these findings, we conclude that the adverse effects of oral exposure of GO on the biological system mainly concentrate in the digestive tract, and clarify the key role of ROS-mitochondrial homeostasis-apoptosis axis in GO-derived intestinal toxicity. Considering all these results and the fact that GO exhibited intestinal toxicity, we believe that this research providing a safety reference for its biomedical applications.
Collapse
Affiliation(s)
- Weiyu Feng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jinbang Wang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Baodong Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yonggang Liu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dongli Xu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ke Cheng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhuang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
37
|
Xue X, Duan R, Zheng G, Chen H, Zhang W, Shi L. Translocator protein (18 kDa) regulates the microglial phenotype in Parkinson's disease through P47. Bioengineered 2022; 13:11061-11071. [PMID: 35475466 PMCID: PMC9208449 DOI: 10.1080/21655979.2022.2068754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Numerous studies have suggested that the phenotypic transformation of microglia plays a role in the pathogenesis of Parkinson's disease (PD). Translocator protein (TSPO) is an 18 kDa translocator membrane protein that acts as a marker of neuroinflammation and suppresses neuroinflammation; however, its underlying mechanism remains unclear. Although TSPO ligands were found to be protective in several neurodegenerative paradigms, few studies have evaluated their effects on microglial polarization, and underlying mechanisms need to be explored. In the present study, we examined the effects of TSPO and PK11195, a TSPO ligand, on lipopolysaccharide (LPS)+interferon (IFN)-γ-induced inflammatory factors and oxidative stress in microglia using enzyme-linked immunosorbent assay. The effect of TSPO and PK11195 on LPS+IFN-γ-induced microglial cell apoptosis was examined using immunofluorescence (IF), flow cytometry, and western blotting. The interaction between TSPO and P47 was investigated using IF and co-immunoprecipitation analysis. In vivo experiments confirmed the influence of TSPO and its ligand on motility, a-Syn, and dopaminergic neuronal damage. Our findings indicate that TSPO may regulate the microglial phenotype in PD via P47, suggesting a potential role in anti-PD therapy.
Collapse
Affiliation(s)
- Xue Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyan Zheng
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hucheng Chen
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Zhang
- Department of Pathogenic Biology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Camargo LL, Montezano AC, Hussain M, Wang Y, Zou Z, Rios FJ, Neves KB, Alves-Lopes R, Awan FR, Guzik TJ, Jensen T, Hartley RC, Touyz RM. Central role of c-Src in NOX5- mediated redox signalling in vascular smooth muscle cells in human hypertension. Cardiovasc Res 2022; 118:1359-1373. [PMID: 34320175 PMCID: PMC8953456 DOI: 10.1093/cvr/cvab171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
AIMS NOX-derived reactive oxygen species (ROS) are mediators of signalling pathways implicated in vascular smooth muscle cell (VSMC) dysfunction in hypertension. Among the numerous redox-sensitive kinases important in VSMC regulation is c-Src. However, mechanisms linking NOX/ROS to c-Src are unclear, especially in the context of oxidative stress in hypertension. Here, we investigated the role of NOX-induced oxidative stress in VSMCs in human hypertension focusing on NOX5, and explored c-Src, as a putative intermediate connecting NOX5-ROS to downstream effector targets underlying VSMC dysfunction. METHODS AND RESULTS VSMC from arteries from normotensive (NT) and hypertensive (HT) subjects were studied. NOX1,2,4,5 expression, ROS generation, oxidation/phosphorylation of signalling molecules, and actin polymerization and migration were assessed in the absence and presence of NOX5 (melittin) and Src (PP2) inhibitors. NOX5 and p22phox-dependent NOXs (NOX1-4) were down-regulated using NOX5 siRNA and p22phox-siRNA approaches. As proof of concept in intact vessels, vascular function was assessed by myography in transgenic mice expressing human NOX5 in a VSMC-specific manner. In HT VSMCs, NOX5 was up-regulated, with associated oxidative stress, hyperoxidation (c-Src, peroxiredoxin, DJ-1), and hyperphosphorylation (c-Src, PKC, ERK1/2, MLC20) of signalling molecules. NOX5 siRNA reduced ROS generation in NT and HT subjects. NOX5 siRNA, but not p22phox-siRNA, blunted c-Src phosphorylation in HT VSMCs. NOX5 siRNA reduced phosphorylation of MLC20 and FAK in NT and HT. In p22phox- silenced HT VSMCs, Ang II-induced phosphorylation of MLC20 was increased, effects blocked by melittin and PP2. NOX5 and c-Src inhibition attenuated actin polymerization and migration in HT VSMCs. In NOX5 transgenic mice, vascular hypercontractilty was decreased by melittin and PP2. CONCLUSION We define NOX5/ROS/c-Src as a novel feedforward signalling network in human VSMCs. Amplification of this system in hypertension contributes to VSMC dysfunction. Dampening the NOX5/ROS/c-Src pathway may ameliorate hypertension-associated vascular injury.
Collapse
Affiliation(s)
- Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Misbah Hussain
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Yu Wang
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Zhiguo Zou
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Rheure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Fazli R Awan
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Thomas Jensen
- WestCHEM School of Chemistry, University of Glasgow, University Avenue, G12 8QQ Glasgow, UK
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, University Avenue, G12 8QQ Glasgow, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
39
|
Luengo E, Trigo-Alonso P, Fernández-Mendívil C, Nuñez Á, Campo MD, Porrero C, García-Magro N, Negredo P, Senar S, Sánchez-Ramos C, Bernal JA, Rábano A, Hoozemans J, Casas AI, Schmidt HHHW, López MG. Implication of type 4 NADPH oxidase (NOX4) in tauopathy. Redox Biol 2022; 49:102210. [PMID: 34922273 PMCID: PMC8686076 DOI: 10.1016/j.redox.2021.102210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/01/2022] Open
Abstract
Aggregates of the microtubule-associated protein tau are a common marker of neurodegenerative diseases collectively termed as tauopathies, such as Alzheimer's disease (AD) and frontotemporal dementia. Therapeutic strategies based on tau have failed in late stage clinical trials, suggesting that tauopathy may be the consequence of upstream causal mechanisms. As increasing levels of reactive oxygen species (ROS) may trigger protein aggregation or modulate protein degradation and, we had previously shown that the ROS producing enzyme NADPH oxidase 4 (NOX4) is a major contributor to cellular autotoxicity, this study was designed to evaluate if NOX4 is implicated in tauopathy. Our results show that NOX4 is upregulated in patients with frontotemporal lobar degeneration and AD patients and, in a humanized mouse model of tauopathy induced by AVV-TauP301L brain delivery. Both, global knockout and neuronal knockdown of the Nox4 gene in mice, diminished the accumulation of pathological tau and positively modified established tauopathy by a mechanism that implicates modulation of the autophagy-lysosomal pathway (ALP) and, consequently, improving the macroautophagy flux. Moreover, neuronal-targeted NOX4 knockdown was sufficient to reduce neurotoxicity and prevent cognitive decline, even after induction of tauopathy, suggesting a direct and causal role for neuronal NOX4 in tauopathy. Thus, NOX4 is a previously unrecognized causative, mechanism-based target in tauopathies and blood-brain barrier permeable specific NOX4 inhibitors could have therapeutic potential even in established disease.
Collapse
Affiliation(s)
- Enrique Luengo
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Paula Trigo-Alonso
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Ángel Nuñez
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Del Campo
- Department of Health and Pharmaceutical Science, Faculty of Pharmacy, San Pablo CEU University, Montepríncipe, Alcorcón, Spain
| | - César Porrero
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Senar
- Dr. Target Machine Learning. Calle Alejo Carpentier 13, Alcala de Henares, 28806, Madrid, Spain
| | - Cristina Sánchez-Ramos
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan A Bernal
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alberto Rábano
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Jeroen Hoozemans
- Department of Pathology, Amsterdam University Medical Centers Location VUmc, Amsterdam, the Netherlands
| | - Ana I Casas
- Department of Pharmacology and Personalized Medicine, Maastricht Center for Systems Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Neurology, University Hospital Essen, Essen, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalized Medicine, Maastricht Center for Systems Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Manuela G López
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain.
| |
Collapse
|
40
|
El-Mahdy MA, Ewees MG, Eid MS, Mahgoup EM, Khaleel SA, Zweier JL. Electronic Cigarette Exposure Causes Vascular Endothelial Dysfunction Due to NADPH Oxidase Activation and eNOS Uncoupling. Am J Physiol Heart Circ Physiol 2022; 322:H549-H567. [PMID: 35089811 PMCID: PMC8917923 DOI: 10.1152/ajpheart.00460.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We recently reported a mouse model of chronic electronic cigarette (e-cig) exposure-induced cardiovascular pathology, where long-term exposure to e-cig vape (ECV) induces cardiac abnormalities, impairment of endothelial function, and systemic hypertension. Here, we delineate the underlying mechanisms of ECV-induced vascular endothelial dysfunction (VED), a central trigger of cardiovascular disease. C57/BL6 male mice were exposed to ECV generated from e-cig liquid containing 0, 6, or 24 mg/ml nicotine for 16 and 60 weeks. Time-dependent elevation in blood pressure and systemic vascular resistance were observed, along with an impairment of acetylcholine-induced aortic relaxation in ECV-exposed mice, compared to air-exposed control. Decreased intravascular nitric oxide (NO) levels and increased superoxide generation with elevated 3-nitrotyrosine levels in the aorta of ECV-exposed mice were observed, indicating that ECV-induced superoxide reacts with NO to generate cytotoxic peroxynitrite. Exposure increased NADPH oxidase expression, supporting its role in ECV-induced superoxide generation. Downregulation of endothelial nitric oxide synthase (eNOS) expression and Akt-dependent eNOS phosphorylation occurred in the aorta of ECV-exposed mice, indicating that exposure inhibited de novo NO synthesis. Following ECV exposure, the critical NOS cofactor tetrahydrobiopterin was decreased, with a concomitant loss of its salvage enzyme, dihydrofolate reductase. NADPH oxidase and NOS inhibitors abrogated ECV-induced superoxide generation in the aorta of ECV exposed mice. Together, our data demonstrate that ECV exposure activates NADPH oxidase and uncouples eNOS, causing a vicious cycle of superoxide generation and vascular oxidant stress that triggers VED and hypertension with predisposition to other cardiovascular disease.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Mohamed G Ewees
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Mahmoud S Eid
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Elsayed M Mahgoup
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sahar A Khaleel
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jay L Zweier
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
41
|
Wu Q, Gurpinar A, Roberts M, Camelliti P, Ruggieri MR, Wu C. Identification of the NADPH Oxidase (Nox) Subtype and the Source of Superoxide Production in the Micturition Centre. BIOLOGY 2022; 11:183. [PMID: 35205049 PMCID: PMC8868587 DOI: 10.3390/biology11020183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023]
Abstract
Oxidative inflammatory damage to specialised brain centres may lead to dysfunction of their associated peripheral organs, such as the bladder. However, the source of reactive oxygen species (ROS) in specific brain regions that regulate bladder function is poorly understood. Of all ROS-generating enzymes, the NADPH oxidase (Nox) family produces ROS as its sole function and offers an advantage over other enzymes as a drug-targetable molecule to selectively control excessive ROS. We investigated whether the Nox 2 subtype is expressed in the micturition regulatory periaqueductal gray (PAG) and Barrington's nucleus (pontine micturition centre, PMC) and examined Nox-derived ROS production in these structures. C57BL/6J mice were used; PAG, PMC, cardiac tissue, and aorta were isolated. Western blot determined Nox 2 expression. Lucigenin-enhanced chemiluminescence quantified real-time superoxide production. Western blot experiments demonstrated the presence of Nox 2 in PAG and PMC. There was significant NADPH-dependent superoxide production in both brain tissues, higher than that in cardiac tissue. Superoxide generation in these brain tissues was significantly suppressed by the Nox inhibitor diphenyleneiodonium (DPI) and also reduced by the Nox-2 specific inhibitor GSK2795039, comparable to aorta. These data provide the first evidence for the presence of Nox 2 and Nox-derived ROS production in micturition centres.
Collapse
Affiliation(s)
- Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Ayse Gurpinar
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Maxwell Roberts
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Michael R Ruggieri
- Department of Anatomy & Cell Biology, Temple University, Philadelphia, PA 19122, USA
| | - Changhao Wu
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
42
|
Acute exposure to gold nanoparticles aggravates lipopolysaccharide-induced liver injury by amplifying apoptosis via ROS-mediated macrophage-hepatocyte crosstalk. J Nanobiotechnology 2022; 20:37. [PMID: 35057820 PMCID: PMC8772144 DOI: 10.1186/s12951-021-01203-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background Gold nanoparticles (AuNPs) are increasingly utilized in industrial and biomedical fields, thereby demanding a more comprehensive knowledge about their safety. Current toxicological studies mainly focus on the unfavorable biological impact governed by the physicochemical properties of AuNPs, yet the consequences of their interplay with other bioactive compounds in biological systems are poorly understood. Results In this study, AuNPs with a size of 10 nm, the most favorable size for interaction with host cells, were given alone or in combination with bacterial lipopolysaccharide (LPS) in mice or cultured hepatic cells. The results demonstrated that co exposure to AuNPs and LPS exacerbated fatal acute liver injury (ALI) in mice, although AuNPs are apparently non-toxic when administered alone. AuNPs do not enhance systemic or hepatic inflammation but synergize with LPS to upregulate hepatic apoptosis by augmenting macrophage-hepatocyte crosstalk. Mechanistically, AuNPs and LPS coordinate to upregulate NADPH oxidase 2 (NOX2)-dependent reactive oxygen species (ROS) generation and activate the intrinsic apoptotic pathway in hepatic macrophages. Extracellular ROS generation from macrophages is then augmented, thereby inducing calcium-dependent ROS generation and promoting apoptosis in hepatocytes. Furthermore, AuNPs and LPS upregulate scavenger receptor A expression in macrophages and thus increase AuNP uptake to mediate further apoptosis induction. Conclusions This study reveals a profound impact of AuNPs in aggravating the hepatotoxic effect of LPS by amplifying ROS-dependent crosstalk in hepatic macrophages and hepatocytes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01203-w.
Collapse
|
43
|
Hassan W, Noreen H, Rehman S, Kamal MA, Teixeira da Rocha JB. Association of Oxidative Stress with Neurological Disorders. Curr Neuropharmacol 2022; 20:1046-1072. [PMID: 34781871 PMCID: PMC9886831 DOI: 10.2174/1570159x19666211111141246] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/05/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGORUND Oxidative stress is one of the main contributing factors involved in cerebral biochemical impairment. The higher susceptibility of the central nervous system to reactive oxygen species mediated damage could be attributed to several factors. For example, neurons use a greater quantity of oxygen, many parts of the brain have higher concentraton of iron, and neuronal mitochondria produce huge content of hydrogen peroxide. In addition, neuronal membranes have polyunsaturated fatty acids, which are predominantly vulnerable to oxidative stress (OS). OS is the imbalance between reactive oxygen species generation and cellular antioxidant potential. This may lead to various pathological conditions and diseases, especially neurodegenerative diseases such as, Parkinson's, Alzheimer's, and Huntington's diseases. OBJECTIVES In this study, we explored the involvement of OS in neurodegenerative diseases. METHODS We used different search terms like "oxidative stress and neurological disorders" "free radicals and neurodegenerative disorders" "oxidative stress, free radicals, and neurological disorders" and "association of oxidative stress with the name of disorders taken from the list of neurological disorders. We tried to summarize the source, biological effects, and physiologic functions of ROS. RESULTS Finally, it was noted that more than 190 neurological disorders are associated with oxidative stress. CONCLUSION More elaborated studies in the future will certainly help in understanding the exact mechanism involved in neurological diseases and provide insight into revelation of therapeutic targets.
Collapse
Affiliation(s)
- Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Hamsa Noreen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Shakila Rehman
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Joao Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pós-Graduação em Bioquímica, Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
44
|
Endothelial NOX5 Expression Modulates Thermogenesis and Lipolysis in Mice Fed with a High-Fat Diet and 3T3-L1 Adipocytes through an Interleukin-6 Dependent Mechanism. Antioxidants (Basel) 2021; 11:antiox11010030. [PMID: 35052534 PMCID: PMC8772862 DOI: 10.3390/antiox11010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity is a global health issue associated with the development of metabolic syndrome, which correlates with insulin resistance, altered lipid homeostasis, and other pathologies. One of the mechanisms involved in the development of these pathologies is the increased production of reactive oxygen species (ROS). One of the main producers of ROS is the family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, among which NOX5 is the most recently discovered member. The aim of the present work is to describe the effect of endothelial NOX5 expression on neighboring adipose tissue in obesity conditions by using two systems. An in vivo model based on NOX5 conditional knock-in mice fed with a high-fat diet and an in vitro model developed with 3T3-L1 adipocytes cultured with conditioned media of endothelial NOX5-expressing bEnd.3 cells, previously treated with glucose and palmitic acid. Endothelial NOX5 expression promoted the expression and activation of specific markers of thermogenesis and lipolysis in the mesenteric and epididymal fat of those mice fed with a high-fat diet. Additionally, the activation of these processes was derived from an increase in IL-6 production as a result of NOX5 activity. Accordingly, 3T3-L1 adipocytes treated with conditioned media of endothelial NOX5-expressing cells, presented higher expression of thermogenic and lipolytic genes. Moreover, endothelial NOX5-expressing bEnd.3 cells previously treated with glucose and palmitic acid also showed interleukin (IL-6) production. Finally, it seems that the increase in IL-6 stimulated the activation of markers of thermogenesis and lipolysis through phosphorylation of STAT3 and AMPK, respectively. In conclusion, in response to obesogenic conditions, endothelial NOX5 activity could promote thermogenesis and lipolysis in the adipose tissue by regulating IL-6 production.
Collapse
|
45
|
Vilas-Boas EA, Almeida DC, Roma LP, Ortis F, Carpinelli AR. Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress. Cells 2021; 10:cells10123328. [PMID: 34943836 PMCID: PMC8699655 DOI: 10.3390/cells10123328] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
A high caloric intake, rich in saturated fats, greatly contributes to the development of obesity, which is the leading risk factor for type 2 diabetes (T2D). A persistent caloric surplus increases plasma levels of fatty acids (FAs), especially saturated ones, which were shown to negatively impact pancreatic β-cell function and survival in a process called lipotoxicity. Lipotoxicity in β-cells activates different stress pathways, culminating in β-cells dysfunction and death. Among all stresses, endoplasmic reticulum (ER) stress and oxidative stress have been shown to be strongly correlated. One main source of oxidative stress in pancreatic β-cells appears to be the reactive oxygen species producer NADPH oxidase (NOX) enzyme, which has a role in the glucose-stimulated insulin secretion and in the β-cell demise during both T1 and T2D. In this review, we focus on the acute and chronic effects of FAs and the lipotoxicity-induced β-cell failure during T2D development, with special emphasis on the oxidative stress induced by NOX, the ER stress, and the crosstalk between NOX and ER stress.
Collapse
Affiliation(s)
- Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo (USP), São Paulo 05508-900, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| | - Davidson Correa Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Leticia Prates Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany;
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (D.C.A.); (F.O.)
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil
- Correspondence: (E.A.V.-B.); (A.R.C.); Tel.: +55-(11)-3091-7246 (A.R.C.)
| |
Collapse
|
46
|
Chang P, Li H, Hu H, Li Y, Wang T. The Role of HDAC6 in Autophagy and NLRP3 Inflammasome. Front Immunol 2021; 12:763831. [PMID: 34777380 PMCID: PMC8578992 DOI: 10.3389/fimmu.2021.763831] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy fights against harmful stimuli and degrades cytosolic macromolecules, organelles, and intracellular pathogens. Autophagy dysfunction is associated with many diseases, including infectious and inflammatory diseases. Recent studies have identified the critical role of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasomes activation in the innate immune system, which mediates the secretion of proinflammatory cytokines IL-1β/IL-18 and cleaves Gasdermin D to induce pyroptosis in response to pathogenic and sterile stimuli. Accumulating evidence has highlighted the crosstalk between autophagy and NLRP3 inflammasome in multifaceted ways to influence host defense and inflammation. However, the underlying mechanisms require further clarification. Histone deacetylase 6 (HDAC6) is a class IIb deacetylase among the 18 mammalian HDACs, which mainly localizes in the cytoplasm. It is involved in two functional deacetylase domains and a ubiquitin-binding zinc finger domain (ZnF-BUZ). Due to its unique structure, HDAC6 regulates various physiological processes, including autophagy and NLRP3 inflammasome, and may play a role in the crosstalk between them. In this review, we provide insight into the mechanisms by which HDAC6 regulates autophagy and NLRP3 inflammasome and we explored the possibility and challenges of HDAC6 in the crosstalk between autophagy and NLRP3 inflammasome. Finally, we discuss HDAC6 inhibitors as a potential therapeutic approach targeting either autophagy or NLRP3 inflammasome as an anti-inflammatory strategy, although further clarification is required regarding their crosstalk.
Collapse
Affiliation(s)
- Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| | - Hao Li
- Department of Emergency, First Hospital of China Medical University, Shenyang, China
| | - Hui Hu
- Department of Traumatology, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
47
|
Herranz-Itúrbide M, Peñuelas-Haro I, Espinosa-Sotelo R, Bertran E, Fabregat I. The TGF-β/NADPH Oxidases Axis in the Regulation of Liver Cell Biology in Health and Disease. Cells 2021; 10:cells10092312. [PMID: 34571961 PMCID: PMC8470857 DOI: 10.3390/cells10092312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) pathway plays essential roles in liver development and homeostasis and become a relevant factor involved in different liver pathologies, particularly fibrosis and cancer. The family of NADPH oxidases (NOXs) has emerged in recent years as targets of the TGF-β pathway mediating many of its effects on hepatocytes, stellate cells and macrophages. This review focuses on how the axis TGF-β/NOXs may regulate the biology of different liver cells and how this influences physiological situations, such as liver regeneration, and pathological circumstances, such as liver fibrosis and cancer. Finally, we discuss whether NOX inhibitors may be considered as potential therapeutic tools in liver diseases.
Collapse
Affiliation(s)
- Macarena Herranz-Itúrbide
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Irene Peñuelas-Haro
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rut Espinosa-Sotelo
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
- Correspondence: ; Tel.: +34-932-607-828
| |
Collapse
|
48
|
Zhao T, Wu W, Sui L, Huang Q, Nan Y, Liu J, Ai K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 2021; 7:47-72. [PMID: 34466716 PMCID: PMC8377441 DOI: 10.1016/j.bioactmat.2021.06.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Interventional coronary reperfusion strategies are widely adopted to treat acute myocardial infarction, but morbidity and mortality of acute myocardial infarction are still high. Reperfusion injuries are inevitable due to the generation of reactive oxygen species (ROS) and apoptosis of cardiac muscle cells. However, many antioxidant and anti-inflammatory drugs are largely limited by pharmacokinetics and route of administration, such as short half-life, low stability, low bioavailability, and side effects for treatment myocardial ischemia reperfusion injury. Therefore, it is necessary to develop effective drugs and technologies to address this issue. Fortunately, nanotherapies have demonstrated great opportunities for treating myocardial ischemia reperfusion injury. Compared with traditional drugs, nanodrugs can effectively increase the therapeutic effect and reduces side effects by improving pharmacokinetic and pharmacodynamic properties due to nanodrugs’ size, shape, and material characteristics. In this review, the biology of ROS and molecular mechanisms of myocardial ischemia reperfusion injury are discussed. Furthermore, we summarized the applications of ROS-based nanoparticles, highlighting the latest achievements of nanotechnology researches for the treatment of myocardial ischemia reperfusion injury. Cardiovascular diseases are the leading cause of death worldwide. Researches of the myocardial infarction pathology and development of new treatments have very important scientific significance in the biomedical field. Many nanomaterials have shown amazing therapeutic effects to reduce myocardial damage by eliminating ROS. Nanomaterials effectively reduced myocardial damage through eliminating ROS from NOXs, M-ETC, M-Ca2+, M-mPTP, and RIRR.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, 750003, China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
49
|
Vilas-Boas EA, Carlein C, Nalbach L, Almeida DC, Ampofo E, Carpinelli AR, Roma LP, Ortis F. Early Cytokine-Induced Transient NOX2 Activity Is ER Stress-Dependent and Impacts β-Cell Function and Survival. Antioxidants (Basel) 2021; 10:antiox10081305. [PMID: 34439552 PMCID: PMC8389306 DOI: 10.3390/antiox10081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023] Open
Abstract
In type 1 diabetes (T1D) development, proinflammatory cytokines (PIC) released by immune cells lead to increased reactive oxygen species (ROS) production in β-cells. Nonetheless, the temporality of the events triggered and the role of different ROS sources remain unclear. Isolated islets from C57BL/6J wild-type (WT), NOX1 KO and NOX2 KO mice were exposed to a PIC combination. We show that cytokines increase O2•− production after 2 h in WT and NOX1 KO but not in NOX2 KO islets. Using transgenic mice constitutively expressing a genetically encoded compartment specific H2O2 sensor, we show, for the first time, a transient increase of cytosolic/nuclear H2O2 in islet cells between 4 and 5 h during cytokine exposure. The H2O2 increase coincides with the intracellular NAD(P)H decrease and is absent in NOX2 KO islets. NOX2 KO confers better glucose tolerance and protects against cytokine-induced islet secretory dysfunction and death. However, NOX2 absence does not counteract the cytokine effects in ER Ca2+ depletion, Store-Operated Calcium Entry (SOCE) increase and ER stress. Instead, the activation of ER stress precedes H2O2 production. As early NOX2-driven ROS production impacts β-cells’ function and survival during insulitis, NOX2 might be a potential target for designing therapies against early β-cell dysfunction in the context of T1D onset.
Collapse
Affiliation(s)
- Eloisa A. Vilas-Boas
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Christopher Carlein
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Davidson C. Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Angelo R. Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Leticia P. Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| |
Collapse
|
50
|
Wang F, Xiaole L, Ma R, Zhao D, Liu S. Dual Oxidase System Genes Defects in Children With Congenital Hypothyroidism. Endocrinology 2021; 162:6149935. [PMID: 33631011 DOI: 10.1210/endocr/bqab043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE The objectives of this study were to analyze the distribution of dual oxidase (DUOX) system genes (containing DUOX2, DUOX1, DUOXA2, and DUOXA1) variants in children with congenital hypothyroidism (CH) and their phenotypes. METHODS Target region sequencing technology was performed on DUOX system genes among 606 CH subjects covering all the exon and intron regions. Detailed clinical data were collected for statistical analysis. RESULTS A total of 95 suspected pathogenic variants were detected in the DUOX system genes, showing a 39.11% rate in variant carrying (237/606). DUOX2 had the highest rate in this study. There were statistical differences in maximum adjusted dose and current dose of levothyroxine between the DUOX system genes nonmutated group with the mutated group (both Ps < 0.001). The cases in the DUOX system genes mutated group were more likely to develop into transient CH (χ 2 = 23.155, P < 0.001) and more likely to manifested as goiter or gland-in-situ (χ 2 = 66.139, P < 0.001). In addition, there was no significant difference in clinical characteristics between DUOX system genes monoallelic and non-monoallelic. Although 20% of the variants affected the functional domain regions (EF hand, flavin adenine dinucleotide and nicotinamide adenine dinucleotide binding sites), there was no significant effect on the phenotype severity whether the variation is located in the functional domain regions. CONCLUSIONS Our results showed the high variation rate of DUOX2 in the DUOX system genes among Chinese CH patients. The complex genotype-phenotype relationship of DUOX system genes broadened the understanding of CH phenotype spectrum.
Collapse
Affiliation(s)
- Fengqi Wang
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xiaole
- Neonatal Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixin Ma
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dehua Zhao
- Neonatal Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiguo Liu
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|